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Abstract: With the explosive growth in personal mobile devices, offloading computation through
nearby mobile user devices as opportunistic edge servers to support complex applications with
limited computation resources is receiving increasing attention. In this paper, we first establish the
optimal opportunistic offloading problem using the statistical properties of user movement speed
and CPU load of mobile edge servers. We then determine the amount of computation to be offloaded
to individual mobile edge servers. Moreover, we design an adaptive mechanism based on PID to
realize the function of continuing large data packets from breakpoints, mainly used to adjust the size
of data packets automatically. It efficiently avoids data loss and reduces the cost of resources through
the latency deviation as the variable of the gain function to estimate the packet size. Finally, an access
control system based on edge computing is designed and developed to make full use of the mobile
phones of nearby users. It can address the shortcomings of traditional schemes with high latency to
some extent, and it makes latency lower and data reliability higher.

Keywords: low cost; edge computing; smart city; system optimization

1. Introduction

Intelligent buildings are based on the integration of modern advanced technology
on the basis of traditional buildings, so that the system, structure, management, and
services of buildings can be optimized and combined according to people’s needs. They
embody the humanization of architecture and create a comfortable, convenient, and efficient
environment for people. In addition, with the world’s energy crisis today, architects,
engineers, and building managers must make buildings energy-efficient and intelligent
in terms of function and use. Technologies applied to smart buildings will improve the
built environment and the occupants’ functionality, and the reduction of operating costs is
imminent [1].

The access control system is an essential part of the intelligent building sector, namely
the Access Control System, or ACS, for short. It usually refers to a control system that uses
modern electronic and information technology to manage and restrict the entry and exit of
people or things at the entrance and exit passages, including granting or denying access,
recording, alarm, and so on. The current design of access control in intelligent buildings is
mainly about transmitting images to the cloud platform server, which processes the images
and returns the result. The access control system primarily consists of a terminal access
control node, a cloud platform server, and a remote control platform, which accesses the
Internet. Thus the API of the cloud platform, through communication means such as WiFi,
4G, and 5G, sends the collected data to the server. The terminal access control node receives
and responds to commands from the remote control platform [2,3].

The above solutions still have certain shortcomings [4]:

• There is the problem of insufficient local bandwidth and high latency caused by
network congestion.
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• There are specific privacy and security issues with the cloud platform solution, as the
access control system may involve private premises data.

The European Telecommunications Association introduced the concept of mobile
edge computing in 2014 to meet users’ specific application and service needs in terms
of real-time, agility, security, and privacy protection by enabling functions such as data
caching and computing at the edge of mobile device networks. As edge computing nodes
can be deployed at the edge of the network, they have the potential to overcome the barriers
of traditional central clouds and the resource constraints of conventional mobile networks
by being able to transmit data over the local network and, thus, not be affected by Internet
congestion [5].

Due to all the above factors, we propose a novel architecture for low-cost access
control for intelligent buildings. Compared with the traditional solutions, the proposed
architectures allow ultra-low-cost front-end devices and pervasive edge computing based
on smartphones. The low-cost camera can be placed anywhere to establish access control
systems, eliminating massive deployment costs, for example, wiring, embedding, and other
placement costs. Based on the architecture, we present the specific designs for front-end
and edge-side devices. The front-end hardware cost is vastly reduced by reducing the
path of data dissemination. Devices in the environment need more potential computing
power; Ubiquitous and low-cost smartphones can be utilized as edge service providers. We
implement LACE and evaluate its performance in terms of both identification accuracy and
system latency. The experimental results show that LACE can achieve better results than
the traditional solving methods.

2. Related Work
2.1. Traditional Intelligent Access Control System Solutions

To meet the requirements of security automation in intelligent buildings, intelligent
access control is a vital link, but the current access control system generally uses digital
IC cards, fingerprint recognition, password recognition, and other methods; There are
many problems, such as low security, difficult maintenance, network bottleneck, and
insufficient integration.

In 2014, Prof. Y Su led a team to develop a system to realize the authentication of
the access control system and the mobile intelligent terminal through a pseudo-random
sequence encryption algorithm, thus, allowing the control of the access control system by
the mobile smart terminal [6]. However, due to the technical limitations of the Bluetooth
connection itself, it is not easy to have a good solution for large-scale data transmission, es-
pecially in today’s world of artificial intelligence, where data is massive and uninterruptible.
This has led to this system being used in a relatively narrow range of trial scenarios.

