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Abstract: In this paper, we analyze the performances of an Enhanced Static Segment Multiplier (ESSM)
when the inputs have both uniform and non-uniform distribution. The enhanced segmentation
divides the multiplicands into a lower, a middle, and an upper segment. While the middle segment
is placed at the center of the inputs in other implementations, we seek the optimal position able to
minimize the approximation error. To this aim, two design parameters are exploited: m, defining the
size and the accuracy of the multiplier, and q, defining the position of the middle segment for further
accuracy tuning. A hardware implementation is proposed for our generalized ESSM (gESSM), and an
analytical model is described, able to find m and q which minimize the mean square approximation
error. With uniform inputs, the error slightly improves by increasing q, whereas a large error decrease
is observed by properly choosing q when the inputs are half-normal (with a NoEB up to 18.5 bits for
a 16-bit multiplier). Implementation results in 28 nm CMOS technology are also satisfactory, with
area and power reductions up to 71% and 83%. We report image and audio processing applications,
showing that gESSM is a suitable candidate in applications with non-uniform inputs.

Keywords: approximate multiplier; static segmentation; low-power; approximate computing

1. Introduction

The reduction of power consumption in DSP algorithms is a primary concern for the
feasible realization of electronic systems and calls for the adoption of suitable design strate-
gies. Convolution, dot product, and correlation are well diffused operations in applications
ranging from telecommunication to image and audio processing, and make the design
critical due to the extensive employment of adders and multipliers. As an example, IoT
and mobile devices, which implement deep learning and machine learning algorithms,
demand quantization techniques, down-sampling, and arithmetic approximations to re-
duce the hardware complexity [1–3]. In telecommunication, the suppression of noise in
transceivers, necessary for improving the receiver sensitivity, requires cancellation methods
based on adaptive filtering [4–6]. The huge number of multipliers, used for adaptation,
increases the power consumption and demands specific techniques aimed to reduce area
and power while preserving the quality of results [7–11]. Low-power designs are also re-
quired for audio applications [12] in which banks of filters realize operations as equalization
and denoising.

Since multipliers are responsible for large power consumption in DSP algorithms,
hardware-efficient designs are required for achieving acceptable performances. As the
nature of many DSP algorithms is error tolerant (as adaptive filtering or image and audio
processing), the Approximate Computing paradigm constitutes a valuable means of im-
proving the hardware performances of multipliers, providing a way to approximate the
design at the cost of a tolerable accuracy loss. Approximations can be introduced in the
partial product generation stage, in the partial product matrix (PPM) compression step,
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or in the final carry propagate adder of the multiplier. Since the PPM compression stage
is rich in half-adders and full-adders, the approximation of the compression circuit can
lead to a significant hardware improvement. In [13], the authors involve AND and OR
gates to merge the partial product generation stage with the compression step, while [14]
deletes some rows from the PPM at design time. In [15] a recursive approach is proposed,
in which the multiplier is decomposed into small approximate units. The paper [16]
shows a compression scheme in which OR gates substitute half-adders and full-adders,
whereas [17] improves this technique by compensating the mean approximation error.
In [18], fast counters encode the partial products by following a stacking approach, whereas
the works [19–24] analyze multipliers with approximate 4–2 compressors. In these papers,
the full-adders required for the realization of the exact compressor are substituted by simple
logic at the cost of an error in the computation, and the carry chain between compressors
is broken in order to optimize the critical path and to moderate the glitch propagation.
In [20], the authors propose three compressors with different levels of accuracy, while [21]
designs an error recovery module to improve the quality of results. The paper [22] shows
a statistical approach for ordering the partial products in approximate 4–2 compressors,
and analyzes the performances when different compressors are employed in the same
multiplier. In [23], compressors with positive and negative mean error are interleaved in
order to minimize the approximation effects, whereas [24] prefers NAND and NOR gates
to AND and OR gates for achieving high speed performances.

The fixed-width technique is a further approach able to reduce the power, providing a
way to discard some columns of the PPM [25,26]. In this case, properly weighing the partial
products in the truncated PPM reduces the approximation error of the multiplier [26].

Different from the previous works, the segmentation method reduces the bit-width of
the multiplicands with the aim to downsize the multiplier. The papers [27,28] describe a
dynamic segment method (DSM) in which the segment is selected starting from the leading
one bit of the multiplicand. While [27] adds a ‘1’ bit at the least significant position of the
segment for accuracy recovery, ref. [28] revises the multiplication as a multiply-and-add
operation and applies operand truncation for further simplification. On the contrary, the
paper [29] proposes a static segment method (SSM), which reduces the complexity of the
selection mechanism by choosing between two fixed m-bit segments, with n/2 ≤ m < n and
n that is the number of bits of the inputs. At the same time, an Enhanced SSM multiplier
(ESSM) is also proposed in [29], which allows for selecting between three fixed portions of
the inputs: the m most significant bits (MSBs), the m least significant bits (LSBs), and the m
central bits of the inputs. The paper [30] improves the accuracy of the SSM multipliers by
reducing the maximum approximation error, whereas in [31] the authors propose a hybrid
approach in which a static stage is cascaded to a dynamic stage. In these cases, error metric
results reveal satisfactory accuracy when the inputs have uniform distribution, along with
acceptable power improvements with respect to the exact and the DSM multipliers. At
the same time, these works do not offer an analysis with non-uniform distributed input
signals; in addition, the work [29] does not show a detailed analysis of the hardware
implementation of the ESSM multiplier.

In this paper, we analyze the performances of the ESSM multiplier as a function of
the input stochastic distribution and propose a novel implementation able to minimize
the mean square approximation error. Indeed, the statistical properties of a signal affect
the probability of assuming values in a range, giving high probability ranges and low
probability ranges. Starting from this observation, our idea is to properly place the central
segment (named middle segment in the following) in order to minimize the segmentation
error in the high probability ranges. To this aim, two design parameters are exploited: m,
which defines the size of the multiplier, and q, which defines the position of the middle
segment. For the error analysis, we consider inputs with uniform and non-uniform distri-
bution, taking into consideration half-normal signals for demonstration in this last case,
and also describe an analytical model able to find the optimal position qopt that minimizes
the multiplier error in a mean square sense.
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Simulation results match with the theoretical analysis, exhibiting accuracy perfor-
mances dependent on the input stochastic distribution and on the choice of m and q. Best
error metrics are achieved with the middle segment placed toward the MSBs if the inputs
are uniform, and with middle segment placed at the center of the inputs if the distribution is
half-normal. Electrical analyses also show remarkable hardware improvements if compared
with the exact multiplier, whereas only an acceptable degradation is registered with respect
to the SSM multipliers. Assessments of image and audio processing applications confirm
these trends, showing performances that depend on the position of the middle segment.

The paper is organized as follows: Section 2 shows the static segment method, also
describing the correction technique of [30] and the enhanced segmentation presented
in [29]. Then, Section 3 describes the hardware structure of the proposed gESSM, along
with the analytical model used to minimize the mean square value of the approximation
error. Section 4 shows the results in terms of error metrics, electrical performances, and
applications in image and audio processing. A comparison with the state-of-the-art is
also proposed. Section 5 further compares the multipliers finding the pareto-optimal
implementations, and Section 6 concludes the paper.

