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Abstract: The adoption of customized ASIPs (Application Specific Instruction Set Processors) in
embedded circuits is an important alternative for optimizing power consumption, silicon area,
or processing performance according to the design requirements. The processor is implemented
specifically for the target application, which allows the hardware customization in terms of instruction
set architecture, data word length, memory size, and parallelism. This work describes an EDA tool
for the semi-automatic development of ASIPs named ASIPAMPIUM. The strategy is to provide a set
of integrated tools to interpret and generate a customized hardware for a given target application,
including compilation, simulation, and hardware synthesis. From the C code description of the
application, the tool returns a synthesizable hardware description of the processor. The proposed
methodology is based on the adaptation of a new customizable microprocessor called PAMPIUM,
which can be optimized in terms of silicon area, power consumption, or processing performance
according to the target application. The ASIPAMPIUM tool provides a series of simulated data to
the designer in order to identify optimization strategies in both software and hardware domains.
We show the results for the implementation of an FFT algorithm using the proposed methodology,
which achieved best results in terms of silicon area and energy consumption compared to other works
described in the literature for both FPGA and silicon implementation. Moreover, measurement results
of the implementation in silicon of a dedicated ASIP for interfacing with six sensors in real-time,
including three I2C, an SPI, and an RS-232 interfaces, demonstrate the complete design flow, from
the C code program to physical implementation and characterization. Aside from providing a short
design time, the ASIPAMPIUM tool also affords a simple and intuitive design flow, allowing the
designer to deal with different design trade-offs and objectives.

Keywords: ASIP; EDA tool; FFT

1. Introduction

In the last decades, there has been great progress in the development of application-
specific embedded systems. The advances in micro- and nanoelectronic device fabrication
technology and the development of new design techniques, which allow the implemen-
tation of systems-on-chip (SOCs), are key for the implementation of mobile applications
and Internet of Things (IoT). These applications have the strong requirement of very low
energy consumption, often combined with high performance [1].

The most important element of an embedded system is the microprocessor. This
element must be, in some cases, developed specifically for a given system, which has
requirements in terms of circuit area, power consumption, and performance, and is de-
pendent on the application and on the implemented functionalities [2]. With the growing
demand caused by IoT, new functionalities are required, which increases design complex-
ity [3,4]. Furthermore, there is strong pressure for fast implementation of technological
solutions in the globalized market. This forces companies to design new embedded systems
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within ever narrower time windows. In addition, new products have a shorter service life,
so that the financial return must be obtained in a very short time [5].

In this context, the development of ASIPs (Application-Specific Instruction Set Proces-
sors) is a good alternative for fast and optimized system implementation. The customizable
processors are designed for a given application domain, with the instruction set specifically
designed to accelerate heavy and most frequent functions. The architecture must imple-
ment the assembly instruction set with minimum hardware cost. The main advantages are
flexibility and reduced time to market [6].

Custom processors are often needed for optimizing application characteristics, mainly
performance under a strict power consumption budget. This leads to the development
of custom platforms to support design stages and application evolution. ASIP design
methodologies have stagnated during the past decade and are still based on a series
of manual and time-consuming iterative steps. Furthermore, a productivity gap exists
between the point where an application is given as the target for processor customization
and the time a customized architecture is available. The flexibility and reduced time to
market are important advantages of using ASIPs. Therefore, new EDA tools are required
for reducing the number of design iterations and to bridge this productivity gap [7].

In most applications, the ASIP technology requires performance and energy usage
compared to those of hardwired ASICs [8]. Some challenges arise in this field when
stringent and conflicting specifications demand highly-optimized hardware architectures,
which requires the exploration of hardware solutions with different design characteristics.
The adoption of parallelism is, in most cases, an important strategy to improve performance,
but increases design complexity in terms of both hardware and embedded software.

The presence of development platforms for the design of customized processors is
mandatory for fast system development. Furthermore, it must allow the possibility to
perform design evolution and reusability since the designed system must continuously
follow the technology trends. The efficient mapping of complex applications by these
platforms is a hard requirement. The EDA tool must have an effective uniform synthesis
flow for HW/SW compilation of high-level behavioral specifications. This compilation
process should include an adequate application-specific reconfigurable hardware platform
synthesis and a corresponding compilation of high-level algorithms into their highly
optimized code executed on the synthesized application-specific hardware platform [9].

Customized applications must achieve a series of requirements in order to deal with
environmental and performance conditions. It must guarantee real-time performance, high
safety, security, and dependability, while at the same time satisfying the requirement of
low energy consumption. A specialized EDA tool for this task must deal with complex
multi-level multi-objective optimization (e.g., performance versus energy consumption
and silicon area), besides attending to complex design trade-offs originated by conflicting
requirements [1]. At the same time, the EDA tool must increase design productivity, even
for complex and sophisticated systems, and reduce time-to-market and development costs
without compromising system quality.

The ideal system development flow would be a seamless compilation of a high-level
computation process specification (e.g., in C code) into an optimized machine code executed
on customizable processors [9]. The performance of CISC and RISC architectures can be
improved by exploring instruction level parallelism (ILP), including strategies such as
pipeline, superscalar, and very long instruction word (VLIW).

The capability to deal with conflicting design requirements according to the targeting
application—such as speed, energy consumption, and circuit area—while accelerating the
ASIP development would be a valuable contribution to this field. In this sense, we present
a new EDA tool for the semi-automatic development of ASIPs named ASIPAMPIUM. The
strategy is to provide a set of tools and methods to interpret and generate customized
hardware for a given target application, including compilation, simulation, and hardware
synthesis. It is based on the adaptation of a new customizable microprocessor called
PAMPIUM, which has three baseline micro-architectural versions: monocycle, pipeline,
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and superscalar. The monocycle version is used for simple applications, in which small
circuit area and low energy consumption are priorities. The pipeline version is characterized
by the parallel execution at instruction level, increasing the throughput and the performance
of the generated hardware. The superscalar version provides parallelism of arithmetic
operations and data access, increasing the performance at the expense of an increase in area
and power consumption. The advantage of using PAMPIUM architecture is that its simple
architecture allows the complete characterization of the hardware features, providing the
designer with a rich view of design options for dealing with specification trade-offs.

The PAMPIUM microprocessor has the necessary flexibility to adapt to several appli-
cations with different characteristics, allowing the use of a single development platform
for different design objectives. The integration of these functionalities into a single EDA
tool minimizes the rapidly growing design productivity gap, thus reducing development
costs. The ASIPAMPIUM tool provides these features and allows the efficient exploration
of design space in the search for an optimized ASIP solution.

The remainder of this paper is organized as follows: Section 2 presents a review of
related works in the literature; Section 3 introduces the architecture and organization of the
proposed microcontroller called PAMPIUM; Section 4 describes the ASIPAMPIUM tool;
Section 5 shows an example of application of the ASIPAMPIUM tool for the fast design
of an FFT module; Section 6 presents the silicon implementation of PAMPIUM and its
electrical validation; and finally, Section 7 presents the concluding remarks.

2. Related Work

There are several works in the field of automatic development of ASIPs. In [8], the pro-
posed approach concentrates on dominating the automatic synthesis and mapping of a
given application to heterogeneous massively-parallel MPSoCs based on ASIPs. The tech-
nique is based on ASAM (Automatic Architecture Synthesis and Application Mapping). Each
ASIP of the platform forms a VLIW machine capable of executing parallel software with
a single thread of control. Focused on parallel architectures to improve performance,
the goal is to build adaptable ASIP-based MPSoCs at substantially lower costs and with
shorter time-to-market than the hardwired ASICs. However, it presents small flexibility to
applications where the circuit area and power consumption are the main constraints.

The work in [7,10] proposes a global flow for application mapping called CoEx. The ap-
proach is oriented to multigrained profiling (MGP), which identifies the profiling needs at
each step of ASIP design and allows the designer to tailor the level of detail for application
inspection. Moreover, it tries to optimize the hardware and the application algorithm.
A prearchitectural estimation engine performs a preliminary report for an application with
an abstract processor model and generates an estimate on of the achievable performance.