2.2. Existing Edge-Based Solutions

With the rapid arrival of the Internet of Everything era and the popularity of wireless
networks, various sensors and ubiquitous wireless networks provide a good foundation for
constructing intelligent cities. Still, at the same time, it also brings a massive consumption
of resources, the total amount of global data is greater than 40 zettabytes [7], and 45% of the
data generated by the IoT (Internet of Things) will be processed at the edge of the network,
the massive amount of data generated by smart cities will put enormous pressure on the
centralized processing model of cloud computing and urban uplink bandwidth. Hence,
the computing model for edge-oriented devices is also applied to smart cities. Then the
concept of mobile edge computing is introduced [8].

Referring to the existing literature, we found similar research work, like a video
surveillance system based on edge computing and permission blockchain proposed in the
literature [9], which consists of three parts: a physical layer, a data service layer, and an
application layer, enabling large-scale sensor information collection and data processing
as well as storage. Our final implementation case is similar to what is mentioned in this
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literature. Instead of using a Raspberry Pi as an arithmetic tool, we have used a more
universal and convenient smartphone.

2.3. Main Contributions

Compared to all the previously mentioned methods, this system proposes a low-cost
edge computing framework for ubiquitous environments. Most IoT devices serve human
beings, and in modern society, smartphones often follow the operated object, so in this
system, we choose to use smartphones as the core server of the edge service system and
develop the APP on the smartphone. Our main contributions are summarized as follows:

• High compatibility, traditional intelligent home gateways or other devices are bound
to their specific operating system. There are specific differences when different types
of IoT devices exist in the environment, i.e., multiple other gateways are needed for
service provision, but the current smartphone operating system is more uniform,
with a significant market share occupied by Android, iOS, and Hongxing. Using a
smartphone operating system as the underlying system development can significantly
provide the compatibility of the service system.

• Low hardware device requirements, compared to other solutions. This system hardly
needs to deploy additional computing devices and provides services entirely by
utilizing existing idle computing resources.

3. Solution Design

Combining the characteristics of smart city construction and the particular advantages
of edge computing, this paper proposes a low-cost intelligent building access control system
based on edge computing, which can deploy the system in scenarios such as residential
houses at a lower cost and achieve stable and reliable access control functions.

To realize security automation in intelligent buildings, the access control system needs
to be able to meet the following requirements:

• The ability to capture and store biometric data of different users, such as faces
and gestures.

• The ability to process, analyze, and differentiate data from different users so as to
return different results for different users with different feature information, such as
granting or denying access.

• The ability to transmit data securely and reliably between different terminals.
• The ability to perform self-processing and recovery from some task exceptions.

3.1. System Overview

To meet the above requirements, the access control system proposed in this paper
is designed modularly, as shown in Figure 1. The whole system is divided into an IoT
front-end device module, a task offloading node module, a mobile edge server, and a
user interaction module. In addition, they need to be connected via the Internet for
communication [10], as in Figure 2.

A complete access process can be expressed as shown in Figure 1. When a user ap-
proaches, the front-end device will collect and briefly store the user data, then communicate
with the task offloading node and notify the task offloading node of the task type. At the
same time, the task offloading node needs to search whether the user carries a mobile edge
server and dynamically maintains a table of available mobile edge servers. Upon receiving
a task request from the front-end device, it adds it to the corresponding task queue accord-
ing to the task type. It selects the optimal set of mobile edge servers to assist in offloading
and computation [11].
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Figure 1. Design of access control system.

Figure 2. Diagram of IoT connection with smartphones.

3.2. Front-End IoT Device Design

The front-end equipment module of the intelligent building access control system
proposed in this paper should perform the following functions.

• Capture and briefly save image data.
• Exchange data with task offloading nodes via WiFi, Bluetooth, or Zigbee technology.
• Execute the command issued by the mobile edge server after completing the calcula-

tion and perform the granting or denying access for the person requesting access.