2. Static Segment Method
2.1. Static Segment Multiplier and Correction Technique

The SSM technique shown in [29] provides for selecting m-bit segments from the
multiplicands, with n/2 ≤ m < n, in order to employ a smaller m × m multiplier instead
of a nxn multiplier. As shown in Figure 1 for the unsigned signal A, if the n − m MSBs
(i.e., a15, a14, ..., a10) are low the least significant m bits of the input are chosen, forming the
segment AL. On the contrary, if any bit of the n-m MSBs is high the most significant m bits
are selected, forming the segment AH. It is worth noting that the segmentation introduces
an error when AH is chosen since the bits belonging to eA are truncated (i.e., a5, a4, . . . , a0
in Figure 1). In addition, m is the only parameter able to define the accuracy and the size of
the multiplier.
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Figure 1. Segmentation of the signal A with n = 16 bits and m = 10 bits.

Then, defining αA as the OR between the n − m MSBs of A, the segmented input
Assm is

Assm =

{
AL i f αA = 0
AH i f αA = 1

(1)

A similar expression holds also for the input B and the corresponding segment Bssm.
Then, the segmented multiplication is

γssm =
(

Assm·2SHa,ssm
)
·
(

Bssm·2SHb,ssm
)
= (Assm·Bssm)·2SHssm (2)

with SHa,ssm, SHb,ssm that are

SHa, ssm =

{
0 i f αA = 0
n−m i f αA = 1

SHb, ssm =

{
0 i f αB = 0
n−m i f αB = 1

(3)
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and SH = SHa,ssm + SHb,ssm, defining the left-shift used to express the result on 2·n bits:

SHssm =


0 i f αA = 0 , αB = 0

n−m i f αA = 0 , αB = 1 or i f αA = 1 , αB = 0
2·(n−m) i f αA = 1 , αB = 1

(4)

Figure 2a depicts the hardware implementation of the SSM multiplier. The multiplex-
ers on A and B apply the segmentation choosing between the most significant and least
significant portions of the inputs, whereas two OR gates compute the selection flags αA
and αB. After the m × m multiplier, a further multiplexer realizes the left-shift described
in (4).
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Figure 2. Approximate multiplier with (a) static segment method and (b) segmented multiplier with
the correction technique of [30].

The accuracy of the SSM multiplier is improved in [30] by minimizing the approxima-
tion error in the case αA = 1, αB = 1 (i.e., when both inputs are truncated). Here, the authors
estimate the committed error as

CT = 22n−2m·
m−1

∑
k=0

ctk2k (5)

with
Ctk = (ak+n−mbn−m−1)OR(bk+n−man−m−1) (6)

and add CT to the approximate product for compensation:

γssm,c = (Assm·Bssm + CT)·2SH (7)

As detailed in [30], using two or three terms of the summation (5) sufficiently improves
the accuracy.

Figure 2b shows the implementation of the corrected SSM multiplier (named cSSM in
the following). The correction term CT is combined with the product Assm·Bssm if αA = 1
and αB = 1 (see the AND gate highlighted in red). It is also worth noting that the correction
technique has a minimum impact on the hardware performances since a fused PPM is
employed for realizing the (7).

2.2. Enhanced SSM Multiplier

The ESSM multiplier described in [29] allows for selecting between three segments
of the input, each one having m bits (see Figure 3a). In this implementation, the middle
segment AM is placed at the center of the signal (i.e., (n − m)/2 bits on the left with respect
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to the LSB, see the figure). As the position of AM is fixed, m is again the only design
parameter which defines the accuracy and the size of the multiplier.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 21 
 

 

to the LSB, see the figure). As the position of AM is fixed, m is again the only design pa-

rameter which defines the accuracy and the size of the multiplier. 

 
(a) 

 
(b) 

Figure 3. Segmentation of the input A in the case n = 16 and m = 8 with (a) the ESSM method of [29] 

and (b) the proposed generalized ESSM method in the case q = 5. 

In this case, two control flags are required for the selection, named αAH and αAM in 

the following. Therefore, defining αAH as the OR of the first (n–m)/2 MSBs of A (i.e., a15, a14, 

…, a12, highlighted in blue in Figure 3a), and αAM as the OR of the remaining (n – m)/2 

MSBs (i.e., a11, a10, …, a8, highlighted in green in Figure 3a), the segment Aessm is computed 

as 

𝐴𝑒𝑠𝑠𝑚 = {

𝐴𝐿                  𝑖𝑓 (𝛼𝐴𝐻 , 𝛼𝐴𝑀) = (0,0)

𝐴𝑀                 𝑖𝑓 (𝛼𝐴𝐻 , 𝛼𝐴𝑀) = (0,1)

𝐴𝐻 𝑖𝑓 (𝛼𝐴𝐻, 𝛼𝐴𝑀) = (1,0) 𝑜𝑟 (1,1)
 (8) 

A similar expression holds also for the segment Bessm, with the flags αBH, αBM that 

handle the segmentation. 

Therefore, the approximate product is 

𝛾𝑒𝑠𝑠𝑚 = (𝐴𝑒𝑠𝑠𝑚 ∙ 2
𝑆𝐻𝑎,𝑒𝑠𝑠𝑚) ∙ (𝐵𝑒𝑠𝑠𝑚 ∙ 2

𝑆𝐻𝑏,𝑒𝑠𝑠𝑚) = (𝐴𝑒𝑠𝑠𝑚 ∙ 𝐵𝑒𝑠𝑠𝑚) ∙ 2
𝑆𝐻𝑒𝑠𝑠𝑚 (9) 

with SHa,essm, SHb,essm that are 

𝑆𝐻𝑎, 𝑒𝑠𝑠𝑚 = {

0                     𝑖𝑓 (𝛼𝐴𝐻, 𝛼𝐴𝑀) = (0,0)

(𝑛 − 𝑚)/2 𝑖𝑓 (𝛼𝐴𝐻, 𝛼𝐴𝑀) = (0,1)

𝑛 − 𝑚 𝑖𝑓 (𝛼𝐴𝐻, 𝛼𝐴𝑀) = (1,0) 𝑜𝑟 (1,1)

𝑆𝐻𝑏, 𝑒𝑠𝑠𝑚 = {

0                   𝑖𝑓 (𝛼𝐵𝐻, 𝛼𝐵𝑀) = (0,0)

(𝑛 −𝑚)/2 𝑖𝑓 (𝛼𝐵𝐻, 𝛼𝐵𝑀) = (0,1)

𝑛 − 𝑚 𝑖𝑓 (𝛼𝐵𝐻, 𝛼𝐵𝑀) = (1,0) 𝑜𝑟 (1,1)

 (10) 

and SHessm defined in Table 1. 

Table 1. Left-shift for the ESSM multiplier. 

