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Abstract: Retinal vessel segmentation is critical in detecting retinal blood vessels for a variety of eye
disorders, and a consistent computerized method is required for automatic eye disorder screening.
Many methods of retinal blood vessel segmentation are implemented, but these methods only yielded
accuracy and lack of good sensitivity due to the coherence of retinal blood vessel segmentation.
Another main factor of low sensitivity is the proper technique to handle the low-varying contrast
problem. In this study, we proposed a five-step technique for assessing the impact of retinal blood
vessel coherence on retinal blood vessel segmentation. The proposed technique for retinal blood
vessels involved four steps and is known as the preprocessing module. These four stages of the pre-
processing module handle the retinal image process in the first stage, uneven illumination and noise
issues using morphological operations in the second stage, and image conversion to grayscale using
principal component analysis (PCA) in the third step. The fourth step is the main step of contributing
to the coherence of retinal blood vessels using anisotropic diffusion filtering and testing their different
schemes and get a better coherent image on the optimized anisotropic diffusion filtering. The last
step included double thresholds with morphological image reconstruction techniques to produce
a segmented image of the vessel. The performances of the proposed method are validated on the
publicly available database named DRIVE and STARE. Sensitivity values of 0.811 and 0.821 on STARE
and DRIVE respectively meet and surpass other existing methods, and comparable accuracy values
of 0.961 and 0.954 on STARE and DRIVE databases to existing methods. This proposed new method
for retinal blood vessel segmentations can help medical experts diagnose eye disease and recommend
treatment in a timely manner.

Keywords: retinal fundus image; fundus photography; segmentation; coherence; optimized anisotropic
diffusion filtering; vessel binary image

1. Introduction

The most prevalent eye disorders include age-related macular degeneration, glau-
coma, and diabetic retinopathy (DR). These disorders are largely caused by blood vessels
in the light-sensitive membrane known as the retina [1]. Rapid progression of DR, in
particular, can be fatal and result in permanent vision loss due to two main factors: hy-
perglycemia and hypertension [1,2]. According to global statistics, it is estimated that
approximately 30 million people worldwide will be affected by DR in 2030 [3–5]. Macular
degeneration, on the other hand, is a major cause of vision loss in developed countries.
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Macular degeneration affects approximately one in every seven people over the age of 50
in developed countries [6]. Simply put, if eye disorders are not treated, they can result in
serious complications like a sudden loss of vision [7–9]. Early detection, treatment, and
consultation with an ophthalmologist are critical for avoiding serious eye disorders. It has
recently been documented that early disease detection and prompt treatment with proper
follow-up procedures can prevent 95% of vision loss cases [7]. For this purpose, one of the
computerized techniques for identifying these progressive disorders is by analyzing the
retinal image.

The fundus camera has two configurations of operation: Fundus fluorescein angiog-
raphy (FFA) and digital color fundus image. The FFA configuration involves injecting
fluorescein, a liquid that improves visibility when exposed to ultraviolet light, into the
patient’s nerves. The path of the ultraviolet light through the vessels is brightened, facili-
tating the examination of blood flow in the retina vessel network. It produces an image
with high contrast and leads to a better view for the analysis of the vessels by the expert
ophthalmologist [10,11]. However, FFA configuration takes time, and it is challenging
for the specialist to provide timely analysis for quick processing, which slows down the
process. The digital color fundus image configuration contains the computerized method
for performing segmentation automatically. It possesses the possibility of lowering the
amount of manual labor required. while also lowering the cost of the inspection process [12].
Reliable vessel segmentation is a hard process, and the computerized process based on
color fundus image analysis allows for rapid analysis and processing.

This paper’s research goal is to evaluate the impact of vessel contrast on retinal blood
vessel segmentation. The analysis of color images of the retinal fundus is a difficult task
due to varying and minimal contrast and irregular illuminations of the vessels against their
background. This method can be linked to the FFA analysis process and the influence of
FFA can be reduced by using contrast normalization filtering such as the image coherence
method. Our proposed method contained different stages. The first stage involves convert-
ing the retinal fundus color images into 3 RGB channels (red, green, and blue). The second
stage contained the use of compound morphological techniques to eliminate uneven illumi-
nation and noise. The third stage is based on the new PCA technique to get a good grayscale
image. But blood vessels are not always properly coherent, so the fourth stage contains the
main contribution of this research work, we used different anisotropic-oriented diffusion
filter schemes to get a well-coherent image. The fifth stage includes post-processing to
develop a well-segmented image, based on our proposed image-rebuilding technique.