The platform proposed by [11] explores application parallelism to fulfill performance
requirements focused on digital communication applications. It is structured around
configurable ASIPs combined with an efficient memory and communication interconnect
scheme. The designed ASIP has a single instruction multiple data (SIMD) architecture with
a specialized and extensible instruction-set and six-stage pipeline control.

A tool for the development of ASIPs based on the 32-bit LEON3 processor is presented
in [12]. The tool analyses the application in order to optimize the circuit area while keeping
the performance. The focus is on parallel low-complexity applications.

The work presented by [13] uses LISA 2.0 to generate the hardware. The main goal
of LISA is to detect the details of the processor architecture implementation and to model
it to a higher level of abstraction. It is based on the VLIW approach with high levels of
parallelism. LISA provides an architecture description language and automatically creates
both the hardware description and software support tools. The LISA language provides
high flexibility to describe the instruction-sets of various processors, such as SIMD, MIMD,
and VLIW-type architectures [14].

The RISC-V [15] is an open-source configurable architecture that provides a pro-
grammable processor base for custom accelerators. An open-source System-on-Chip design
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generator tool called Rocket Chip [16] is capable of automatically generating synthesizable
RTL. It leverages the Chisel hardware construction language to compose a library of so-
phisticated generators for cores, caches, and interconnects into an integrated SoC. Another
tool, called OpenASIP 2.0 [17], enables RTL generation as well as high-level language
programming of RISC-V processors with custom instructions.

Commercial toolsets, such as Synopsys ASIP Designer [18], Codasip Studio [19] and
Andes [20], are available to the industry to provide rapid exploration of architectural
choices, generation of C/C++ based software development kits, and automatic generation
of power and area-optimized synthesizable RTL.

Most of the present works in this field are devoted to a specific application niche.
Most of the tools are optimized for applications with high level of parallelism and have
the goal to increase the execution performance and to generate an efficient architecture in
terms of power consumption. However, they do not deal efficiently with conflicting design
requirements, such as high performance, low energy consumption, and small circuit area.
In this context, the elaboration of a flexible tool for accelerating the ASIP development
while providing the possibility to deal with design trade-offs would be a contribution to
this area. This is the goal of the proposed ASIPAMPIUM tool described in this paper.

3. PAMPIUM Architecture

PAMPIUM is a fully customizable microprocessor developed specifically for the design
of ASIPs. It is a RISC architecture with a full instruction set composed of 80 instructions.
The flexibility of the internal organization allows the configurability for use in different ap-
plications since the hardware can be optimally customized for a given design requirement.

The basic internal organization contains a program memory, a data memory, an arith-
metic logic unit (ALU), a register bank, and a control unit. There is the possibility to include
n in-out ports for external communication, according to application requirements. The basic
block diagram of this architecture is shown in Figure 1.

Program
Memory

Data			
Memory

ALU

Register
Bank

Control
Unit

I/O
Interfaces

Figure 1. Basic organization of the proposed microcontroller PAMPIUM.

It is possible to configure several aspects, such as the number and types of imple-
mented instructions, number of registers in the register bank, data memory size, type of
memory access, instruction word length, data word length, etc. Furthermore, the datapath
can be customized by altering the internal organization (monocycle, multi-cycle, pipeline or
superscalar). It allows the optimization of the overall characteristics of the microprocessor,
resulting in power consumption and silicon area reduction, and performance increase.

It is possible to define customization intervals for some characteristics. For example,
the size of the data word is defined by the data type or by the maximum value a variable
can achieve (if it is known). Thus, the minimum number of bits for representing an integer
variable can be given by the maximum value these variables can achieve in the application.
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The size of the instruction word can also be defined by the application. It depends on
the number of implemented instructions and registers. It ranges from 9 bits for the basic
implementation (small possible ISA) to 40 bits for the full instruction set implementation.

Other parameters, such as the number of registers, depend on the number of variables
employed in the application. The register type is given according to the data type (integer,
float, etc), which, in its turn, defines the implementation of the functional units (e.g., ALU).
Memory access is done according to data type, using indirect addressing, by means of a
value given in the instruction word and other stored into a specific register.

PAMPIUM instructions can be divided into three subsets: basic, operative, and data
conversion. The basic subset is independent of the data type and contains 13 instructions,
as shown in Table 1.

Table 1. Basic instruction subset.

Mnemonic Short Description

NOP No operation
END Freeze the program
JUMP Jump
CALL Jump and save return address
RET Function return

RETL Function return saving literal
BBCLEAR Branch if bit equal to “0”

BBSET Branch if bit equal to “1”
SHR Shift right
SHL Shift left

BSET Set a bit from a register
BCLEAR Clear a bit from a register

SETP Set data memory pointer

The operative subset is presented in Table 2. It is composed of 20 instructions, which
can be used for different data types. The “∗” character can be substituted according to
the following data types: “F” for operands of type Float, “I” for Int, “C” for Char and “D”
for Double.

Table 2. Operative instruction subset.

Mnemonic Short Description

*COPY Copy values between registers
*MOVL Assign literal to #*REG_L

*RM Read data memory
*WM Write in data memory
*BL Branch if larger
*BS Branch if smaller

*BLE Branch if large or equal
*BSE Branch if small or equal
*BE Branch if equal

*BNE Branch if no equal
*MULT Multiplication
*DIV Division
*ADD Sum
*SUB Subtraction

*COMP Complement
REM Division remainder
OR Logic OR

AND Logic AND
XOR Logic XOR
NOT Logic NOT
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The instructions in the data conversion subset convert data from one type to another,
according to presented in Table 3.

Table 3. Data conversion instruction subset.

Mnemonic Short Description

ITOF Convert integer to float
ITOD Convert integer to double
FTOI Convert float to integer
DTOI Convert double to integer
FTOD Convert float to double
DTOF Convert double to float

From the 80 different instructions available in the PAMPIUM standard ISA, the user
can choose to implement only those useful for the target application.

The instructions are represented in three different formats: R, L, and M. The instruction
word is divided into two to four fields, according to the format, as can be seen in Figure 2.
The OPCODE field is common to all formats and it stores a unique identification for the
instruction. RA, RB, and RC indicate register addresses in the register bank. Fields Literal
and INC store constants. The sizes of all fields are configurable, according to the number of
implemented instructions and registers.

OPCODE RA RB RC

0NBI

NBOP NBREG NBREG NBREG

(a)

OPCODE Literal

0NBI

NBOP NBLIT

(b)

OPCODE RA RB INC

0NBI

NBOP NBREG NBREG NBREG

(c)

Figure 2. PAMPIUM instruction formats. (a) R Format. (b) L Format. (c) M Format.

3.1. Electrical Characterization and Modeling

The logic blocks that compose PAMPIUM are electrically characterized in order to
provide information to the customized microprocessor generation. This characterization
includes the estimation of area, power consumption, and delay time. As each block has
configurable specifications, it is important to verify the effect of these specifications on the
microprocessor overall performance.

Program memory, register bank, data memory, and arithmetic-logic unit were char-
acterized in 0.18 µm CMOS process technology using Synopsys Design Compiler tool.
The data obtained for each block are the circuit area, static power consumption, energy per
operation, and delay time. The characterization was performed for several word lengths,
with the goal to relate word size to the overall circuit characteristics.

All blocks were described in System Verilog and synthesized to gate level. A vector
with 10,000 random values was applied to the input of the circuits for simulation in order
to obtain a wide coverage over the entire operating range. For the generation of this vector,
we used a random-number generator uniformly distributed over the interval [0, 1]. Binary
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operands were obtained by multiplying these random numbers by 2n, in which n is the
word length.