The front-end device is designed as shown in Figure 3 and consists of an operation
execution layer and an operation control layer. The lower layer is the operation control layer,
including the task scheduler, communication module ( WiFi module, Bluetooth module,
Zigbee module or coexistence), I/O pins, and the underlying hardware. When multiple
operations coexist, the task scheduler will queue up the upper-layer tasks according to the
completion of tasks in the communication module, and then it will notify the upper layer
through the I/O pins of the operation command to be executed (e.g., 1 for granting access,
0 for denying access). The upper layer is the operation execution layer, which includes
the hardware necessary to operate, such as the gate switch, the display, the loudspeaker,
the light, etc. A normal and complete workflow for a front-end device would be like this:

1 The infrared radar sensor detects an incoming object, and the camera acquires image data.
2 The task scheduler sends a task request to the task offloading node via the communi-

cation module.
3 The task scheduler acquires data from the sensor cluster via the communication

module and submits the task data to the designated set of mobile edge servers based
on the content returned by the task offloading node.

4 Based on the results returned by the set of mobile edge servers, an operation command
is sent to the operation execution layer.

5 If the operation is successful, the task is completed; Otherwise, the same process
is repeated.
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Figure 3. Front-end device architecture diagram.

3.3. Edge-Side Design

When edge computing was first proposed, it reflected a relative edge compared to
cloud computing. Solutions to implement edge computing often use fixed edge gateways
with specific computing resources, among which the better-known one is cloudlet [12],
which can provide computationally intensive services for mobile devices, but compared
to the traditional approach, this paper proposes a ubiquitous environment with a low-
cost mobile edge computing server architecture. Most IoT devices serve humans, and in
modern society, smartphones are often carried by humans, so in this system, we choose to
use smartphones as the core servers of the edge service system. A dynamic service access
mechanism can be realized by using smartphones in conjunction with task offloading nodes,
and smartphones’ computing power can be fully utilized under the task offloading nodes.

From the above literature and related studies, we have identified a design solution
for the Edge-side. The mobile edge server side is still modular, dividing the app into
communication and service provisioning modules. A clear UI module is also available.

3.3.1. Communication Module

The communication module has two modes: service access mode and service provision
mode. The communication module needs to establish a communication connection with
the task offloading node when the users bring their smartphone within the communication
range of the task offloading node, which we do here via the service-type-aware DHCP
protocol. Once the smartphone is successfully connected to the task offloading node, it
needs to perform calculations on the offloading tasks and transmit information, including
the current phone status and the built-in service model.

Design of communication protocol: As smartphones provide mobile computing re-
sources in edge computing service networks, they need to be able to be accessed at any
time. In some instances, errors such as hardware and processes can occur due to the sudden
departure of users. Especially when the data size of the task is large, the result can not be
returned due to such errors; some data have to be calculated repeatedly. We have chosen
to develop a new communication protocol based on the DHCP network communication
protocol. We call this PDHCP protocol. Using the IoT device as a server for task offloading,
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critical computing tasks are partitioned into multiple pieces, and the data of each current
piece are transmitted to the corresponding offloading nodes. Then the results of the calcula-
tions or command requests are returned step by step. A complete implementation of the
algorithm is shown in Algorithm 1.

Algorithm 1: Data transfer algorithm
Input: Specify packet size Mmax

1 Computing-Server side:
2 While (Calculation tasks not completed)
3 Computing;
4 Transmit data to IoT device.
5 END
6 IoT-Device side:
7 Transmit data to service nodes;
8 Receive the returned results from the service nodes.
9 if timeout then

10 Change another service node;
11 Transmit the last packet to the new service node.

12 Final

As shown in Figure 4, compared to the traditional DHCP protocol, PDHCP adds a
segment of the data message to represent the marker number of that packet. Whenever the
IoT device’s calculation result packet is received out of time, a decision is made to reconnect
the node based on that marker number and restart the calculation task at the breakpoint.

Figure 4. Schematic diagram of the PDHCP protocol.

Adaptive parameter adaptation mechanism: The protocol approach mentioned in
the previous section requires a determination of the packet size. However, this also has
specific problems: How to determine the size of the data sub-packet, if the packet is too
small, repeated receiving and sending operations will cause greater cost consumption and
do not meet our requirements to reduce energy losses; If the packet is too large and it will
not effectively reduce the computational cost. Therefore, based on the mechanism of PID
automatic control, we propose an algorithm that can readily adapt to the latency and data
transmission requirements to calculate the appropriate packet size.