The proposed method is implemented to obtain well-segmented vessel images. The
proposed overall method contains some good contributions that help in future retinal
segmentation methods. For example, we provide a simple and novel process for noise
removal as well as uneven illumination from medical images and these steps can be
used as pre-processing for retinal vessel segmentations as well as enhancement steps to
analyze the many medical images. Another main contribution is to provide the coherence
module or some ensemble techniques to the research community to make the uniformity
of different regions within images in the analysis of medical images for the segmentation
and classification of different tasks. This set of coherence techniques can play a vital role in
brain image analysis or brain tumor detection. The following are the primary contributions
of this research study.

1. A retinal color fundus image contained three distinct pigments owing to the macula,
hemoglobin, and melanin, which corresponded to the three channels of color fundus
images. But, it is challenging to get a good contrast image based on proper visualiza-
tion of retinal blood vessels. Our three steps provide new contributions to obtaining a
well-grayscale image which leads to obtaining a well-segmented image.

2. Coherency of vessels is one of the main issues and many researchers have not ad-
dressed this issue. We proposed a model of coherence vessels as the fourth step, and
we tested different anisotropic-oriented diffusion filters to obtain a well-coherent
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image of retinal blood vessels. This is one of the new contributions and it can be tested
on other medical images.

2. Literature Review

Retinal blood vessels are distributed multi-directionally based on retinal color images
of the fundus; therefore, it is difficult to isolate the visible. Different filtering techniques,
such as core-based filters and traditional filters, and such filters have been implemented to
improve blood vessel clarity for correct segmentation of the retinal vessel network [13,14].
The local phase-based normalized filters were implemented by Lathen et al. [15] to enhance
image intensity levels to segment retinal vessels.

Many methods of retinal vessel segmentation have been implemented over the past
five years [2,16]. Most of these methods are divided into two types such as supervised and
unsupervised segmentation methods [17]. Supervised segmentation techniques, such as
Gaussian mixture models (GMM) [18,19], artificial neural networks (ANN) [20], support
vector machine (SVM) [21,22], and k-nearest neighbor classifier [23] are based on pre-
labeled samples to train the data as a classifier. These well-trained classifiers are employed
to identify non-vessel and vessel pixels and these classifiers require manually labeled
ground truth images from process databases for retinal blood vessel segmentation. On
the other side, unsupervised methods do not depend on classifiers or data labeling for
pixel classification of vessels and non-vessels, and these methods segment retinal vessels
without training data or user intervention. These unsupervised methods are becoming more
convenient for researchers for automatic retinal blood vessel segmentations like [13,17,24].
We also implemented an unsupervised method in this research work.

Many researchers have implemented unsupervised methods based on different tech-
niques such as thresholding techniques, combinations of morphological tactics, and differ-
ent traditional filtering. It is difficult in these methods to obtain the optimal threshold, and
this is one of the reasons why the performance of many methods becomes unsatisfactory.
One of the main reasons that there are many methods, either supervised, unsupervised or
semi-supervised methods, to get a noise-free output model and they used different tech-
niques [25–27] but retinal vessels images have different problems because vessels networks
are a combination of large and small vessels. Many researchers have used deep learning
techniques because label-based semantic segmentation has a wide range of applications
such as video analysis, autonomous driving, and robotics, but pixel-based segmentation is
one technique most used on the most complex databases. Deep learning pixel segmenta-
tion is the process of labeling each pixel with the correct pixel class and craft features are
extracted from this technique. The deep learning method is successful, but these methods
gave misclassifications, and it becomes challenging to a proper segmentation problem and
that is one reason why retinal blood vessel segmentation is a challenging issue. We have
proposed the method based on a coherent technique and give a better comparison than
the method based on deep learning for retinal vessel segmentation. The main problem
with traditional filtering is optimization with image properties to get a well-segmented
image. Due to these limitations, we have proposed a method based on contrast-normalized
filtering to obtain well-segmented images and the proposed method section explains each
step of the proposed methodology.