A model extracted from synthesis results for each building block is used for statistical
simulation in which it is possible to determine the more appropriate configuration to be
used in the customized microprocessor. These models are based on the simulated results
for area, power consumption, delay time, and energy per operation at gate level. Each
characteristic is modeled in relation to the size of the block (in the case of memory and
register bank) and with respect to instruction or data word size. Figure 3 depicts the model
extraction procedure. The block model can be easily extracted from the results obtained
by the logic synthesis for different configurations. For example, the area occupied by the
program memory is estimated based on the number of instructions it contains and on
the instruction word length. A set of synthesis points is generated for a given range in
order to evaluate the behavior of this characteristic. So, regression analysis is used to fit
a predictive model from the observed points, which provides a generic function of the
memory silicon area in relation to the instruction length and to the program size. This
model is dependent on the target fabrication process, since the logic synthesis requires
information about the fabrication technology. The linear model is used when the modeled
characteristic approximates the linear behavior, which happens in most of the situations.
Otherwise, other types of approximations can be used that best fit, such as logarithm or
exponential functions.

Block description 
(SystemVerilog)

Logic synthesis
(target fab. technology)

Simulation
(PPA extraction)

Model extraction 
(regression analysis)

Re
pe

at
 fo

r d
iff

er
en

t w
or

d 
le

ng
th

s a
nd

 m
em

or
y 

siz
es

Figure 3. Scheme of model extraction procedure for the PAMPIUM basic blocks.

By means of statistical simulation, it is possible to determine the more appropriate
configuration of each block to be used in the customized microprocessor. Moreover, the op-
timum word length can be estimated. The generated microprocessor can have monocycle,
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pipeline, or superscalar organization, according to the performance estimated by each
compounding block and to the design goals defined by the user. The next subsections
describe the characterization and modeling of the main PAMPIUM building blocks.

3.1.1. Program Memory

The program memory is a read-only memory for storing program instructions. Its size is
determined by the instruction word length and by the size of the application program. The in-
struction word length can vary, depending on the quantity of registers in the register bank
and on the number of different instructions implemented in the customized microprocessor.

Figure 4 presents the logic block of the program memory. The length of input Addr
(address of the current instruction) is proportional to log base two of the number of instruc-
tions stored in the program memory. The input N_Read indicates how many instructions
should be read simultaneously at the output (available only in the superscalar version).
Outputs INST, INST2, INST3 and INST4 have the length equal to the instruction word.

N_Read  
2

Figure 4. Logic block for the program memory.

Figure 5 shows the estimation of area, delay, static power and energy per operation
(instruction reading) in terms of the length of the instruction word (16, 24 and 32 bits) and
of the memory size. It is possible to verify that all characteristics with respect to the number
of instructions can be roughly approximated by a linear trend line, thus indicating a clear
linear behavior, although a small non-linearity appears. It provides an intuitive scenario
for the user, which can easily estimate the effect of reducing or increasing the number of
instructions in the program memory. The area of the program memory increases with the
number of instructions, as expected (Figure 5a). More instructions mean more bits to be
stored in the memory matrix, but additional resources such as line and column decoders,
as well as routing, are also necessary. The reading latency (delay in Figure 5b) also increases
with the number of instructions. It is caused by the additional routing, which increases the
parasitic capacitance of bit lines, slowing down the reading procedure. Line and column
decoders also become slower with size, contributing to the performance loss of the memory
unit. The same occurs to the static power consumption (Figure 5c) and the energy per
operation (Figure 5d). An increase in the number of logic elements results in a growing
static power consumption and in more energy expended for executing a single memory
reading operation.

Similar behavior is observed in the program memory characteristics with respect to
the size of the instruction word. They present a well-defined proportional variation for
instructions with 16, 24, and 32 bits, with the exception of energy per operation, which is
not significantly affected by the number of bits in the instruction word.
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Figure 5. Program memory characterization in terms of memory size for different instruction lengths
(16, 24, and 32 bits). Trend lines (dotted) indicate the linear regression used for modeling the behavior
of the characteristics. (a) Area. (b) Delay. (c) Static power. (d) Energy per operation.

3.1.2. Register Bank

The number of registers in the register bank is proportional to the number of variables
in the application. The length of each register is determined in order to represent the entire
range of values that the variables can achieve. Figure 6 presents the logic block of the
register bank for monocycle and pipeline versions. It is possible to simultaneously write
data in a register (R1) and read two other registers (R2 and R3). Input signals Addr_R1,
Addr_R2 and Addr_R3 represent the addresses of these registers, respectively.

 Pointer

Figure 6. Logic block of the register bank for monocycle and pipeline versions.

The control signal Set_P and the output signal Pointer are implemented if data memory
read and write instructions are implemented in the instruction set. Control signals W_LI and



Electronics 2023, 12, 401 10 of 30

W_LF are implemented only if there are instructions for writing integer and floating point
literals on registers. In this case, these literals appear at inputs L_INT and L_FLOAT, respectively.

The characteristics of the register bank are affected by the number of implemented
registers. Thus, the final results for area, power consumption, and delay depend on the
number of registers and on the word length of each register. Figure 7 presents the influence
of the word length over the register bank characteristics. It is possible to notice the linear
relationship of area, power consumption, and energy per operation with respect to data
word length. On the other side, the delay is not affected by the number of bits in the
word length.
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Figure 7. Register bank characterization in terms of data word length. (a) Area. (b) Delay. (c) Static
power. (d) Energy per operation.

3.1.3. Floating Point Unit

The implementation of the floating point unit (FPU) depends on the number of bits for
representing the mantissa and the exponent of the floating point number. The overall block
size is related to the number of implemented floating point arithmetic operations, which,
in turn, are determined by the existence of the respective operation in the instruction set of
the customized microprocessor. Figure 8 presents the logic block of the FPU, in which A
and B are the input operands, RES is the output result and SEL is a control signal indicating
the operation to be performed (sum, subtraction, multiplication or division).

Signals EN_M and EN_D enable the start of a multicycle multiplication and division
operation, respectively, and signal T indicates the end of a multicycle operation. They are
implemented only in case of the existence of multicycle multipliers or dividers.

The electrical characterization of this block was achieved by simulation with the
number of bits of the mantissa varying from 7 to 23 while keeping the exponent size
constant with 8 bits. The following arithmetic blocks are available for implementation in
the PAMPIUM: floating point adder, floating point multiplier (monocycle and multicycle
versions), and floating point divider (monocycle and multicycle versions).
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Figure 8. Logic block of the floating point unit.

Figure 9 shows the simulation results at gate level for these blocks. They present a
roughly linear growth for area, delay, and static power consumption with respect to the
number of bits in the mantissa. The energy per operation exhibits a near logarithm behavior
in relation to data word length for all arithmetic blocks, so it is modeled as a logarithm
function of mantissa size. For the multicycle versions, the number of cycles to execute an
arithmetical operation depends on several factors, for example, the number of bits 1 and
the absolute value of the operands. Thus, this estimative was determined by the average of
10,000 randomly selected input operands along the operation range. The resulting average
cycles are indicated in Figure 9b and it also presents a linear behavior in relation to the
mantissa size.
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Figure 9. Floating point unit characterization in terms of mantissa size. (a) Area. (b) Delay. (c) Static
power. (d) Energy per operation.

3.1.4. Integer Arithmetic Unit

The integer arithmetic unit includes operations performed between registers of integer
type. The word length is determined by the size of the largest register of this type. Figure 10
presents this logic block. Operands A and B perform the arithmetic operation determined
by the control signal SEL and the result is available at the output RES. Signals EN_D, which
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enables the execution of the multicycle division, and T, which indicates the end of the
operation, are implemented only in case of the use of multicycle division. The arithmetic
blocks that compose the integer arithmetic unit are implemented according to the existence
of the operation in the customized instruction set.

ALU

Figure 10. Logic block of the integer arithmetic unit.