αAH, αAM, αBH, αBM SHessm 

(0000) 0 

(0001), (0100) (n – m)/2 

(0010), (0011), (0101), (1000), (1100) n – m 

(0110), (0111), (1001), (1101) (3/2)·(n – m) 

(1010), (1011), (1110), (1111) 2·(n –m) 

As shown in the table, the left-shift SHessm ranges between five possible values, thus 

requiring a 5 × 1 multiplexer to extend the result on 2·n bits. 

Figure 3. Segmentation of the input A in the case n = 16 and m = 8 with (a) the ESSM method of [29]
and (b) the proposed generalized ESSM method in the case q = 5.

In this case, two control flags are required for the selection, named αAH and αAM
in the following. Therefore, defining αAH as the OR of the first (n − m)/2 MSBs of A
(i.e., a15, a14, . . . , a12, highlighted in blue in Figure 3a), and αAM as the OR of the remaining
(n − m)/2 MSBs (i.e., a11, a10, . . . , a8, highlighted in green in Figure 3a), the segment Aessm
is computed as

Aessm =


AL i f (αAH , αAM) = (0, 0)
AM i f (αAH , αAM) = (0, 1)
AH i f (αAH , αAM) = (1, 0) or (1, 1)

(8)

A similar expression holds also for the segment Bessm, with the flags αBH, αBM that
handle the segmentation.

Therefore, the approximate product is

γessm =
(

Aessm·2SHa,essm
)
·
(

Bessm·2SHb,essm
)
= (Aessm·Bessm)·2SHessm (9)

with SHa,essm, SHb,essm that are

SHa, essm=


0 i f (αAH , αAM) = (0, 0)
(n−m)/2 i f (αAH , αAM) = (0, 1)

n−m i f (αAH , αAM) = (1, 0) or (1, 1)

SHb, essm=


0 i f (αBH , αBM) = (0, 0)
(n−m)/2 i f (αBH , αBM) = (0, 1)

n−m i f (αBH , αBM) = (1, 0) or (1, 1)

(10)

and SHessm defined in Table 1.

Table 1. Left-shift for the ESSM multiplier.

αAH, αAM, αBH, αBM SHessm

(0000) 0
(0001), (0100) (n − m)/2

(0010), (0011), (0101), (1000), (1100) n − m
(0110), (0111), (1001), (1101) (3/2)·(n − m)
(1010), (1011), (1110), (1111) 2·(n –m)
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As shown in the table, the left-shift SHessm ranges between five possible values, thus
requiring a 5 × 1 multiplexer to extend the result on 2·n bits.

3. Proposed Generalized ESSM Multiplier
3.1. Hardware Implementation

With the aim to improve the accuracy of the multiplier presented in the previous
section, we generalize the ESSM method by placing AM in any possible position between
the LSB and the MSB. With reference to Figure 3a, let us suppose A to be in the range
[212, 213) with high probability, which means that the bit a12 is high and the bits a15, a14, a13
are low with high probability. The segmentation scheme of Figure 3a mostly chooses the
segment AH, approximating the input with resolution 28, whereas AM, able to offer a finer
accuracy, is less used. In order to improve the performances, we can choose a segmentation
scheme as in Figure 3b, allocating the middle segment in order to collect the bits a12, a11,
. . . , a5. In this way, the selection mechanism mostly chooses AM allowing a finer resolution
(that is 25 instead of 28) with beneficial effects on the overall accuracy. As a consequence,
choosing the position of AM in dependance on the input statistical properties allows us to
optimize the accuracy of the multiplier.

As shown in Figure 3b, the parameter q defines the position of AM with respect the
LSB of the input (in this example q = 5). Therefore, two parameters are used for the design:
m, which defines the accuracy and the size of the multiplier, and q, which improves the
accuracy of the segmentation. Please note also that q defines the resolution of AM, which is
2q (see Figure 3b).

By noting that AM and AL overlap if q = 0, and that AM and AH overlap if q = n − m,
we choose q in the range [1, n − m – 1] to select three distinct segments. In addition, if
q = (n − m)/2 we get the ESSM multiplier presented in [29].

The selection flag αAH is computed by OR-ing the first n – (m + q) MSBs of A (i.e., a15,
a14, a13 in Figure 3b, depicted in blue), whereas αAM is computed by OR-ing the remaining
q MSBs (i.e., a12, a11, . . . , a8 in Figure 3b, depicted in green). Then, the segmented inputs
Aessm, Bessm are computed as in (8), with the following expressions for SHa,essm, SHb,ssm:

SHa, essm =


0 i f (αAH , αAM) = (0, 0)
q i f (αAH , αAM) = (0, 1)

n−m i f (αAH , αAM) = (1, 0) or (1, 1)

SHb, essm =


0 i f (αBH , αBM) = (0, 0)
q i f (αBH , αBM) = (0, 1)

n−m i f (αBH , αBM) = (1, 0) or (1, 1)

(11)

Likewise, the approximate product is computed as in (9) with the final left-shift
SHessm defined in Table 2. Now, SHessm ranges between six possible values, thus calling
for a 6 × 1 multiplexing scheme.

Table 2. Left-shift for the generalized ESSM multiplier.

αAH, αAM, αBH, αBM SHessm

(0000) 0
(0001), (0100) q

(0101) 2·q
(0010), (0011), (1000), (1100) n − m
(0110), (0111), (1001), (1101) n − m + q
(1010), (1011), (1110), (1111) 2·(n − m)

Figure 4 depicts the hardware implementation of the generalized ESSM multiplier
(named gESSM in the following). The 3 × 1 multiplexers allow for selecting between the
most significant, the middle, and the least significant part of the inputs, whereas a small
m × m multiplier computes the approximate product. The left-shift is realized by cascading
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two 3 × 1 multiplexers, where the first multiplexer applies the shift SHa,essm due to the
flags αAH, αAM, and the second one applies the shift SHb,essm due to αBH, αBM. It is worth
noting that this approach prevents the usage of large multiplexers with beneficial effects on
the hardware performances of the multiplier.
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3.2. Minimization of the Mean Square Approximation Error

In this paragraph, we find m and q in order to minimize the mean square approxima-
tion error at the output of the multiplier under the hypothesis of both uniform and non-
uniform distributed input signals. In the following, we consider inputs with half-normal
distribution in the non-uniform case, whose probability density function is as follows:

f (A) =

√
2

σ
√

π
·e−

A2

2σ2 f or A ≥ 0 (12)

where σ, being the standard deviation of the underlying normal variable, is also related to
the standard deviation of A.