3. The Proposed Method

Figure 1 illustrates the proposed methods for the impact of image coherence schemes
for the segmentation of retinal blood vessels. Each stage contains a novel contribution and
is defined in detail below.
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Figure 1. Proposed methods for the impact of image coherence schemes for segmentation of retinal
blood vessels.

3.1. Stage 01: Retinal Image to RGB Channel Conversion

The fundus camera is used for fundus photography, and the fundus camera magnifies
viewpoints of the interior of the retina with the help of the lens. The fundus camera, which
is used to photograph the inside of the eye, is made up of standard low-power microscope
sensors and a camera. The retina is made up of the posterior poles, the macula, and the
optic disc [5]. The fundus camera captured the retinal fundus images by using imagining
the theory of separation of the illumination and reflectance retinal surface. After the image
acquisition process, the first stage of the proposed model is based on dividing retinal
fundus images into RGB color channels. These channels necessitate additional processing
time and intend to reduce the computation time, and the best option is to convert the retinal
image to RGB channels, as shown in Figure 2. It is analyzed that RGB channels suffer from
variable low contrast and noise, and there is a need to remove uneven illuminations. The
process of removing noise and uneven lighting is explained in the following section.
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(a) (b) (c)

Figure 2. Retinal Image Conversion (a) Red (b) Green and (c) Blue, channels images.

3.2. Stage 02: Eliminate Uneven Illuminations and Noise

More retinal vessels are visible by manipulating uneven illumination and removing
noise from retinal fundus images. We used image-processing tactics to handle this problem.
The first step is converting RGB images to inverted RGB images, as shown in Figure 3.
Then we applied the morphological operation to handle the background non-uniformity,
the top and bottom morphological tactics are used to get well-visible vessels, and both of
these tactics work. Figure 4 depicts the outcome of this step.

(a) (b) (c)

Figure 3. RGB Images Inversion (a) Inverted Red-Channel (b) Inverted Green-Channel (c) Inverted
Blue-Channel.

(a) (b) (c)

Figure 4. Morphological THBH method for irregular illuminations (a) Red (b) Green and (c) Blue,
Channels THBH.

The top-hat and bottom-hat (THBH) morphological techniques are employed to sup-
press irregular illuminations and noise issues because they adjust the intensity of black
pixels or background pixels to adjust for uneven background illumination by retinal blood
vessels. Mathematically, it is expressed in equation form:

Tb( f ) = f • b− f . (1)

where bullet represents the morphological closing operation.

Tw( f ) = f − f ◦b. (2)

where circ represents the morphological opening operation.
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3.3. Stage 03: Conversion of Grey-Scale Image

Detailed images are observed from the grayscale image, especially in medical images.
Medical images are very critical for analyzing features. The observation of retinal images is
very important to indicate the evolution of eye diseases. After dealing with the problem of
uneven illumination, The following major work is to combine the RGB images into a single
grayscale image, as this is necessary because each channel shows a different variation in
contrast. The novel principal component analysis (PEC) technique is used to get a good
grayscale image, as shown in Figure 5. The PCA technique is based on transforming the
rotation of the intensity magnitudes of the color space into orthogonal axes that give a well-
contrasted grayscale image. The representation of the conversion of retinal RGB channels
to grayscale is well defined by Soomro et al. [7]. The PCA gave a very discriminating image
concerning the vessels compared to their background. Histogram analysis of PCA is shown
in the Figure 6, and it can be analyzed that it is more spread out and shows more intensity
level compared to the morphological tactic image as shown in Figure 6b.

Figure 5. PCA Conversion Model.
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(a)

(b)

Figure 6. PCA Green channel Histogram and Morphological operation Green channel Histogram
Comparison (a) Green channel histogram of morphological operation (b) Histogram of the PCA
Green channel.