PID (Proportion Integration Differentiation) means proportional, integral, and differ-
ential control. The standard PID algorithm is generally used in high-precision scenarios
requiring adaptive control, such as CNC machine tools. Still, because of its rapid regulation,
there are ways to expand its application. According to the literature [13], they propose
an algorithm for a fuzzy PID, a discrete-time version of the traditional PID controller that
retains the same linear structure of the proportional, integral, and derivative parts with
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constant coefficients but self-adjusting control gains. Or a scheme similar to the one men-
tioned in the literature [14]: A method that uses machine learning to generate controller
tuning algorithms automatically. The process constitutes a decision tree that selects the rule
that best improves the controller characteristics from a set of tuning rules. The decision
tree is constructed using a set of trained example systems. The resulting tuning algorithm
is evaluated using a large group of independently generated example systems. This also
matches our experimental requirements, but finding a training set of potential strategies
for each application scenario is not easy [15].

Here we choose a similar treatment, taking into account the requirements of practical
application scenarios, and we end up with the latency deviation err as the variable of the
gain function. The latency deviation err is calculated as shown below.

err(k) = O(di f f er(Actuallatency, Ideallatency)) (1)

where the function O represents a method of converting latency to packet size, and its exact
conversion is directly related to the actual network transmission speed. We will need to
study and evaluate it more accurately in future work.

u(k) = Kp · err(k) + Ki ·
k

∑
i=0

err(k) + Kd · (err(k)− err(k − 1)) (2)

where Kp, Ki, Kd are the three parameters for regulation and need to be initialized to determine.
It should be noted here that the values of these parameters, in general, will not affect

the convergence of the gain. Still, a better selection of parameters will allow the function to
complete its conditioning and convergence work more quickly. We believe that at this stage,
the best values for them should be selected by some machine learning approach, which
will be reflected in subsequent research work. In the literature [16], we can see how the PID
parameters are tuned using BP networks, which is an excellent insight into our work. In the
future, we may also use such an approach for optimizing and adjusting the parameters.

As shown in Figure 5, u(k) represents the gain size of the kth transmitted packet and
the size of the next packet is P(k + 1) can be expressed as

P(k + 1) = P(k) + u(k) (3)

Figure 5. Diagram of the PID adaptive regulation mechanism.

In this process, as we do not need to granulate the packet size excessively fine, we
need to fuzz the size of err and not change the packet size when its deviation size is in an
acceptable range.

It is also important to note that this would only be used in cases where the scale of
the computing task is large and a large amount of data transmission is required. The usual
application scenarios include intelligent building access control systems with massive
movements of people, and conducting research in this area could enhance the applicability
of our proposed LACE.
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3.3.2. Computing Service Module

According to the current mobile phone performance and user requirements, part of the
deep learning model is pre-set in the app in advance. When a service is provided, the form
of the result is determined by the service type. The results are transmitted to the front-end
device through the communication module.

The communication module has two modes: service access mode and service provi-
sioning mode. When users bring their smartphone within the communication range of
a task offloading node, the communication module needs to establish a communication
connection with the task offloading node, which we have done here by defining the PDHCP
protocol. Similar to the service-type-aware DHCP protocol, once the smartphone has suc-
cessfully connected to the task offloading node, it needs to be able to perform calculations
on the offloaded tasks and needs to transmit information, including the current phone
status, the built-in service modes, etc. [17].

3.4. Task Offloading Module Design

Using the Raspberry Pi 4B as a task offloading node, this system designs an efficient
task offloading node module by explicitly considering the mobility, and heterogeneous
resources (CPU, etc.) on the mobile edge server, which offloads the task to the most
appropriate set of mobile edge servers, thus, minimizing the expected execution time.
Usually, due to the need to perform complex tasks such as object detection on video
captured by HD cameras in many scenarios where one edge computing node has limited
computational power or is impacted by mobility, it may not be sufficient to complete the
task efficiently. We consider chunking and offloading a video frame to a different server for
parallel computation [18]. However, the task offloading problem becomes more challenging
in a multi-mobile edge server scenario because of the variation in user mobility and mobile
edge server resources, where each task offloading node can offload different amounts of
task data to other mobile edge servers, and the computing resources of mobile edge servers
is usually limited. To overcome the above challenges, we propose a system with mobile
servers to determine to which servers each task of the front-end device is offloaded for
more significant performance gain.