The electrical characterization was performed for operands with a word length from 8
to 32 bits. Figure 11 presents results for area, delay, static power, and energy per operation
for the adder/subtractor, multiplier, and divider blocks in relation to the data word length.
The divider has monocycle and multicycle versions. The number of cycles for the execution of
an operation in the multicycle divider is dependent on the input values, as for the FPU module.
So, the characterization of this block is also the result of a mean of a vector of 10,000 randomly
selected operands along the operation range. All electrical characteristics present a near-linear
increase as the number of bits of the operands increase, so the model is extracted as a linear
function of data length. The number of cycles necessary to perform a division also increases
linearly in relation to the word length. Simulation results presented an average number of 5,
7, 9, and 11 cycles for word lengths of 8, 16, 24, and 32 bits, respectively.
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Figure 11. Integer arithmetic unit characterization in terms of data word length. (a) Area. (b) Delay.
(c) Static power. (d) Energy per operation.
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3.2. PAMPIUM Monocycle

The monocycle version of PAMPIUM is composed of the following main logic blocks:
program memory, program counter, register bank, and control unit. The remaining blocks
are added according to the demand of the target application, including data memory, integer
and floating point arithmetic units, and external memory interface. Figure 12 depicts
a simplified view of the internal organization of the monocycle version of PAMPIUM.
The control block was not shown for better visualization. The datapath is very simple.
All instructions are executed in a single clock cycle. This microprocessor is indicated for
applications with hard area constraints and relaxed performance requirements. The critical
path is determined by the existence and size of the logic blocks, which are implemented
according to the customized ISA.

Data	memory Register bank

Program
counter Program

memory

FPU

ALU

Monocycle

Figure 12. Simplified view of the monocycle architecture of PAMPIUM.

3.3. PAMPIUM Pipeline

The pipeline version is based on the monocycle version, but with instruction paral-
lelization. The datapath is divided into four stages: instruction fetch, data fetch, execution
and storage. Pipeline registers must be added between the stages, as well as a hazard
control unit. Figure 13 presents a simplified internal organization of the pipeline version
of PAMPIUM.

Data	memory

Register bank

Program
counter

Program
memory

FPU

ALU

Pipeline

Figure 13. Simplified view of the pipeline architecture of PAMPIUM.
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The main logic blocks present in this version are the same as in the monocycle version.
Some multiplexers need to be added to select the correct datapath in case of data hazard.
The internal organization of the processor prevents the existence of structural hazards,
because each instruction step is executed at a different stage with independent modules,
and the execution automatically freezes in case of data dependency.

Interruptions in the pipeline flow can also occur caused by conditional branches,
which are calculated in the second pipeline stage (data fetch).

The presence of pipeline registers represents a huge impact on the microprocessor
characteristics. The bigger the data word length, the bigger the effect of registers over
circuit area and on power consumption. On the other side, the pipeline organization
provides advantages in processing performance, increasing data throughput. This type
of organization is indicated for applications that require an equilibrium between power
consumption and performance.

3.4. PAMPIUM Superscalar

The superscalar version of PAMPIUM presents higher level of parallelism than the
pipeline version, including datapath and instruction level parallelism. It presents eight
different datapaths, providing the possibility to execute in parallel the following operations:
one integer instruction, the most used integer instruction, one floating point instruction,
the most used floating point instruction, one integer literal instruction, one floating point
literal instruction, one memory access instruction and one pointer definition instruction.
Figure 14 presents the hardware organization for the PAMPIUM superscalar version.

The implemented version can execute up to four instructions per clock cycle. For this,
the Program Memory must read up to four instructions simultaneously. The datapath is
complex in order to deal with the high number of data hazard possibilities, demanding more
pipeline registers, which increases circuit area. However, the parallel execution increases
the energetic density, making this version suitable for high performance applications.

Data	memory

Register bank
Program
memory

FPU

ALU

Superscalar

Dispatch
Unit

Figure 14. Simplified view of the superscalar architecture of PAMPIUM.

4. ASIPAMPIUM Tool

The EDA tool for semi-automatic ASIP design proposed in this work, called ASI-
PAMPIUM, receives as input an application code in C language and performs analysis
and simulation in order to guide the user to the generation of an optimized microproces-
sor tailored for that application. Circuit area, power consumption, processing time, or a
combination of these, can be set as the design objective.
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The design flow is shown in Figure 15. It can be divided into four phases [21].

C	code Design	
requirements

Compilation

Pre-architectures
generation

Hardware	simulation

Code
simulation

HDL	generation

Code
optimizationPhase 1

Phase 2

Phase 3

Phase 4

Customized ASIP

Input

Output

AS
IP
AM

PI
UM

Figure 15. Design flow of the ASIPAMPIUM tool.

In Phase 1 the application code is compiled in order to identify the necessary hardware
operations. The main functional units are identified based on software requirements, including
adder, multiplier, divider, memory access, etc. Software variables are mapped to memory
positions after their types, range of values, and vector sizes are estimated by simulation.
With this procedure, it is possible to optimize memory units and data word length.

In Phase 2 the overall design strategy is defined, identifying the real-time constraints
to be respected in order to comply with the required functionality and general assumptions.
The pre-architectures are generated based on templates, which allow the estimation of
performance, power consumption, and circuit area for different design strategies. In this
phase, the compiled code is mapped to hardware according to the minimum instruction set
necessary to execute the application. The knowledge of architectural templates and target
application provides useful information for dealing with design trade-offs.

In Phase 3 the profiling of the execution of the application code on the generated ASIPs
is generated. Circuit characteristics are explored by interactive evaluation and refinement
according to the data generated by hardware simulation. At this point, the designer
can interact with the tool to explore different scenarios in terms of micro-architectures,
building blocks, and custom ISA levels. This phase is repeated interactively after the
modification of the hardware characteristics by the designer, such as the inclusion or
removal of instructions in the ISA, the resizing of memory units, and the definition of
data word length. The evaluation of execution latency for each operation provides an
estimation of maximum operating frequency, as well as power consumption and circuit
area. The design flow can be returned to Phase 1 if some possible code optimization
is identified.

In Phase 4 the optimized hardware description of the ASIP is generated, which can be
synthesized for FPGA or ASIC implementation, according to the application.
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A customized compiler was developed specifically for the PAMPIUM microprocessor.
The program described in C language is compiled to PAMPIUM assembly language and
the variables are associated to registers according to the data type. At this point, a sim-
ulation of the assembly code provides some statistics about program behavior, such as
the identification of the most frequent instruction types, the expected range of variables
and the required number of registers. These results will guide the synthesis stage for
architecture optimization.

Three different circuits are pre-generated according to the monocycle, pipeline and
superscalar bases of PAMPIUM. A diagnosis of the specifications generated for these
circuits provides information about the best organization that reach the design requirements.
Finally, the hardware description of the ASIP is generated in SystemVerilog language [22],
allowing the synthesis for both FPGA and ASIC implementation.

The developed compiler maps the variables according to their types to equivalent
registers. The operations are also translated according to the target variable. Figure 16
shows the compilation flow implemented by the compiler.

01: int a = 10;
02: int b = 20;
03: int v;
04: v = a*(10+b);
...

int a => $I0
int b => $I1
int v => $I2

IADD I$T0, 10, $I1
IMULT $I2, $I0, I$T0

01:
...

02:
...

03:
...

04:
Tp=10+b;
v = a*Tp;

05:
...

Code entry

Assembly

Variables allocation

Fragmentation and priority

Figure 16. Compilation flow of an input code performed by ASIPAMPIUM.

The compiler is capable to identify the number, type and scope of the variables. Some
temporary variables in different scopes are allocated in order to share the same memory
and register positions, thus providing a reduction in terms of required register bank and
data memory sizes.

With the assembly simulator tool integrated in the ASIPAMPIUM it is possible to
estimate the circuit performance for different hardware configurations, including circuit
area, critical path, execution time, and static power consumption. Moreover, the simulator
provides information about the minimal instruction set that must be implemented, the fre-
quency of execution of a given instruction, the number of necessary registers, the frequency
of memory accesses, the minimum and maximum values of the variables and the number
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and types of literal inputs in the application. These data provided by the simulator gives to
the user a powerful tool for analyzing the trade-offs for circuit implementation.