3.4. Stage 04: Coherence of the Retinal Vessels

After obtaining the grayscale image, the Retinal Vessels still need to be improved
because the large vessels observed correctly compared to the small vessels cannot be
analyzed. Tiny vessel analysis can be analyzed correctly using oriented diffusion filtering
and this filtering technique is first adopted by [28] to detect low-quality fingerprints.
The operation of an oriented diffusion filtering requires the image’s externally calculated
orientation information and it is known as an orientation field (OF) which makes the
diffusion tensor and orients according to the direction flow of vessels. The main motivation
for using anisotropic diffusion filtering is to create the best ellipse tilt angle data as well
as to correctly detect small vessels. The representation of the anisotropic diffusion of the
image I(x, y) is explained below.

∂ f
∂t

= ∇(D∇I) (3)
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The D represented the diffusion matrix with 2. This is a structure matched to the
image via a structural descriptor, known as the second moment matrix µ, defined as:

M =

(
m11 m12
m12 m22

)
=

(
I2
x,σ Ix,σ Iy,σ

Ix,σ Iy,σ I2
y,σ

)
. (4)

The I2
x , Ix Iy and I2

y show the Gaussian derivative filters with the directions x and y.
The symmetric matrix 2× 2 has two eigenvalues λ1 and λ2 calculated by:

µ1 = 1/2(m11 + m12 + α)
µ2 = 1/2(m11 + m12− α),

(5)

where
α =

√
(m11−m22)2 + 4m122 (6)

The steering process of anisotropic diffusion filtering is based on the steering on the
integration of the orientation data which was based on the secondary information when
applying the adapted kernel. The orientation information may be used to create the eigen-
vectors of the second-moment matrix. The first normalised eigenvector is (cos θ, sin θ)T ,
and the second orthogonal eigenvector is (− sin θ, cos θ)T . These eigenvectors are perpen-
dicular to the flow of the vessel and others are parallel with parameters θ representing the
angle of inclination of the ellipses. Once the eigenvector is calculated and the next part
gave the fixed values as eigenvalues. This process is known as the anisotropically oriented
diffusion process. The optimal values of λ1 and λ2 are important to get a well-coherent
image and the selection of λ1 and λ2 from the experiment work to get a well-coherent
image and is elaborated in the equations below:

λ1 = 0.1
λ2 = 1− 0.1,

(7)

Stable diffusion process 0.02 step size is selected. The structure-invariant eigenvalues
and structure-dependent eigenvectors are used to reconstruct the scattering matrix D as

d11 = λ1 cos2 θ + λ2 sin2 θ
d12 = (λ1 − λ2) sin θ cos θ

d22 = λ1 sin2 θ + λ2 cos2 θ

(8)

After the construction of the diffusion matrix, the smooth anisotropic process begins.
This is an iterative process that contains initial retinal images and moves to form vessel
structures at each stage. There is an appropriate stopping criterion to obtain well-coherent
vessel images. The anisotropic diffusion filter contains different schemes, but well-coherent
vessel images are obtained from optimally coherent anisotropic filtering. The output of
different coherent anisotropic diffusion filter processes of our proposed method is shown
in Figure 7. The detailed analysis of anisotropic diffusion filter schemes such as standard
scheme, non-negative scheme, implicit scheme, rotation invariant scheme, and optimized
scheme. The optimized filtering scheme image gives better coherent images compared to
other schemes.
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(a)

(b)

(c)

Figure 7. Oriented Diffusion Output. (a) Comparison of Oriented Diffusion Red Channel output on
other Oriented Diffusion filtering Schemes (b) Comparison of Oriented Diffusion Green Channel
output on other Oriented Diffusion filtering Schemes (c) Comparison of Oriented Diffusion Blue
Channel output on other Oriented Diffusion filtering Schemes.
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3.5. Stage 05: Post-Processing: Retinal Blood Vessels Segmented Image

Coherent vessel images still require post-processing to obtain a well-segmented image
because they have noisy pixels that make analyzing small vessels and their connecting
vessels challenging. We employed a double threshold technique based on morphological
rebuilding operations to create segmentation of the vessels. The morphological rebuilding
procedure produced the final binary images, which are a composite of mask and marker
images. Figure 8 shows the histogram derived from the marker and mask images, while
Figure 9 shows the mask and marker images. To obtain the mask and marker images,
the math operation is used. The mask image is created by implementing the image’s
average values using the histogram, and the marker image is created by subtracting a 0.9
multiple SD from the image’s average values to get the optimal threshold for achieved
good vessels image. Then, a morphological reconstruction is performed using the marker
and the mask to produce a segmented image of the retinal vessels. But there is still noise
in the morphological reconstruction image which gives false detection of the vessels. To
remove noisy pixels, small areas of 50 pixels are eliminated, to produce the final image of
segmented vessels.