The main design features of this module are: (1) This module considers the impact of
the user’s movement speed change on the task calculation; (2) At the same time, the impact
of the CPU load of the mobile edge server carried by the user on the task calculation is
considered. A reliable computation and communication model is established based on the
above features [19,20]. The execution time of task k of the front-end device at mobile edge
server j can be calculated as

t(comp,k,j) =
γk,jskzkcj

Φj
(4)

where γk,j is the proportion of data size that task k of the front-end device allocated to
mobile edge server j by task offloading node N, sk is the size of the input data (in bits)
of the task generated by front-end device k, zk is the number of CPU cycles required to
execute one bit of the task, cj is the CPU load of mobile edge server j, and Φj represents the
number of CPU cycles per second that mobile edge server j can execute.

The data transmission rate of the front-end device can be calculated as

r = W log(1 + θ) (5)

where W is the bandwidth of the front-end device and θ is the SINR between the front-end
device and the task offloading node. The data transmission rate between the task offloading
node and the mobile edge server j can be calculated as

rj = WN log(1 + µj(cj, vj)) (6)
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where WN is the bandwidth of the task offloading node, µj is the SINR between the task
offloading node and mobile edge server j, and vj is the movement speed of mobile edge
server j. The offloading time of task k from the front-end device to the mobile edge server j
can be calculated as

to f f ,k,j = sk/rk +
J

∑
j=1

γk,jsk

rj
(7)

The end-to-end latency between task k of the front-end device and mobile edge server
j can be calculated as

tk,j = tcomp,k,j + to f f ,k,j (8)

When a task is generated for the front-end device, the task offloading node selects
the set of mobile edge servers whose latency is within the deadline to execute this task by
evaluating the end-to-end latency between it and mobile edge server j.

4. Implementation

This section provides a detailed description of the specific implementation methods
and processes of the service architecture section described earlier.

As shown in Figure 6, the image information is collected by the front-end device when
the process starts. After getting the data to be processed, the front-end device requests the
corresponding service through the task offloading node and waits for the result of the task
offloading. After the server is allocated, the task type and data are transmitted to the given
mobile edge server via an HTTP request. After the server successfully receives the task
information and complete image information and passes the checksum, the data is sent to
the calculation module for calculation. The calculation result is transmitted to the front-end
device via HTTP response when the task calculation is completed, which completes the
service process. If no mobile edge server is available, the task offloading node notifies the
front-end device and waits for new available servers. In the event of data errors or loss
during transmission, the mobile edge server communicates directly with the front-end
device to complete the data transmission. After multiple failures, the process is restarted to
allocate another server.

4.1. IoT Front-End Device Implementation

This module uses the ESP32-CAM, like in Figure 7, development board with integrated
WiFi and Bluetooth modules from AI-Thinker as the primary development board for the
front-end device, with an OV5640 auto-focus camera and an infrared sensor as auxiliary
sensors for implementation. In addition, motors, LCD screens, and other devices are still
required as hardware support for the operation execution layer.

This paper uses a third-party library, HttpClient [21], as the network framework for
development, providing a RESTful API-like interface as a communication tool. When a task
demand arises, first, the front-end device sends a POST request to the task offloading node
with parameters such as service type, data size, data format, and other task information
like the IP address or another kind of communication address of that mobile edge server.
Then it waits for the task offloading node to return the offloading result.

The front-end device then establishes an HTTP connection with the mobile edge server
to transmit the collected data. It maintains the connection waiting for the calculation result,
and both parties shake hands to disconnect after receiving the result. After the front-end
device is powered on and the camera is successfully initialized, it can work directly if
connected to the task offloading node using a wired connection. Heartbeat packets must be
sent to each other to keep them alive during the operation. In normal operation mode, each
front-end device first applies a service provisioning request to the task offloading node
and then requests service from the mobile edge server at a rate of 30 frames per second to
complete the intelligent access control task after the mobile edge server is allocated and its
IP address is obtained.
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Figure 6. Mobile edge service provision process.