Before proceeding, let us assume A and B to be independent, and let us re-write
equation (8) as follows with the help of Figure 3b:

Aessm =


AL i f A < 2m

AM i f 2m ≤ A < 2m+q

AH i f 2m+q ≤ A < 2n − 1
(13)

where the conditions A < 2m, 2m ≤ A < 2m+q, and 2m+q ≤ A < 2n−1 recall the conditions
(αAH, αAM) = 00, (αAH, αAM) = 01 and (αAH, αAM) = 10 or 11, respectively. Defining
A′essm = Aessm·2SHa,essm and B′essm = Bessm·2SHb,essm, we can write the exact inputs as follows:

A = A
′
essm + eA

B = B
′
essm + eB

(14)
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with eA, eB that are the truncation errors due to the segmentation:

eA =



0i f A < 2m

q−1

∑
k=0

ak2ki f 2m ≤ A < 2m+q

n−m−1

∑
k=0

ak2ki f 2m+q � A� 2n − 1

eB



0i f B < 2m

q−1

∑
k=0

bk2ki f 2m ≤ B < 2m+q

n−m−1

∑
k=0

bk2ki f 2m+q ≤ B ≤ 2n − 1

(15)

In (15) we assume bits ak, bk to be independent from A and B, respectively, and to be
uniform random variables with probability 1

2 of being ‘1’.
Using (14), the exact product is:

γ = A·B =
(

A
′
essm + eA

)
·
(

B
′
essm + eB

)
= A

′
essm·B

′
essm + A

′
essm·eB + B

′
essm·eA + eA·eB

(16)

Since the gESSM computes only the term A’essm·B’essm, the segmentation error is:

eessm = A
′
essm·eB + B

′
essm·eA + eA·eB (17)

Re-writing (14) as A’essm = A − eA, B’essm = B − eB and substituting in (17), we find:

eessm = A·eA + B·eB − eA·eB (18)

Neglecting the small term eA·eB for the sake of simplicity, we compute the mean square
approximation error by squaring (18) and by using the expectation operator:

E
[
e2

essm

]
= E

[
A2
]
·E
[
e2

B

]
+ E

[
B2
]
·E
[
e2

A

]
+ 2·E[A·eA]·E[A·eB] (19)

Since A and B have the same distribution, we have E[A2] = E[B2], as well as E[e2
A] = E[e2

B]
and E[A·e2

A] = E[B·e2
B] for the previous hypothesis. Therefore, Equation (19) becomes

E
[
e2

essm

]
= 2·E

[
A2
]
·E
[
e2

A

]
+ 2·E[A·eA]

2 (20)

As the computation of E[A·eA]2 is not straightforward, we can exploit the Cauchy–
Schwarz inequality E[A·eA]2 ≤ E[A2]·E[e2

A] to find the upper limit of E[e2
essm]:

E
[
e2

essm

]
≤ 4·E

[
A2
]
·E
[
e2

A

]
(21)

Here, E[A2] depends on the statistic of the input signal, whereas E[e2
A], which is the

mean square value of the approximation error committed on A, depends on m and q. Then,
as suggested by the above inequalities, minimizing the upper limit (i.e., minimizing E[e2

A])
minimizes the overall mean square approximation error of the multiplier.

Starting from (15), we can write E[e2
A] as follows:

E
[
e2

A

]
= E

(q−1

∑
k=0

ak2k

)2
·P(AM) + E

(n−m−1

∑
k=0

ak2k

)2
·P(AH) (22)

with P(AM) and P(AH) that are the probability of having A in the ranges [2m, 2m+q) and
[2m+q, 2n − 1], respectively. Table 3 collets the expressions of P(AM) and P(AH) for the
uniform and the half-normal cases, where erf (·) represents the so-called error function
(details on the computation are reported in Appendix A for the half-normal case).
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Table 3. Probability of selecting AM and AH as a function of the input distribution.

Input Stochastic Distribution P(AM) P(AH)

Uniform 1
2n−1 ·

(
2m+q − 2m) 1

2n−1 ·
(
2n − 1− 2m+q)

Half-normal er f
(

2m+q

σ
√

2

)
− er f

(
2m

σ
√

2

)
er f
(

2n−1
σ
√

2

)
− er f

(
2m+q

σ
√

2

)
We underline that the presence of P(AM) and P(AH) in (22) highlights the relation

between the approximation error and the stochastic distribution of the inputs.
Solving the expectations in (22), we find the following expression for E[e2

A] (refer to
Appendix B for details):

E
[
e2

A
]
=
[

1
6 (4

q − 1) + 1
4 21(2q−1 − 1

)
− 1

6
(
4q−1 − 1

)]
·P(AM)

+
[

1
6 (4

n−m − 1) + 1
4 2n−m(2n−m−1 − 1

)
− 1

6
(
4n−m−1 − 1

)]
·P(AH)

(23)

with P(AM) and P(AH) that also depend on m and q (see Table 3).
The behavior of E[e2

A] with respect to m and q is shown in Figure 5, compared to the
simulation results. In this study, the input A is an n = 16 bits integer signal with uniform
distribution in Figure 5a, and half-normal distribution with σ = 1024, 2048, and 16,384 in
Figure 5b–d. We achieve the simulation results by segmenting 106 input samples of A and
by computing the mean square value of the approximation error.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 21 
 

 

𝐸[𝑒𝐴
2] = [

1

6
(4𝑞 − 1) +

1

4
21(2𝑞−1 − 1) −

1

6
(4𝑞−1 − 1)] ∙ 𝑃(𝐴𝑀)

+ [
1

6
(4𝑛−𝑚 − 1) +

1

4
2𝑛−𝑚(2𝑛−𝑚−1 − 1) −

1

6
(4𝑛−𝑚−1 − 1)]

∙ 𝑃(𝐴𝐻) 

(23) 

with P(AM) and P(AH) that also depend on m and q (see Table 3). 

The behavior of E[e2A] with respect to m and q is shown in Figure 5, compared to the 

simulation results. In this study, the input A is an n = 16 bits integer signal with uniform 

distribution in Figure 5a, and half-normal distribution with σ = 1024, 2048, and 16,384 in 

Figure 5b–d. We achieve the simulation results by segmenting 106 input samples of A and 

by computing the mean square value of the approximation error. 

As shown, the theoretical results perfectly match with the simulations. For fixed m, 

increasing q decreases E[e2A] in the uniform case. Therefore, the optimal point qopt, able to 

minimize E[e2A], is the maximum value of q (that is qopt = n – m – 1). On the other hand, 

E[e2A] shows minima in Figure 5b,c, with optimal points in qopt = 4, m = 8 and qopt = 2, m = 

10 for σ=1024, and qopt = 5, m = 8 and qopt = 3, m = 10 for σ = 2048. When σ becomes large, 

E[e2A] again decreases with q, making q = n – m – 1 the best choice. 

In conclusion, a proper selection of q is of paramount importance for optimizing the 

accuracy of the multiplier, leading to placing the middle segment in any position between 

the LSB and the MSB of A (in contrast with [29] which always fixes the middle segment at 

the center of the input). In addition, the statistical properties of the input signals strongly 

affect the optimal value of q, as demonstrated by the results of Figure 5. 

  

(a) (b) 

  

(c) (d) 

Figure 5. Mean square error on the input signal A as a function of m and q with (a) uniform distri-

bution and half-normal distribution in the cases of (b) σ = 1024, (c) σ = 2048, and (d) σ = 16,384. In 

this example, A is an integer signal expressed on n = 16 bits. 