For each microprocessor version an execution map is generated. It determines the
number of executed instructions and the execution order. For the monocycle microprocessor,
the execution map provides directly the number of program executions. For the pipeline
version, the number of bubbles must be estimated, since it results in additional cycles for
the execution of the same program. Pipeline bubbles are consequence of conditional jumps,
which deviates the normal program execution flow, or data dependency. A form to reduce
the number of bubbles is analyzing the expected result. The most frequent result for the
conditional jump deviation test (true or false) is estimated in the simulation and used as
standard for predicting if the deviation will occur or not. In the superscalar version the
simulator performs an analysis of the parallel execution in the execution map, including
bubble insertion analysis. It is possible to execute up to four instructions in parallel in this
version. However, it must follow some rules related to data dependency. The superscalar
version demands less cycles to execute a program, but it does not mean economy in terms
of number of instructions. The execution time can be estimated by multiplying the delay of
the critical path to the number of cycles necessary to execute a program.

A friendly graphical user interface containing the simulation results and trending
graphs is available in the ASIPAMPIUM, helping the user to interpret data and take design
decisions, as shown in Figure 17.

Figure 17. ASIPAMPIUM graphical user interface.

Design Strategies

The customized processor generated by ASIPAMPIUM tool is dependent on the
quality of the input user application described in C language. In order to exemplify
different optimization strategies, we present an example of the implementation of the
cosine function using Taylor series.

The Taylor series that corresponds to the cosine function is given by:

cos x =
∞

∑
n=0

−1n

(2n)!
x2n; (1)
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A C code to calculate this series is shown in Algorithm 1.

Algorithm 1: Cosine function using Taylor series
1
2 i n t f a t 2 ( i n t k ) ; // f a c t o r i a l func t ion
3 f l o a t exp2 ( f l o a t x1 , i n t k1 ) ; // exponent ia l~funct ion
4
5 void main ( ) {
6 i n t n=6;
7 i n t i =0 ;
8 f l o a t x =0 .785398163397 ;// pi /4;
9 f l o a t re s =0;

10 f o r ( i =0 ; i <=6; i ++){
11 i f ( ( i %2)==0)
12 re s=re s+exp2 ( x , i )/ f a t 2 ( i ) ;
13 e l s e
14 re s=res −exp2 ( x , i )/ f a t 2 ( i ) ;
15 }
16 }
17 i n t f a t 2 ( i n t k ) {
18 i n t i =k * 2 ;
19 i n t re s =1;
20 i n t j =0 ;
21 f o r ( j =1 ; j <= i ; j ++)
22 re s=re s * j ;
23 re turn ( re s ) ;
24 }
25 f l o a t exp2 ( f l o a t x1 , i n t k1 ) {
26 f l o a t x2=x1 * x1 ;
27 f l o a t re s =1;
28 i n t j =0 ;
29 f o r ( j =1 ; j <=k1 ; j ++)
30 re s=re s * x2 ;
31 return ( re s ) ;
32 }

The C code is implemented with a loop of type “for” and two subroutines, fat2 and
exp2. Six iterations were defined for the sum in order to obtain an error below 10−6 [23].
Algorithm 2 presents the PAMPIUM assembly code generated by the compilation, with a
total of 52 operations.

Algorithm 2: PAMPIUM assembly code for Algorithm 1
1 NOP;
2 ICOPY $I1 , 6 ; // main
3 ICOPY $I2 , 0 ;
4 FCOPY $F1 , 0 . 7 8 5 3 9 8 1 6 3 3 9 7 ;
5 FCOPY $F2 , 0 ;
6 ICOPY $I2 , 0 ;
7 JUMP INI_FOR_1 ;
8 IADD $I2 , $I2 , 1 ; // FOR_1
9 IBL $I2 , 6 , END_FOR_1 ;

10 IREST I$XT1 , $I2 , 2 ; // INI_FOR_1
11 IBNE I$XT1 , 0 , END_IF_1 ;
12 ICOPY $I3 , $ I2 ;
13 CALL f a t 2 ;
14 ICOPY I$XT1 , $XT1 ;
15 ICOPY $I3 , $ I2 ;
16 FCOPY $F3 , $F1 ;
17 CALL Exp2 ;
18 FDIV F$XT1 , $XT1 , I$XT1 ;
19 FADD $F2 , F$XT1 , $F2 ;
20 JUMP END_ELSE_1 ;
21 ICOPY $I3 , $ I2 ; // END_IF_1
22 CALL f a t 2 ;
23 ICOPY I$XT1 , $XT1 ;
24 ICOPY $I3 , $ I2 ;
25 FCOPY $F3 , $F1 ;
26 CALL Exp2 ;
27 FDIV F$XT1 , $XT1 , I$XT1 ;
28 FSUB $F2 , $F2 , F$XT1 ;
29 JUMP FOR_1 ; // END_ELSE_1
30 END; // END_FOR_1
31 IMULT $I4 , 2 , $ I3 ; // sub−funct ion f a t 2
32 ICOPY $I5 , 1 ;
33 ICOPY $I6 , 0 ;
34 ICOPY $I6 , 1 ;
35 JUMP INI_FOR_2 ;
36 IADD $I6 , $I6 , 1 ; // FOR_2
37 IBL $I6 , $I4 , END_FOR_2 ;
38 IMULT $I5 , $I6 , $ I5 ; // INI_FOR_2
39 JUMP FOR_2 ;
40 ICOPY $XT1 , $I5 ; // END_FOR_2
41 RET ;
42 FMULT $F4 , $F3 , $F3 ; // sub−funct ion Exp2
43 FCOPY $F5 , 1 ;
44 ICOPY $I4 , 0 ;
45 ICOPY $I4 , 1 ;
46 JUMP INI_FOR_3 ;
47 IADD $I4 , $I4 , 1 ; // FOR_3
48 IBL $I4 , $I3 , END_FOR_3 ;
49 FMULT $F5 , $F4 , $F5 ; // INI_FOR_3
50 JUMP FOR_3 ;
51 FCOPY $XT1 , $F5 ; // END_FOR_3
52 RET ;
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The customized ASIP to implement the cosine function presents a 32-bit fixed and
floating point architecture. It is necessary the use of 12 32-bit registers and 5 8-bit registers.
The customized instruction set is composed of 20 instructions. The results generated by
the ASIPAMPIUM tool for the three PAMPIUM versions are presented in columns 2, 3 and
4 of Table 4. It is possible to note that the monocycle version presents smaller area and
smaller power consumption in comparison with other versions. However, it presents a
slower execution time. As expected, the pipeline version presents intermediate values and
the superscalar version has the smaller execution time, but at the expenses of increase in
area and power consumption.

Table 4. Results for customized ASIP versions generated by ASIPAMPIUM for the cosine function
using Taylor series.

Parameter
Original Code (Algorithm 1) Optimized Code (Algorithm 3)

Monocycle Pipeline Superscalar Multicycle Pipeline Superscalar

Area 0.19 mm2 0.22 mm2 0.28 mm2 0.11 mm2 0.14 mm2 0.20 mm2

Execution time 41.0 µs 29.0 µs 17.0 µs 13.0 µs 8.3 µs 7.2 µs
Power consumption 5.2 mW 7.7 mW 11.0 mW 1.9 mW 3.3 mW 4.5 mW

Figure 18a presents the total time execution for instruction type. Most of the execution
time is spent with general-purpose instructions (literal load, COPY, etc.) and jump instruc-
tions (JUMP, CALL, BLE and BL), representing about 67% of the total time. Arithmetic
instructions, such as FADD, FDIV and ITOF represent only 8% of the execution time. So, it is
possible to notice that the elimination of loops and subroutines in the C code is mandatory
to optimize the total execution time.

Figure 18b depicts the contribution of instruction types over the total microprocessor
area. About 43% of the circuit is used by the floating point monocycle division block.
The second larger block is the fixed point multiplier, occupying 24% of the circuit area.
An optimization in the area could be performed by substituting the divider by its multicycle
version—which presents smaller area—or by eliminating any floating point division in
the code.