Figure 7. ESP32-CAM.

4.2. Communication Module

This module uses the OkHttp library [22,23], widely used by Android, as the imple-
mentation framework for the communication module. Its support for the HTTP/2 protocol
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allows all requests connected to the same host address to share a socket, providing an ex-
cellent efficiency gain for small but frequent data transmissions from IoT devices. Secondly,
the latency of requests can be reduced by the connection pool. A multi-thread model was
used to implement the communication module during development. The task offloading
node can offload multiple tasks to different mobile edge servers simultaneously, contribut-
ing to the system’s overall efficiency. The edge servers used in this paper are Google Pixel 4
and Google Pixel 5 with Android 10 (API level 29) or higher. The mobile edge server will
maintain a scanning frequency once every 500 milliseconds in the test environment. When
the user carries the mobile edge server into the service request range of the task offloading
node, the SSID corresponding to the task offloading node appears in the scanning result
of the mobile edge server, and the service access mode will be performed automatically.
The mobile edge server will include the device model, memory, load, remaining power,
etc. The mobile edge server will register its basic information to the task offloading node
and, at the same time, will maintain the connection to provide an interface for updating
the device status. After completing the service access link, the communication module
will enable multi-thread mode. There is always a thread listening for all source address
packets under WiFi to accept tasks from the front-end device. When the data of the task
is received, it will be handed over to the calculation module for processing according to
the task type and corresponding requirements. At the same time, heartbeat packets are
exchanged for connection maintenance, and the calculation results are returned via the
original connection when the result callback function responds.

4.3. Calculation Module

Under the Android platform, this system uses the lightweight TensorFlow Lite frame-
work for implementing AI algorithms. Its advantages are lightweight, low latency, and high
portability, which works significantly under various models of smartphones with the An-
droid operating system and facilitates subsequent porting to the IOS platform. We have
implemented three deep-learning models built in.

4.3.1. Face Detection Module

Using FaceNet proposed by Google in CVPR2015 [24,25], the image is mapped to a
128-dimensional feature space by a deep convolutional network. In addition, L2 regular-
ization is used to filter good features. It can perform face detection better while using a
1 × 1 convolutional form, which can reduce the number of parameters without decreasing
the accuracy. By deploying this lightweight network to mobile devices via TensorFlow
Lite, we can obtain a high confidence level with less computational power required and
improve the model’s accuracy while keeping the processing speed unchanged compared to
traditional face detection.

4.3.2. Target Detection Module

Using the classical SSD-MobileNet lightweight target detection network, the SSD idea
is used to generate prior frames, i.e., pre-selected target frames [26], while combining
YOLO’s regression idea and non-great suppression, and the depth-separable convolution
is used to reduce the computational effort and perform computational slimming at the
channel level. In the training process, positive and negative sample pairs are generated
to improve the recognition of image background frames, which ultimately enables the
whole network to achieve better face detection with low parameters. At the same time,
the convolutional operation can reduce the computational effort of the model at the image
channel level and achieve a good adaptation in low-power mode.

4.3.3. Gesture Recognition Module

The gesture recognition module is obtained using the MobileNet model pre-trained in
the ImageNet dataset and trained in the publicly available gesture dataset using a migration
learning approach. MobileNet was proposed by Google in 2017 [27]. MobileNet used depth-
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by-depth convolution and point-by-point convolution compared to standard convolution,
and the convolution kernel is split. This reduces the number of convolutional operations
without changing the feature map channels. MobileNet’s reduction in convolutional layers
can significantly reduce the network’s running time.

4.4. UI Module

As shown in Figure 8, the UI module connects the user to the mobile edge server so
that the user clearly understands current device usage, combined with XML language de-
velopment to build an interactive environment. The human–computer interaction concept
of the UI is based on simplicity, providing a straightforward interface and visualization of
the user’s operations. In line with this concept, the operating logic of the UI is designed to
be equally simple, and the app’s main interface can be directly accessible by clicking on
it. The operable part of the main interface consists of two buttons: Start, which controls
whether the machine is used for the mobile edge server to provide services, and Show, which
displays the last image captured by the front-end device and a description of the previously
assigned computing task in the lower image window and text window, respectively.