Figure 5. Mean square error on the input signal A as a function of m and q with (a) uniform
distribution and half-normal distribution in the cases of (b) σ = 1024, (c) σ = 2048, and (d) σ = 16,384.
In this example, A is an integer signal expressed on n = 16 bits.
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As shown, the theoretical results perfectly match with the simulations. For fixed m,
increasing q decreases E[e2

A] in the uniform case. Therefore, the optimal point qopt, able to
minimize E[e2

A], is the maximum value of q (that is qopt = n − m − 1). On the other hand,
E[e2

A] shows minima in Figure 5b,c, with optimal points in qopt = 4, m = 8 and qopt = 2,
m = 10 for σ=1024, and qopt = 5, m = 8 and qopt = 3, m = 10 for σ = 2048. When σ becomes
large, E[e2

A] again decreases with q, making q = n − m − 1 the best choice.
In conclusion, a proper selection of q is of paramount importance for optimizing the

accuracy of the multiplier, leading to placing the middle segment in any position between
the LSB and the MSB of A (in contrast with [29] which always fixes the middle segment at
the center of the input). In addition, the statistical properties of the input signals strongly
affect the optimal value of q, as demonstrated by the results of Figure 5.

4. Results
4.1. Assessment of Accuracy

We study the accuracy of the gESSM by exploiting the error metrics commonly used
in the literature. To this end, let us define the approximation error E = Y − Yapprx and
the Error Distance ED = |E|, with Y and Yapprx that are the exact and the approximate
product. Naming avg(·) and Ymax the average operator and the maximum value of Y,
respectively, with Ymax= (2n − 1)2, we define the Normalized Mean Error Distance as
NMED = avg(ED)/Ymax, the Mean Relative Error Distance as avg(ED/Y), and the Number
of Effective Bits as NoEB = 2·n − log2(1 − Erms), with Erms being the root mean square
value of E.

Figure 6 depicts the NoEB as a function of q for m = 8, 10. Please note that the cases
q = 4, m = 8 and q = 3, m = 10 give the ESSM described in [29], and that for q = 0 we
obtain the performances of the SSM multiplier. In this analysis, the error performances
are computed by multiplying 106 input samples, expressed on n = 16 bits, considering
both uniform and half-normal distribution with σ = 2048 for the sake of demonstration.
As shown in Figure 6a, the NoEB slowly improves with q, achieving the best result for
qopt = n − m − 1. On the other hand, the NoEB reaches the peak value with qopt = 5, m = 8
and qopt = 3, m = 10, respectively, when the inputs are half-normal. These results are in
agreement with the analysis of the previous section, since the NoEB reflects the behavior of
the overall mean square approximation error. In addition, this study confirms that the input
statistical properties affect the quality of results, and that positioning AM in the middle (as
in [29]) generally does not achieve the best accuracy.
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For the sake of comparison, we also analyze the performances of SSM [29], of cSSM [30]
(with three corrective terms), and of segmented multipliers described in [27,28,31]. The
multipliers [13,16,19] are also investigated, which exploit approximate compression. The
works [27,28] employ a dynamic segmentation, whereas [31] employs a hybrid technique by
cascading a static stage and a dynamic stage. In [27] (named DRUM in the following), the
parameter k defines the bit-width of the selected segment, whereas [28] (named TOSAM in
the following) exploits a multiply-and-add operation for realizing the product. Here, h bits
of the multiplicands are truncated, and t = h + 4 bits of the addends are discarded for hard-
ware simplification. In [31] (named HSM) the static stage selects p-bit segments, whereas the
dynamic one chooses (p/2)-bit segments. In [16] (referred as Qiqieh in the following), the
parameter L defines the number of rows compressed by an OR gate, whereas [19] (referred
to as AHMA in the following) compresses the PPM with approximate 4–2 compressors. We
highlight that the HDL code of [27,30] is available on [32,33], respectively.

Table 4 collects the error metrics of the investigated multipliers when the inputs are
uniform and half-normal (with σ = 2048), respectively. For the gESSM, we consider the
points q = 5 and q = 7 for m = 8, and q = 3 and q = 5 for m = 10, which achieved best
performances in the previous analysis. Please note that only the case q = 3, m = 10 places
AM at the center of the inputs as in [29].

Table 4. Error metrics of the investigated multipliers for n = 16 bits.

Multiplier
Uniform Distribution Half-Normal Distribution (σ = 2048)

NMED MRED NoEB NMED MRED NoEB

SSM [29] m = 8 1.93 ×·10−3 2.08 × 10−2 8.8 8.29 × 10−5 1.87 × 10−1 13.1
m = 10 4.73 × 10−4 3.99 × 10−3 10.8 1.46 × 10−5 1.96 × 10−2 15.3

cSSM [30] m = 8 6.70 × 10−4 9.49 × 10−3 10.2 8.28 × 10−5 1.87 × 10−1 13.1
m = 10 1.63 × 10−4 1.73 × 10−3 12.2 1.46 × 10−5 1.96 × 10−2 15.3

TOSAM [28] h = 3 2.69 × 10−3 1.05 × 10−2 7.8 6.24 × 10−6 9.98 × 10−3 16.4
h = 4 1.34 × 10−3 5.27 × 10−3 8.8 3.13 × 10−6 5.02 × 10−3 17.3

DRUM [27] k = 4 1.41 × 10−2 5.89 × 10−2 5.5 3.85 × 10−5 6.20 × 10−2 13.7
k = 6 3.51 × 10−3 1.46 × 10−2 7.5 9.53 × 10−6 1.52 × 10−2 15.7
k = 8 8.82 × 10−4 3.66 × 10−3 9.5 2.39 × 10−6 3.68 × 10−3 17.7

HSM [31] p = 8 1.47 × 10−2 1.03 × 10−1 5.5 3.53 × 10−4 7.05 × 10−1 11.0
p = 10 7.15 × 10−3 3.72 × 10−2 6.5 1.02 × 10−4 1.70 × 10−1 12.3
p = 12 3.51 × 10−3 1.56 × 10−2 7.5 9.76 × 10−6 3.92 × 10−2 15.7

Qiqieh [16] L = 2 2.43 × 10−4 2.88 × 10−3 11.0 1.90 × 10−5 3.27 × 10−2 14.0
L = 4 1.12 × 10−2 5.90 × 10−2 5.7 5.78 × 10−5 8.35 × 10−2 12.8

Kulkarni [13] 1.39 × 10−2 3.32 × 10−2 4.7 1.28 × 10−5 1.74 × 10−2 14.1

AHMA [19] 2.14 × 10−2 1.18 × 10−1 4.9 1.65 × 10−4 2.42 × 10−1 11.3

gESSM m = 8, q = 5 1.73 × 10−3 9.68 × 10−3 8.8 1.06 × 10−5 2.55 × 10−2 16.1
m = 8, q = 7 1.45 × 10−3 1.19 × 10−2 9.1 4.24 × 10−5 9.93 × 10−2 14.1
m = 10, q = 3 4.26 × 10−4 2.22 × 10−3 10.9 1.64 × 10−6 2.21 × 10−3 18.5
m = 10, q = 5 3.55 × 10−4 2.30 × 10−3 11.1 7.24 × 10−6 9.73 × 10−3 16.3