Figure 18c shows the contribution of each instruction type to the circuit power con-
sumption. The block with larger energetic impact is again the monocycle floating point
divider, with a total of 6 µJ. This value is very large compared to the remaining blocks,
indicating that it can be substituted by the multicycle version, which presents better ener-
getic efficiency.

Figure 18d presents the relative energy consumption for each instruction type. The float-
ing point division is responsible for 39% of the total consumed energy, followed by the
fixed point multiplication, with 31%, and the general purpose instructions, with 19%.

The monocycle floating point divider has the larger critical path (about 51 ns), as can
be seen in Figure 18e. The remaining blocks present a critical path around 10 ns, which
indicates a balance problem in relation to the instruction delays. It suggests a multicy-
cle implementation for the divider, which allows the increasing in the microprocessor
operation frequency.

So, rewriting the application code it is possible to improve the hardware performance
in different aspects. The floating point division is used only few times in the algorithm,
but presents a high impact on power consumption, area and delay. However, it is not possi-
ble to eliminate it, because it is fundamental for the Taylor series calculation. So, the best
approach is the substitution of the monocycle divider block by its multicycle version.

Furthermore, most of the execution time is spent with loops and subroutines. The code
can be optimized by removing unnecessary loops and by reorganizing functions for calcu-
lating exponent and factorial—which can take advantage of previous results for calculation.
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Figure 18. Estimated characteristics for the implementation of Algorithm 1 per instruction type. (a) Execu-
tion time. (b) Occupied area. (c) Dynamic energy per operation. (d) Total energy. (e) Critical path.

Another important aspect which contributes to the circuit performance is the variable
type for each operation. Presented results use 12 32-bit registers and the fixed-point
numbers are also 32 bits. The factorial calculation generates very high numbers, which
requires an increasing in area to represent the operands. As the fixed-point hardware
is sized by the largest operand, this function would impact in unnecessary effort for
the remaining functions. So, the best option is to change this variable to floating point.
Algorithm 3 presents the refactored code with the improvements discussed before.

Algorithm 3: Optimized cosine function for hardware synthesis.
1 f l o a t x f a t =2;
2 f l o a t xt1 =3;
3 void main ( ) {
4 i n t n=6;
5 i n t i =0 ;
6 f l o a t x =0 .6168502751 ;// ( pi /4)^2 ;
7 f l o a t x t=x ;
8 f l o a t re s =1− xt * 0 . 5 ;
9 f o r ( i =2 ; i <=n ; i ++){

10 x f a t = x f a t * xt1 ;
11 xt1=xt1 +1;
12 x f a t = x f a t * xt1 ;
13 xt=xt * x ;
14 i f ( ( i %2)==0)
15 re s=re s+xt/ x f a t ;
16 e l s e
17 re s=res −xt/ x f a t ;
18 }
19 }
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Columns 5, 6 and 7 of Table 4 summarizes the new circuit performance, considering
code optimization. The values of area, execution time and power consumption were sig-
nificantly reduced compared to the non-optimized code. Multicycle version presents the
smaller area and power consumption (reduction of 42% and 36%, respectively, in com-
parison to the original monocycle version), while superscalar version presents the best
performance in terms of execution time, with a reduction of more than 2x in relation to
the original counterpart. This demonstrates that the statistical analysis generated by ASI-
PAMPIUM tool provides very useful information for the optimization of customized ASIPs.

Design strategies related to C code optimization can be generalized for any applica-
tion. The elimination of a given arithmetic operation or its substitution by the multicycle
version, when possible, can result in great improvements in terms of area and power
consumption. The removal of unnecessary loops contributes to the reduction of jump
addresses calculation, thus providing advantages in terms of power consumption and
performance. The reuse of temporary variables reduces the size of the register bank. Fur-
thermore, the type of numerical variables (integer or floating point) must be evaluated in
relation to area, power consumption and performance. However, the application of these
strategies depends on design objectives. A careful evaluation of the resulting effect over
conflicting requirements is mandatory.

5. Application Example: FFT Synthesis

This section presents the results generated by the ASIPAMPIUM tool for the imple-
mentation of a dedicated Fast Fourier Transform (FFT).

The FFT is applied to several data transmission systems. It transforms the data in the
time domain to the frequency domain [24]. This technique is very used for the analysis
of the modulation signal and for orthogonal frequency division multiplexing (OFDM),
which is the base for different communication systems [25]. Several digital communica-
tion standards, such as ultra-wideband (UWB), worldwide interoperability for microwave
access (WiMAX), wireless LAN (WLAN), integrated services digital broadcasting terres-
trial (ISDB-T), long-term evolution (LTE), digital video broadcasting (DVB-T), and digital
video broadcasting second generation terrestrial (DVB-T2) adopt OFDM systems for the
processing of digital signals [26].

The discrete-time Fourier transform Z(k) of a finite number of points X(n), where
n ∈ [0, N − 1], is calculated as:

Z(k) =
N−1

∑
n=0

X(n)Wnk
N (k ∈ [0, N − 1]) (2)

The coefficient Wnk
N is a complex number represented by the following exponen-

tial equation:

Wnk
N = e

−2jπnk
N (3)

In general, the complexity of FFT evaluation can be reduced to two sums of M and L
coefficients, where the number of points N is given by N = M · L. So,

Z(k) = Z(s + M · p)

=
L−1
∑

l=0

M−1
∑

m=0
x(l + L ·m)W(l+L·m)(s+M·p)

M·L

=
L−1
∑

l=0

M−1
∑

m=0
x(l + L ·m)Ws·l

N Ws·m
M W l·p

L

=
L−1
∑

l=0
Ws·l

N [
M−1
∑

m=0
x(l + L ·m)Ws·m

M ]W l·p
L

(4)

where N = L ·M, k = s + M · p, n = l + L ·m.
A radix-16 algorithm was implemented, using variables of type float for the calcu-

lation of the FFT points and variables of type int for the calculation of the FFT indexes.



Electronics 2023, 12, 401 22 of 30

The algorithm is able to calculate an FFT with N points, in which N is a power of 2 from 32
to 2048. A 16-point butterfly was optimized in order to reduce the number of operations
and variables.

With this algorithm, it is necessary to execute 1024 accesses to data memory and
512 floating point multiplications and sums for each butterfly, not considering the calcula-
tion of the indexes.

In order to reduce even more the computational effort, the calculation is divided into
real and imaginary parts, where Z(k) = X(k) + j · Y(k). With this simplification, it is
possible to reuse some twiddle factors. The number of data memory accesses per butterfly
is reduced to only 16 (the size of the butterfly), the number of floating point multiplications
to 48 (since some twiddle factors are zero or repeated), and the number of sums to 368, thus
minimizing the computational effort to calculate the FFT of a discrete signal.

For example, for a complete calculation of a 2048-points FFT, it is necessary 16 · 64 ·
2048 = 221 memory accesses using the described methodology. Otherwise, without this
technique, it would be necessary 1024 · 64 · 2048 = 227 memory accesses. Thus, the number
of memory accesses is reduced by 64 times.

The developed program has about 300 lines of C code, and its translation to Assembly
resulted in 3071 operations. Only 23 different instructions were necessary to implement
the code, from the 80 available in the PAMPIUM architecture. The most frequent instruc-
tion is the floating point add (FADD). The simulations and analyses performed by the
ASIPAMPIUM tool last about 3 h in an i7-3770 CPU @ 3.40 GHz.

The resulting processor synthesized by the ASIPAMPIUM tool has 9 16-bit integer
registers, 81 32-bit floating point registers, and 6 8-bit registers.

Figure 19a presents the relative area occupied by each logic block. The register bank
block is the most area consuming, due to the high number of registers to store the program
variables. So, optimization in terms of circuit area could be obtained by reducing the
number of variables in the code.