3.6. Composed Algorithm

The proposed algorithms contain the implementation of coherent post-processing and
pre-processing-based vessel schemes for retinal blood vessel segmentation. Each step of
the proposed algorithm is summarized below:

1. The first stage contained the conversion of retinal color images to three channels
(RGB).

2. The second stage addressed the problem of uneven illumination as well as noise using
morphological techniques.

3. The third stage contained the conversion of the RGB images to a high-contrast
grayscale image using the new PCA.

4. The fourth stage contained the coherence of the vessels in particular the tiny vessels.
This is an important step to obtain a well-segmented image of vessels and increase
the sensitivity of vessel detection. The different anisotropic-oriented diffusion filter-
ing schemes are tested to obtain a well-performed filtering scheme. The optimized
anisotropic-oriented diffusion filtering scheme addressed the problem of uneven
vessel intensity and resulted in a well-coherent image of the vessels.

5. The last stage included double thresholding with morphological image reconstruction
techniques to get a segmented image of the vessels.

Figure 8. The histogram denoted two thresholds, as two vertical lines. The TU is calculated by
subtracting 0.9 SD from the mean magnitude of the image histogram, while the TL is calculated by
employing the average magnitude of the histogram based on edge.
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(a) (b)

(c) (d)

Figure 9. The post-processing module’s output. (a) mask (b) marker (c) image morphologically
rebuilt and (d) retinal vessels’ ultimate binary or segmented image.

4. Database and Measuring Parameters

For the experimental validation, we used the two datasets namely DRIVE [23], and
STARE [29]. Two images in the DRIVE database contain 20, namely training and test images.
These images included both their ground truth and mask images. The images in the DRIVE
Dataset have a resolution of 768× 584 pixels. Approximately 30–35% of the DRIVE database
images comprised pathologies that made testing the retinal segmentation algorithm so
difficult. The STARE database contained 20 images, with pathologies appearing in 50% of
them. The STARE database is one of the most difficult to validate retinal vessel segmentation
algorithms on. The resolution of the STARE data files is 605× 700 pixels and includes
ground truth and mask images. The benefit of using these datasets is that they constitute
the validation images. These datasets have been used by numerous scholars, which allows
us to compare the performance of our retinal vessel segmentation methods with existing
methods.The evaluation of our suggested technique for retinal blood vessel segmentations
is evaluated by measuring the three parameters, namely sensitivity (SE), specificity (SP),
and accuracy (AC). These parameters are calculated based on the measurement of false
negative (FN), true negative (TN), false positive (FP), and true positive (TP). The TP shows
that the vessel’s pixel count is correctly segmented as vessels. TN correctly displays the non-
vessels pixel count as non-vessels. FP refers to the amount of non-vessel pixels, segmented
as vessels. The FN shows pixels of segmented vessels as non-vessels.

Sensitivity (SE) is described as the ratio of properly segmented vessels to the cumula-
tive number of pixels of vessels and represented mathematically by:

Sensitivity =
TP

TP + FN
. (9)

Specificity (SP) is described as the ratio of properly segmented non-vessels to the
cumulative number of pixels of non-vessels, and represented mathematically by:

Speci f icity =
TN

TN + FP
. (10)
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Accuracy (AC) provides information on all the pixels of the segmented vessels.

Accuracy =
TP + TN

TP + FP + FN + TN
. (11)

4.1. Results and Analysis

The results and analysis section of the proposed method is based on a few important
analyzed sections such as the validation of the proposed method on the DRIVE and STARE
database, analysis of the impact of anisotropic diffusion filter on the process of segmentation,
examination of the proposed method on challenging images and comparative analysis with
existing methods. Each section is explained below.