In the uniform case, the performances of the gESSM are very close to the SSM multi-
plier, with NoEB of about 9 and 11 bits with m = 8 and m = 10, and NMED, MRED in the
ranges [3 × 10−4, 2 × 10−3], [2 × 10−3, 1.2 × 10−2], respectively. A modest improvement is
registered only in the cases q = 7, m = 8 and q = 5, m = 10, as expected from the previous
considerations, with a NoEB increase of 0.3 bits. Among the segmented multipliers, cSSM
offers best accuracy in the uniform case, with NoEB improvement of 1.4 bits with respect
to SSM, and NMED, MRED in the order of 10−4 and 2 × 10−3 (see the case m = 10). The
other implementations exhibit lower performances in general, with NoEB limited between
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5.5 and 9.5 bits. Only Qiqieh L = 2, using approximate compression technique, is able to
approach a NoEB of 11 bits and NMED, MRED comparable to SSM, cSSM, and gESSM.

On the other hand, the accuracy of the gESSM strongly improves with respect to the
SSM when the inputs are half-normal, exhibiting a NoEB increase up to 3 bits with q = 5,
m = 8, and up to 3.2 bits with q = 3, m = 10. The NMED also improves, achieving values
in the order of 10−5 with q = 5, m = 8, and 10−6 with q = 3, m = 10. Conversely, the cSSM
multiplier does not show improvements, with performances very close to the SSM. Among
the other implementations, DRUM is the only one able to offer an accuracy close to the
gESSM multiplier, with NoEB up to 17.7 bits in the case k = 8.

4.2. Hardware Implementation Results

We synthesize the investigated multipliers in TSMC 28 nm CMOS technology using
0.9V standard voltage library, in Cadence Genus, exploiting a physical flow in order to
improve the accuracy of the estimation of power consumption. For all the circuits, a clock
period of 500ps is considered, whereas the power consumption is computed by simulating
the post-synthesis netlist with 105 input samples, with both uniform and half-normal
distribution (σ = 2048) at a toggle rate of 1GHz. In the simulation, Standard Delay Format
and Toggle Count Format files are used for the annotation of the path delays and of the
switching activity. At the same time, we also assess the minimum delay by synthesizing
each multiplier at the maximum frequency able to allow a positive slack.

Results are collected in Table 5. As shown, the gESSM multipliers allow a reduction
of area up to 71.4% with q = 7, m = 8, and in the range 47%/50% with m = 10. The SSM
and cSSM multipliers offer superior reductions (up to 76% and 75%, respectively), whereas
best results are achieved with DRUM k = 6 and HSM p = 4 (reduction of 84% and 86%,
respectively). We also express the complexity of the circuits in terms of equivalent NAND
count, considering as reference a two-input NAND gate with drive strength 2x and area of
0.63µm2. Also in this case, the gESSM exhibits remarkable improvements with respect to
the exact multiplier and an acceptable worsening with respect to SSM and cSSM.

The gESSM reduces the minimum delay up to 12.8% with respect to the exact imple-
mentation. On the other hand, the SSM and cSSM produce faster results due to the simpler
segmentation algorithm. The minimum delay of DRUM and HSM increases with k and p,
respectively, up to +8.6%, whereas best performances are achieved with Qiqieh, Kulkarni,
and AHMA (with reductions up to 38%).

In the case of uniform distributed inputs, the gESSM multipliers show remarkable
power savings, ranging between 53.7% and 78.1%. On the other hand, the implementations
SSM and cSSM are able to obtain more than 83% of power reduction with m = 8. DRUM
k = 4 and HSM p = 8 achieve best performances, with improvements in the order of −90%.

When the input is half-normal, the power saving of gESSM is of 71% and 27% in the
optimal points q = 5, m = 8, and q = 3, m = 10, and is larger than 83% in the case q = 7, m = 8.
SSM and cSSM continue to exhibit high power reductions (around 88%/89% with m = 8),
whereas power saving of DRUM k = 4 and HSM p = 8 reaches up 76.2% and 84%.

We underline that, despite the reduced power saving with half-normal distribution
in the optimal points, the gESSM multipliers offer the best accuracy, showing superior
error metrics if compared to the other implementations. Therefore, the loss of electrical
performances is more than compensated by the reduced approximation error.

Table 5. Hardware implementation results of the investigated multipliers for n = 16 bits.

Multiplier Minimum
Delay [ps] Area [µm2]

Equivalent
NAND Count

Power @1GHz
(Uniform Input)

Power @1GHz
(Half-Normal Input)

Exact 336 791.3 1256 1300.3 721.8

SSM [29] m = 8 272 (−19.0%) 190.1 (−76.0%) 302 201.4 (−84.5%) 77.6 (−89.2%)
m = 10 313 (−6.8%) 308.6 (−61.0%) 490 346.8 (−73.3%) 281.8 (−61.0%)
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Table 5. Cont.

Multiplier Minimum
Delay [ps] Area [µm2]

Equivalent
NAND Count

Power @1GHz
(Uniform Input)

Power @1GHz
(Half-Normal Input)

cSSM [30] m = 8 272 (−19.0%) 197.4 (−75.0%) 313 214.7 (−83.5%) 85.6 (−88.1%)
m = 10 313 (−6.8%) 352.3 (−55.5) 559 395.0 (−69.6%) 358.6 (−50.3%)

TOSAM [28] h = 3 311 (−7.4%) 341.2 (−56.9%) 542 367.1 (−71.8%) 394.5 (−45.3%)
h = 4 335 (−0.3%) 494.9 (−37.4%) 786 582.4 (−55.2%) 613.5 (−15.0%)

DRUM [27] k = 4 257 (−23.5%) 126.5 (−84.0%) 201 155.9 (−88.0%) 171.8 (−76.2%)
k = 6 357 (+6.3%) 241.9 (−69.4%) 384 389.1 (−70.1%) 377.4 (−47.7%)
k = 8 365 (+8.6%) 414.3 (−47.6%) 658 691.1 (−46.9%) 656.2 (−9.1%)

HSM [31] p = 8 251 (−25.3%) 112.9 (−85.7%) 179 137.3 (−89.4%) 115.7 (−84.0%)
p = 10 354 (+5.4%) 204.8 (−74.1%) 325 306.3 (−76.4%) 339.6 (−53.0%)
p = 12 364 (+8.3%) 347.1 (−56.1%) 551 538.2 (−58.6%) 582.8 (−19.3%)

Qiqieh [16] L = 2 262 (−22.0%) 440.8 (−44.3%) 700 578.6 (−55.5%) 330.9 (−54.2%)
L = 4 218 (−35.1%) 271.9 (−65.6%) 432 385.8 (−70.3%) 241.6 (−66.5%)