Figure 19b presents the execution time spent for each instruction type. General type
instructions (literal input and data memory access) require about 47% of the total execution
time. The most used arithmetic instruction is the floating point add, demanding 17% of the
execution time. An optimization in the execution time could be obtained by reducing the
number of data memory access or the literal inputs.

Figure 19c presents the energy by operation consumed by the implemented logic blocks,
showing that integer and floating point multiplication are the most energy-consuming
instructions.

The relative energy consumption of each logic block in relation to the overall micro-
processor consumption is presented in Figure 19d. The general purpose instructions are
responsible for most of the energy consumed in an FFT calculation, demanding 36% of the
total energy.

In terms of delay, the floating point add is the slower block, as depicted in Figure 19e.
It can be seen that some optimizations can be achieved for the FFT calculation in the code
domain, mainly to reduce the number of arithmetical operations.

The identification of the common variables in the algorithm and the reuse of values gen-
erated by some arithmetical operations are key for reducing the time- and area-consuming
instructions. So, the number of floating point sums and multiplications inside the butterfly
can be reduced to 94 and 18, respectively, as well as the number of memory accesses can be
minimized to 16.

After optimizing the code, we generated two versions of the PAMPIUM processor:
a multicycle version, called PAMPIUM_M, optimized in terms of circuit area and power
consumption; and a superscalar version, called PAMPIUM_S, developed to achieve the
best possible performance.
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Figure 19. Estimated characteristics for the implementation of FFT algorithm with customized
PAMPIUM microcontroller. (a) Area. (b) Execution time. (c) Dynamic energy per operation. (d) Total
energy. (e) Critical path.

In order to compare the obtained results with other works described in the literature,
we adopt as a figure of merit the normalized energy Ê and area Â [27]. Both are referred to
65 nm technology node and take into account the voltage scaling:

Ê =
P× Tclock × NFFT

Tech.Node
65nm ×

(
VDD
0.9

)2 (5)

Â =
A(

Tech.Node
65nm

)2 (6)

Here, P is the power consumption, Tclock is the clock period, NFFT is the number
of clock cycles necessary to calculate the FFT, VDD is the voltage supply and A is the
circuit area.

The obtained results are compared to the work in [28], which describes the imple-
mentation of a module to perform FFT calculation using the CORDIC (Coordinate Rotation
Digital Computer) method using Xilinx Virtex-5 FPGA platform.

Table 5 presents the results and the comparison with the versions generated by
ASIPAMPIUM, which are implemented in Altera Stratix IV FPGA. These versions are



Electronics 2023, 12, 401 24 of 30

based on multicycle (PAMPIUM_M) and superscalar (PAMPIUM_S) architectures. The
PAMPIUM_M version presents a smaller area with respect to [28] (smaller number of look-
up tables—LUTs), but at the expense of smaller operation frequency. The PAMPIUM_S
version, on the other side, is faster but demands a higher number of LUTs. It can be seen
that there is a trade-off between area and performance in the FPGA implementation.

Table 5. FPGA implementation results for the FFT algorithm.

Parameter PAMPIUM_M PAMPIUM_S [28]

Points 32–2048 32–2048 64–8092
LUTs 9125 14,125 13,176

Registers 4033 4033 3486
Operating frequency 95 MHz 135 MHz 131 MHz

It is also possible to compare the results obtained by the physical synthesis of the
PAMPIUM_M and PAMPIUM_S in 180 nm fabrication technology with other state-of-the-
art works in the literature. The work described in [13] presents a hardware description
language of the LISA machine for the implementation of an ASIP. Using software tools
for design, system verification, and implementation, the proposed design flow allows
prototyping and testing, aiming to reduce design time and human effort with respect to
traditional design methodologies. It presents a case study on a parallel FFT algorithm.
In [26] a reconfigurable process platform is used and a similarity matrix is adopted with
the goal to reduce the number of access to the main memory by using a large register file to
store intermediate data. In [29] a radix-4/2 butterfly structure is adopted for exploring the
parallelism in the FFT calculation, but it requires more memory accesses. In [30], four VLIW
vias and four tracks in the SIMD architecture are adopted, with different data shuffling
modes to improve the FFT transfer rate, aiming to reduce energy consumption.

Table 6 summarizes the comparison between these implementations and the generated
PAMPIUM versions using the normalization Equations (5) and (6).

Table 6. Physical synthesis results for the ASIP implementation of the FFT algorithm.

Parameter PAMPIUM_M 1 PAMPIUM_S 2 [13] [26] [29] [30]

Tech. node 180 nm 180 nm 65 nm 130 nm 130 nm 90 nm
Points 32–2048 32–2048 16–2048 16–4096 16–4096 64–2048

Oper. freq. (MHz) 55 98 470 320 100 350
Power (mW) 8.8 19.5 51.0 60.7 87.2 106.5
NFFT (1k FFT) 33,600 14,280 1024 4526 1280 1950

Ê (nJ) 175.3 92.6 111.1 120.7 157.0 174.1
Area (mm2) 0.19 0.34 0.75 – 2.23 2.45

Â 0.03 0.04 0.75 – 0.56 1.28
1 PAMPIUM multicycle, 2 PAMPIUM superscalar.

We can notice that the multicycle version of PAMPIUM, synthesized for 180 nm
technology, presents the smallest circuit area. The operation frequency is lower, due
to the smaller parallelism level in comparison to the other implementations. However,
the extremely low power consumption of 8.8 mW indicates the optimization for low-power
applications while occupying the smaller silicon area. This version needs 33,600 cycles
(NFFT) to perform the calculation of a 1024-point FFT, which degrades the energy efficiency.

The superscalar version of PAMPIUM, on the other side, presents better energy effi-
ciency compared to the other implementations, while maintaining a small silicon area. It has
a power consumption of just 19.5 mW at an operating frequency of 98 MHz. The instruction-
level parallelism reduces the NFFT to less than half of the multicycle version.

The good results obtained by the ASIPAMPIUM for the generated ASIPs for imple-
menting the FFT algorithm demonstrate the functionality of the EDA tool. It provides an
efficient environment for dealing with design trade-offs in a short design time, generating
optimized circuits with a performance comparable to the obtained by other methodologies.
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6. Prototyping and Measurement Results

We prototyped a version of PAMPIUM generated by ASIPAMPIUM in order to validate
in silicon the complete design methodology implemented with the tool. The central
application is presented in Figure 20, which is a hardware platform for gesture recognition
system using accelerometers and gyroscopes for the detection of movements in the x,
y, and z axes. The system must read up to six sensors using I2C protocol and transmit
the information to a computer through the RS232 serial protocol with a power budget of
50 mW.

PAMPIUM	IC

Computer

Sensor	1

Sensor	2

Sensor	3

Sensor	4

Sensor	5

Sensor	6

I2C

I2C

I2C

DATA	
MEMORY

SPI

RS232

DATA	MEMORY
INSTRUCTION	MEMORY

Figure 20. Sensor system using PAMPIUM.

The version of the processor, called PAMPIUM IC, was developed using the ASI-
PAMPIUM tool and the circuit was prototyped in TSMC 0.18 µm technology. To provide
the reading of the sensors, three interface modules were implemented, compatible with I2C
protocol [31].

The entire circuit has a hard area constraint of 0.34 mm2, as well as a limit of 20 in-
put/output pins.

Small cache memories are implemented inside the processor, reducing the silicon area.
They communicate with data memory and program memory, which are located outside the
chip, by means of the SPI protocol.

Logic and physical synthesis of the circuit, as well as simulation, were executed using
Synopsys RTL-to-GDSII flow, with the digital logic library provided by the foundry.

A C program was developed for the implementation of three I2C and one RS232
communication module.

The processor architecture is of integer type, with a data length of 16 bits and an
instruction word of 24 bits. It has 64 16-bit registers, 9 of them used specifically for literal
input, program memory pointer, and configuration. Figure 21 presents the implemented
register bank.