4.1.1. Analysis on DRIVE and STARE Database

The STARE and DRIVE datasets are analyzed and presented in Table 1. The proposed
method gave sensitivities values of 0.811 and 0.821 on the STARE and DRIVE datasets, re-
spectively. An accuracy of 0.954 is obtained on the STARE database and an accuracy of 0.961
is obtained on the DRIVE database. This result demonstrates the potential of the proposed
technique to reach retinal blood vessels in comparison to the manual segmentation process.

Table 1. Performance Evaluations on the STARE and DRIVE Datasets.

Database SE SP AC

STARE 0.811 0.959 0.954

DRIVE 0.821 0.962 0.961

4.1.2. Impact of the Coherence of the Retinal Blood Vessels

This section gives validation of the impact of retinal blood vessel coherence on the post-
processing step, and vessel coherence is achieved by an optimized anisotropic diffusion
filter scheme. Retinal blood vessel segmentation is analyzed with and without retinal
blood vessel coherence. Table 2 shows the analysis and it is observed that the performance
is increased by 70%. This coherence of the vessels is contained up to stage 4 and it is
considered the pre-processing step of our retinal segmentation method. The performance
of Nguyen et al. [30] and Hou et al. [31] are improved by using our pr processing steps as
shown in Tables 3 and 4 The impact of retinal blood vessel coherence on these methods
shows the ability to improve retinal blood vessel segmentation.

Table 2. The Post-processing Module’s Impact.

Technique Without Coherence Retinal Vessels With Coherence Retinal Vessels

Database SE SP AC SE SP AC

STARE 0.341 0.372 0.316 0.798 0.949 0.947

DRIVE 0.332 0.391 0.326 0.807 0.951 0.951

Table 3. The Impact of a Post-processing Module on Previous Techniques: DRIVE Dataset.

Technique Performance With Coherence Retinal Vessels

Method SE SP AC SE SP AC

[31] 0.735 0.969 0.941 0.797 0.953 0.939

[30] - - 0.940 0.805 0.949 0.941
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Table 4. The Impact of a Post-processing Module on Previous Techniques: DSTARE Dataset.

Technique Performance With Coherence Retinal Vessels

Method SE SP AC SE SP AC

[31] 0.734 0.965 0.933 0.783 0.957 0.953

[30] - - 0.932 0.781 0.939 0.942

4.1.3. Performance on Challenging Images

The DRIVE and STARE databases contained 50% of the challenging images, and the
challenging images meant that the images suffer from noise, varying contrast as well as the
center of the light reflex, and uneven illumination and these issues make vessel segmenta-
tion difficult retinal blood, especially the small vessels as shown in the Figures 10 and 11.
The effectiveness of the suggested technique was examined based on images from both
databases, and the results are shown in Table 5 with improved performance.

Table 5. Analysis of Performance on Challenging images.

Database SE SP AC

STARE 0.799 0.951 0.938

DRIVE 0.809 0.953 0.941

4.1.4. Analysis on Pathological Images

The DRIVE and STARE databases contained the 70% of pathological images that we
used for our performance analysis. The result of performance measurements on patho-
logical images is presented in Table 6. It is observed that our proposed method gives
good performance and has capabilities to segment vessels closer to ground truth images
as shown in Figure 10. We perform an in-depth analysis and compare the result of our
method with the two finest segmentation methods such as Nguyen et al. (2013) and Hou
(2014). It is clearly parsed to give proper observations of the vessel’s image compared to
Nguyen and Hou’s output image.

Table 6. Observation of Performance on Pathological Images.

Database SE SP AC AUC

DRIVE 0.803 0.952 0.957 0.873
STARE 0.794 0.949 0.941 0.852

4.1.5. Analysis of Tiny Vessels Detection

One of the major limitations of retinal vessel analysis is small vessel analysis be-
cause correct detection of small vessels improves performance. There are two challenges
in analyzing small vessels. First, small vessels are missed, and second, the missing of
small vessels impacted the sensitivity of the compound algorithm. Improved detection
of small vessels makes the algorithm more robust. We compared the performance of the
method, we propose with the methods described for the detection of small vessels such
as Nguyen et al. [30], Hou [31], Zhao et al. [32] and Yan et al. [33]. It is clearly observed
that our proposed method yielded more tiny vessels than the counter method as shown in
Figure 11.
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(a) (b)

(c) (d)

Figure 10. Analysis of vessels observation of pathological images. Fig (a) and Fig (b) represent the
final vessel images of our proposed method. Fig (c) and Fig (d) represent ground truth images.