Kulkarni [13] 289 (−14.0%) 508.9 (−35.7%) 808 620.4 (−52.3%) 364.7 (−49.5%)

AHMA [19] 208 (−38.1%) 282.4 (−64.3%) 448 327.5 (−74.8%) 252.1 (−65.1%)

gESSM m = 8, q = 5 312 (−7.1%) 235.6 (−70.2%) 347 289.9 (−77.7%) 210.63 (−70.8%)
m = 8, q = 7 293 (−12.8%) 226.0 (−71.4%) 359 284.4 (−78.1%) 122.20 (−83.1%)
m = 10, q = 3 327 (−2.7%) 393.4 (−50.3%) 624 510.9 (−60.7%) 524.8 (−27.3%)
m = 10, q = 5 329 (−2.1%) 420.2 (−46.9%) 667 602.0 (−53.7%) 494.6 (−31.5%)

4.3. Image Processing Application

We study the performances of the investigated multipliers in image filtering applica-
tions. Named I(x,y) the pixel of the input image with coordinates x, y, the filtering operation
realizes the relation

I f (x, y) =
d

∑
i=−d

d

∑
j=−d

I(x + i, y + j)·h(i + d + 1, j + d + 1) (24)

with If(x,y) which is the pixel of the output image, and with h which is the kernel matrix. In
our case, we consider a 5 × 5 gaussian kernel, hGAUSSIAN, used for smoothing operations,
and a 5 × 11 motion kernel, hMOTION, able to approximate the linear motion of a camera.
Figure 7a,b report the coefficients of hGAUSSIAN and hMOTION, expressed as integer numbers
on n = 16 bits.
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For our analysis, we process three test images, Lena, Cameraman, and Mandrill, whose
pixel values are represented on n = 16 bits. For the sake of demonstration, Figure 7c depicts
the histogram of occurrences for Mandrill, showing that the probability of assuming values
in [0, 2n − 1] is almost spread across the whole range. We assess the performances by
exploiting the Mean Structural Similarity Index (SSIM), able to measure the similarity
between images, and the Peak Signal-to-Noise ratio (PSNR), expressed in dB, taking as
reference the exact filtered image.

Table 6 collects the results, showing the average SSIM and PSNR obtained with the
smoothing and the motion application. In addition, the overall average SSIM and PSNR
are presented for facilitating the comparisons. All the multipliers allow for achieving SSIM
very close to 1, with the static segmented implementations that exhibit best results. The
PSNR of cSSM strongly increases if compared with SSM (up to about +14 dB on average in
the case m = 10), whereas the improvement is more modest with the gESSM (up to +4.1dB
with m = 8 and +6dB with m = 10 on average). Again, the performances of the gESSM
depend on the statistical properties of the input image and on the choice of q.

Table 6. Accuracy performances of the investigated multipliers in image processing applications.

Multiplier Gaussian Filter Motion Filter Average

SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB)

SSM [29] m = 8 1.000 42.6 1.000 42.7 1.000 42.6
m = 10 1.000 53.4 1.000 55.2 1.000 54.3

cSSM [30] m = 8 1.000 58.4 1.000 54.7 1.000 56.5
m = 10 1.000 68.5 1.000 67.6 1.000 68.0

TOSAM [28] h = 3 1.000 48.8 0.999 54.8 0.999 51.8
h = 4 1.000 63.9 1.000 63.4 1.000 63.7

DRUM [27] k = 4 0.984 35.7 0.980 37.9 0.982 36.8
k = 6 0.999 51.7 0.999 48.9 0.999 50.3
k = 8 1.000 64.8 1.000 62.8 1.000 63.8

HSM [31] p = 8 0.982 35.7 0.978 36.0 0.980 35.8
p = 10 0.996 45.2 0.994 45.7 0.995 45.5
p = 12 0.999 51.7 0.999 48.9 0.999 50.3

Qiqieh [16] L = 2 1.000 63.9 1.000 65.0 1.000 64.5
L = 4 0.982 32.0 0.981 31.2 0.981 31.6

Kulkarni [13] 0.993 39.2 0.997 42.6 0.995 40.9

AHMA [19] 0.950 25.3 0.948 25.4 0.949 25.4

gESSM m = 8, q = 5 1.000 44.4 1.000 45.5 1.000 45.0
m = 8, q = 7 1.000 47.1 1.000 46.3 1.000 46.7
m = 10, q = 3 1.000 53.7 1.000 57.4 1.000 55.5
m = 10, q = 5 1.000 60.0 1.000 60.4 1.000 60.2

The dynamic segmented multipliers exhibit large PSNR with TOSAM and DRUM
(more than 60 dB), whereas performances are limited with HSM. Among multipliers with
approximate compressors, only Qiqieh L = 2 is able to overcome 60dB of PSNR, whereas
Kulkarni and AHMA show lower performances. Figure 8 offers the results obtained with
the segmented multipliers for the Lena image. As shown, the results of gESSM are very
close to the exact case (as demonstrated by the high values of SSIM and PSNR), whereas
some degradations are registered with DRUM k = 4 and HSM p = 8.
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4.4. Audio Application

As a further example, we investigate the use of the proposed gESSM and the other
multipliers for implementing an audio filter. Filtering is a well diffused operation in audio
processing, able to realize frequency equalization and noise reduction. In this example, we
elaborate the signal by considering a linear phase, low-pass, generalized Equiripple, 187-th
order, finite impulse response (FIR) filter, with pass-band up to 0.1667 π rad/sample and
stop-band from 0.1958 π rad/sample with attenuation of 85dB. The module of the impulse
response is shown in Figure 9a with the taps represented as integer numbers expressed on
n = 16 bits.
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The audio signal used for this trial is p232_016.wav, from the library [34]. We also
superimpose an external gaussian noise with variance of −30dB and quantize the resulting
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signal on n = 16 bits. The histogram of occurrences of the input signal, depicted in Figure 9b,
highlights a close to half-normal distribution.

For the sake of comparison, we show the mean square error (MSE) between the
approximate and the exact output for each multiplier. Therefore, the lower the MSE, the
better the multiplier accuracy.

Figure 10 shows the performances, with multiplications revisited as sign-magnitude
operations. The results for the gESSM multipliers are highlighted in violet (m = 8) and in
red (m = 10). As shown, the accuracy of the gESSM again varies in dependence on q, with
best performance achieved with q = 3, m = 10. In this application, gESSM overcomes cSSM
both with m = 8 and m = 10, which offer a worse MSE. In general, the gESSM performs
better than the other implementations, with the exception of DRUM k = 8, featuring the
best accuracy in this case.
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5. Discussion

As shown in the previous sections, the position of the middle segment AM affects the
accuracy of the multiplier, achieving different results dependent on the statistical properties
of the inputs. Indeed, the accuracy mainly depends (i) on the probability of A of assuming
values in the ranges [2m, 2m+q) and [2m+q, 2n–1], and (ii) on the resolution of AM.

Figure 11 shows the behavior of P(AM) and P(AH) with respect to q for m = 8, in
the uniform case and in the half-normal distribution with σ = 2048 and σ = 16,384. We
remember that the analytical expressions of P(AM) and P(AH) are shown in Table 3.