Registers CONFIG_0 and CONFIG_1 are reserved for the implementation of configura-
tion signals and interruption control. Registers DATA_I2C_0, DATA_I2C_1, DATA_I2C_2
and DATA_RS232 are reserved for the data exchange between the processor and the com-
munication modules. Register PORT_IN/OUT is used for the configuration of directions
and values of the input and output pins. Registers REG_LITERAL and POINTER have the
function to store the input literal and the data memory pointer, respectively.

The RTL description was divided into two stages. First, the RTL description of the
monocycle version of PAMPIUM was generated by the ASIPAMPIUM tool. The processor
was optimized for achieving the area constraint. In the second stage, the cache memory
was included, as well as the blocks for the interface with RS232 and I2C protocols.
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POINTER

Figure 21. Register bank implemented for the PAMPIUM IC.

The data cache memory is composed of 16 positions, each one storing a 16-bit word.
These positions are divided into four banks. Each bank has a register that store the upper
part of the data memory address. So, the accesses performed by the external memory are
made in blocks of four consecutive accesses. This strategy maximizes the performance,
exploring the local proximity of the data.

The program cache memory is composed of eight positions, each one containing a
24-bit word. Each position has a register for storing its original address. The storing
process is made in a sequential form, i.e., the instructions are stored from the lower to the
higher address, due to the sequential nature of the program memory. The use of eight
store positions allows the execution of small loops without the need to perform additional
external loads.

The implementation of the data and program cache memories, with the remaining
memory in the external part of the chip communicating by means of SPI protocol, allows the
use of only eight input/output pins for data transfer between memory and CPU. With the
remaining pins of “clk”, “rst”, “vdd” and “gnd”, and the four communication modules,
the overall circuit needs a total of 20 input/output pins. Figure 22 presents the final pin
scheme of the customized processor.

Figure 22. PAMPIUM IC input and output pins.
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The customized ISA is composed of 21 instructions. The layout of the PAMPIUM IC
obtained after the physical synthesis for 0.18 µm technology is presented in Figure 23a.

(a) (b)

63

4 SIMULATION AND MEASUREMENT RESULTS

This chapter presents the simulation and measurements results of the proposed pW
voltage references. The self-biased voltage references were fabricated in 0.18-µm, while
the 3T voltage references in 0.13-µm CMOS process. Figure 4.1 shows the photos of the
fabricated chips.

(a) (b)

Figure 4.1: Photos of the (a) 0.18-µm and (b) 0.13-µm CMOS process prototypes.

4.1 Measurement Setup

The measurement results presented in this thesis were performed using a Keysight-
4156 Semiconductor Parameter Analyzer for DC sweep and a Tenney Jr. thermal chamber
for temperature control. The standard measurement setup can be seen in Fig. 4.2. The
parameter analyzer is configured with a large integration time in order to get as many
data as possible for each DC sweep. Triaxial and coaxial cables are used to connect the
parameter analyzer to the test fixture, and coaxial cable from the fixture into the thermal
chamber. A DC sweep from 0 - VDDMAX were performed for each temperature point.

(c) (d)

Figure 23. PAMPIUM IC layout and chip implementation. (a) Layout of the PAMPIUM IC. (b) Com-
plete layout of the multi-user chip. (c) Photography of the prototyped chip. (d) Test setup PCB.

Three clock trees were considered: program memory clock (Flash type), data memory
clock (SRAM), and internal clock. Maximum delays of 10 ns, 20 ns, and 100 ns were
determined for program memory, data memory, and internal clock, respectively.

The minimum clock frequency required on the physical synthesis was defined as
80 MHz. This constraint is necessary to deal with the external memory operation frequen-
cies. The internal clock divider is configured as follows: the main memory clock is equal to
the main clock, the data memory clock is two times smaller than the main clock, and the
processor clock is eight times slower than the main clock. So, the cache module for data
memory is fed with a clock of 40 MHz and the internal processor clock works at 10 MHz.

The results obtained by the physical synthesis are summarized in Table 7. The maxi-
mum clock frequency achieved 102.5 MHz, with an overall power consumption of 19 mW.
It meets the performance requirement. The final layout achieved an area of 500 µm ×
627 µm = 0.314 mm2, which is inside the area constraint.

The circuit was validated for the timing constraints and the communication modules
were tested, as well as the instruction behavior. The final layout of the prototyped chip is
shown in Figure 23b. The PAMPIUM IC is located in the right inferior part of the chip.
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The chip was prototyped by the mini@sic multi-user program from IMEC. Figure 23c
shows the microphotography of the final chip and Figure 23d shows the test setup PCB
used to extract measurement results. The measured power consumption is 28 mW for a
voltage supply of 1.8 V and an operating frequency of 80 MHz. It is slightly higher than the
value estimated by simulation but still meets the design power budget.

Table 7. Physical synthesis results for PAMPIUM IC.

Result Value

Area 0.314 mm2

Maximum operating frequency 102.5 MHz
Mean power consumption 19 mW

7. Conclusions

This work described the development of ASIPAMPIUM, a fast ASIP generator tool,
which is suitable for the design of optimized dedicated processors. The tool provides a
series of features, such as compilation, simulation, and synthesis of a C code to logic level.
The generated ASIP is based on PAMPIUM architecture, which can be customized for
different applications. The processor optimization in terms of low power consumption and
small silicon area can be achieved by exploring instruction-level parallelism, customized
ISA, and data word length.

The application of ASIPAMPIUM for generating a customized FFT ASIP shows the
capabilities of the tool. The superscalar version presented the lowest normalized energy
consumption compared to other implementations described in the literature. Moreover,
the multicycle version presented the smallest area for the calculation of a 2048-point FFT.

The prototyping of a version of PAMPIUM in silicon demonstrated the complete
design flow, from the C code program to the physical implementation. It implements a
dedicated ASIP with three I2C interfaces for reading six sensors in real-time, a SPI interface
for transferring data to memory, and an RS232 interface for communicating with an external
device. The whole system consumes 28 mW for an operating frequency of 80 MHz.

The proposed tool, in combination with the proposed ASIP design methodology,
contributes to the fast implementation of dedicated hardware suitable for mobile and IoT
applications. It reduces the time-to-market and provides a simple and intuitive design flow,
allowing the designer to handle different design trade-offs and objectives.

Since the current version of the ASIPAMPIUM tool is limited to single-core applica-
tions, future improvements must include the possibility to deal with adaptable ASIP-based
MPSoC technologies, expanding the application range for ultra-high-performance inte-
grated systems. Furthermore, the support for hardware accelerators will provide more
alternatives to the designer in the synthesis of an optimized ASIP. The development of a
custom backend for the PAMPIUM ISA for a traditional optimizing compiler (such as GCC)
is also an important step toward the wide adoption of the proposed methodology.
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Abbreviations
The following abbreviations are used in this manuscript:

ALU Arithmetic and Logic Unit
ASAM Automatic Architecture Synthesis and Application Mapping
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction Set Processor
CISC Complex Instruction Set Computer
CORDIC Coordinate Rotation Digital Computer
CPU Central Processing Unit
CMOS Complementary Metal-Oxide-Semiconductor
DVB-T Digital Video Broadcasting Terrestrial
DVB-T2 Digital Video Broadcasting Second Generation Terrestrial
EDA Electronic Design Automation
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
FPU Floating-Point Unit
HW Hardware
ILP Instruction Level Parallelism
IoT Internet of Things
ISDB-T Integrated Services Digital Broadcasting Terrestrial
ISA Instruction Set Architecture
LAN Local Area Network
LTE Long Term Evolution
LUT Look-Up Table
MIMD Multiple Instruction Multiple Data
MGP Multigrained Profiling
MPSoC Multiprocessor System on Chip
OFDM Orthogonal Frequency Division Multiplexing
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
SIMD Single Instruction Multiple Data
SOC System-on-Chip
SW Software
UWB Ultra Wide Band
VLIW Very Long Instruction Word
WLAN Wireless Local Area Network
WiMAX Worldwide Inter-operability for Microwave Access
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