Figure 8. Diagram of the app UI.

4.5. Recognition Effect Display

According to Figure 9, the target recognition was carried out in a practical experimental
operation. It is easy to see the high recognition accuracy and the ability to return commands
and calculation results via the smartphone node.

The highest recognition accuracy of 99.82% was achieved at a camera resolution of
1028 × 1028 and when the area occupied by the recognized items was greater than 18.5%.
All recognition results were essentially correct.
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Figure 9. Experiment and recognition effect display.

5. Evaluation

According to the data given by Ali Dharma Institute and through relevant experimen-
tal attempts, we obtained the following data.

Table 1 shows that LACE reduces latency by 49.01% compared to traditional edge
gateway services while lowering the cost to almost zero. Conservatively, it is estimated
that LACE can reduce latency by at least 10% compared to traditional cloud computing
services in multiple packet transmission.

Table 1. Comparison with types of service.

Method Product Core Device Specification Latency (5 KB) Cost($/Month)

Cloud computing Huawei cloud General computing plus C6 8-cores 32 G 200 ms 171.74
Edge gateway Yuanan IoT COTX-SA 256-cores 32 GB 215 ms >388.55

LACE LACE Huawei P30 8-cores 32 GB 70 ms 0

A test experiment was carried out on this intelligent access system at different distances
between the front-end devices and edge computing servers, different movement speeds
of edge computing servers, and different CPU loads. The average computation time of
processing each video frame is the performance metric. The control variable method
illustrates the average processing time by comparing the time from each video frame’s
sending to the result’s reception in different conditions [28].

As shown in Table 2, it summarises the evaluation of the service performance of
different mobile edge servers with varying distances between task offloading nodes and
mobile edge servers, the CPU load of mobile edge servers, and movement, using the average
processing time per frame as a test metric. As can be seen from the results, the average
processing latency per frame tends to increase significantly with increasing CPU load for a
given distance. The average processing latency per frame increases for a given CPU load as
the distance increases. As the user moves faster, the average processing time also increases.
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Table 2. Service performance at different distances, CPU load and movement speeds.

Distance (m) CPU Load (%) Movement Speed (km/h) Average Computing Time (ms)

0 0 0 90
0 50 0 3985
0 100 0 4760
5 0 0 436
5 50 0 3228
5 100 0 5437

15 0 0 4275
15 50 0 5746
15 100 0 6690

<10 0 5 106
<10 100 5 4437
<10 0 10 123

Shortcomings and Future Directions for Improvement

In this experiment, we have only completed the basic effect test, and we have not
performed a practical performance evaluation to illustrate the feasibility of our method
for large-scale access to IoT devices, frequent access and contact with intelligent ma-
chines, the massive amount of data, and high accuracy required for calculation results.
It also includes how to select offloading nodes for tasks to increase the likelihood of
successful offloading.

In future work, we will optimize the proposed relevant communication protocols,
improve the adaptive packet size partitioning algorithm, and provide better parameter
optimization solutions. Similar to the greedy optimization algorithm mentioned in the
literature [29], we will choose a more reasonable task offloading solution that may improve
our offloading success rate.

6. Conclusions

This paper investigates the problem of task offloading in an intelligent building access
control system. In the implementation, it can be seen that there is a high level of recognition
accuracy and low latency. Compared to traditional cloud computing methods, not only is
the feedback latency lower, but the reliability of the data is also ensured, avoiding problems
such as errors caused by malicious interception or modification of data uploaded during
internet distribution. Moreover, our proposed method’s computational and spatial models
have high accuracy. The proposed new task offloading scheme can effectively reduce the
response time of IoT application devices and improve the efficiency of task offloading.

In future work, we will pay more attention to data security issues and implement some
of the theoretical methods mentioned in this paper. The PID adaptation method is used to
automatically adjust the size of the transmitted packets to reduce the cost of computational
resources caused by repeated calculations in breakpoint sequencing. In addition, how to
improve the accuracy of face recognition to ensure that faces can be correctly identified in
the presence of occlusion.
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