In the uniform case (Figure 11a), P(AH) is very close to 1 for small values of q. There-
fore, A is mainly approximated with AH, with negative effects on the multiplier accuracy.
Increasing q, P(AM) increases, whereas P(AH) reduces. This improves the accuracy, since
the probability of approximating A with AM grows up. When q = n − m − 1, P(AM) equals
P(AH). As a consequence, the segmentation fairly chooses between AM and AH, allowing
the approximation error to minimize. Therefore, increasing q allows the error performances
to improve with respect to the SSM multiplier. Nevertheless, cSSM exhibits better error
results also considering the optimal gESSM, since the correction technique allows the ap-
proximation error to reduce when AH is chosen. These trends are almost confirmed in the
image processing applications, where the kernels and the input images prefer the selection
of the most significant segments.
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At the same time, the power consumption strongly reduces both with gESSM and
with cSSM and SSM, whereas lower improvements are registered with the other DSM
multipliers. This is mostly due to the employment of leading one detector and encoders,
used to perform the dynamic segmentation. On the other hand, the power saving of gESSM
is slightly weaker than SSM and cSSM due to the different selection mechanism.

The hardware performances of Qiqieh, Kulkarni, and AHMA also show interesting
results, due to the reduced complexity of the PPM compression stage, but at the cost of an
important loss of the quality of results.

When the distribution is half-normal, the overall mean square error presents a min-
imum for small values of σ. Indeed, with reference to the case σ = 2048 in Figure 11b,
P(AM) increases up to q = 5 and is constant for q > 5. On the other hand, for large values
of q, the resolution of AM worsens. This leads to q = 5 as the optimum point since P(AM)
is maximized with AM that offers the best possible accuracy. Furthermore, Figure 5 of
Section 3.2 shows also that the position of the optimal point depends on the standard
deviation of the inputs: the higher σ, the higher qopt. This is explained in Figure 11c for the
case σ = 16,384, where P(AM) reaches the peak value only for q = n − m − 1, thus moving
ahead the optimal point.

With reference to the case σ = 2048, the accuracy of cSSM is very close to SSM since the
probability of choosing AH is low and the correction term is practically unused. Conversely,
the gESSM is able to improve the performances with a NoEB of 18.5 bits, also overcoming
the other implementations. This scenario is confirmed by the audio processing analysis.
In this application, the gESSM performs better than the cSSM, achieving a MSE of about
10−8. From an electrical point of view, the power reduction offered by gESSM is remarkable
when m = 8, and decreases if m = 10. Conversely, SSM and cSSM again exhibit reductions
up to 89.2% and 88.1%, but at the cost of limited accuracy performances.

In order to assess the multipliers considering both the error features and the electrical
performances, we show the plot of the power saving with respect to the NMED and the
MRED for uniform and half-normal inputs (with σ = 2048) in Figure 12. As shown, the
cSSM multipliers are on the pareto front when the inputs are uniform, offering large power
saving with a high quality of results. On the contrary, when the input is half-normal, the
proposed gESSM with q = 5, m = 8 and q = 3, m = 10 define the pareto front for NMED in
the range [9 × 10−6, 5 × 10−5], and MRED in the range [2 × 10−2, 10−1], offering the best
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trade-off between accuracy and power consumption. Therefore, the gESSM results in the
best choice when the inputs have a non-uniform distribution.
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6. Conclusions

In this paper, we have analyzed the performances of the ESSM multiplier as a function
of the position of the middle segment and of the statistical properties of the input signals.
While the standard implementation of the ESSM places the middle segment at the center of
the input, we have moved the middle segment from the LSB to the MSB in order to find the
configuration best able to minimize the mean square approximation error. To this aim, two
design parameters were exploited: m, defining the accuracy and the size of the multiplier,
and q, defining the position of the middle segments for further error tuning. We have
described the hardware implementation of the proposed gESSM, and we have analytically
demonstrated the possibility of choosing q for minimizing the overall approximation error
in a mean square sense.

The error metrics reveal a strong dependence on q and on the statistical properties
of the input signals. When the inputs are uniform, the best accuracy is achieved when q
reaches the maximum value, whereas minimum points arise in the half-normal case (with
σ = 2048). The gESSM is not able to overcome cSSM with uniform distribution, but exhibits
best results with half-normal inputs (achieving NoEB of 18.5 bits). These trends are also
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confirmed in image and audio applications, giving best results in audio filtering. The
electrical performances also exhibit satisfactory results, with power reductions up to 78%
and 83% in the uniform and half-normal cases, respectively.

From the comparison of the error metrics and the power saving of Figure 12, the
gESSM results in the best choice when the input signal is non-uniform, offering the best
trade-off between power and accuracy.
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Appendix A

Let consider the normal random variable A′ with zero mean and standard deviation
σ. The half-normal random variable A is obtained by computing the absolute value of A′,
i.e., A = |A′|.

In order to compute P(AM) and P(AH), let us consider the probability of having A in
the range [0, a]:

P(0 ≤ A ≤ a) =
a∫

0

f (A)da = er f
(

a
σ
√

2

)
(A1)

where f (A) is the pdf of A (see (12)), and erf (·) is the error function.
Therefore, observing that P(AM) = P(0 ≤ A ≤ 2m+q) − P(0 ≤ A ≤ 2m) and P(AH) = P(0

≤ A ≤ 2n−1)−P(0 ≤ A ≤ 2m+q), we obtain the results shown in Table 3.

Appendix B

In order to compute (23), let us concentrate on the first summation in (22), writing the
following equality:

E

(q−1

∑
k=0

ak2k

)2
 = E

[
q−1

∑
k=0

(
ak2k

)2
]
+ 2

q−2

∑
k=0

ak2k
q−1

∑
j=k+1

aj2j (A2)

Exploiting the linearity of the expectation operator and the independence between the
bits, we obtain

E

(q−1
∑

k=0
ak2k

)2
 = 1

2 ·
q−1
∑

k=0
22k

E

[
2

q−2
∑

k=0
ak2k

q−1
∑

j=k+1
aj2j

]
= 1

2 ·
q−2
∑

k=0
2k

q−1
∑

j=k+1
2j

(A3)

under the hypothesis E[ak] = 1/2.
Therefore, observing that

q−1
∑

k=0
rk = 1−rq

1−r

q−1
∑

j=k+1
rk =

q−1
∑

j=0
rj −

k
∑

j=0
rj

(A4)

https://github.com/GenDiMeo/gESSM
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with r that is a natural number, we have the following expressions after simple algebra:

E

[
q−1
∑

k=0

(
ak2k

)2
]
= 1

6 (4
q − 1)

E

[
2

q−2
∑

k=0
ak2k

q−1
∑

j=k+1
aj2j

]
= 1

4 2q(2q−1 − 1
)
− 1

6
(
4q−1 − 1

) (A5)

Applying the same reasoning for the second summation, we obtain the (23).
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