4.1.6. Comparative Analysis
4.1.7. Comparison with Other Traditional Methods

The proposed technique is validated further when compared to previously reported
techniques on the STARE and DRIVE datasets, as shown in Table 7. As can be shown, our
recommended approach for segmenting retinal outperforms other methods in terms of
sensitivity, but using STARE, Thangaraj et al. [34] reported a sensitivity of 0.834, which is
higher than our method but less accurate. On the other side, Soomro et al. [35] gave higher
accuracy but low sensitivity which shows that small vessels are not detected correctly. We
have calculated the running time of the proposed algorithm and compared the running
time with a few researchers calculating the running time as shown in Table 7 that our
proposed method has less time to give a well-segmented image compared to other reported
execution methods. The results obtained using the proposed approaches show that our
method is capable of accurately segmenting small and large retinal blood vessels. Noted:
AUC represented Area Under Curve.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. This figure shows the comparative analysis of the detection of tiny vessels from a retinal
image with our proposed method. Fig (a) shows the original image. Fig (b) shows the manually seg-
mented image. Fig (c) shows the output image of Nuygen’s method. Fig (d) shows the output image
of Hou’s method. Fig (e) shows the output image of Zhao’s method based on filtering. Fig (f) shows
the output image of Zhao’s method based on wavelet transform filtering. Fig (g) shows the output
image of Yan’s method based on filtering. Fig (h) shows the output image of the proposed method.

Table 7. Comparison of Proposed Method with Existing Methods.

Database DRIVE STARE

Methods Time SE SP AC AUC Time SE SP AC AUC

[23] - - - 0.946 - - - - 0.951 -
[18] - - - 0.946 - - - - 0.948 -
[36] - 0.734 0.976 0.945 0.855 - 0.699 0.973 0.944 0.836
[37] - 0.724 0.965 0.934 0.845 - 0.750 0.956 0.941 0.853
[24] - 0.728 0.955 - 0.842 - 0.752 0.968 - 0.860
[38] - 0.720 - 0.959 - - - - - -
[39] - 0.66 0.961 0.922 0.811 - 0.779 0.940 0.924 0.860
[21] - 0.741 0.975 0.943 0.858 - 0.726 0.975 0.949 0.851
[19] - 0.706 0.980 0.945 0.843 - 0.694 0.981 0.952 0.838
[40] - 0.741 0.981 0.948 0.974 - 0.754 0.973 0.953 0.977
[30] - - - 0.940 - - - - 0.932 -
[31] - 0.735 0.969 0.941 0.961 - 0.734 0.965 0.933 0.957
[41] - 0.785 0.967 - - - - - 0.951 -
[42] - - - 0.947 - - - - - -
[43] - 0.725 0.983 0.952 0.962 - 0.772 0.973 0.951 0.969
[44] - - - 0.946 0.974 - - - - -
[45] - - - - - - 0.713 0.984 0.956 0.965
[46] - 0.756 0.981 0.952 0.974 - 0.773 0.984 0.962 0.987
[32] - 0.716 0.978 0.944 0.848 - 0.776 0.954 0.943 0.865
[47] 90 s 0.713 0.968 0.941 0.841 91 s 0.711 0.965 0.942 0.838
[48] 93 s 0.734 0.967 0.951 0.850 95 s 0.736 0.971 0.95 0.853
[49] - 0.743 0.976 0.947 0.952 - 0.767 0.976 0.954 0.961
[50] - 0.789 0.968 - - - 0.768 0.973 - -
[51] - 0.746 0.984 0.953 0.975 - - - - -
[52] - - - - 0.947 - - - - 0.946
[34] - 0.801 0.975 0.961 0.888 - 0.834 0.953 0.944 0.894
[53] - 0.71 0.97 0.95 - - 0.70 0.97 0.95 -
[54] 87 s 0.752 0.976 0.953 - 89 s 0.786 0.982 0.967 -
[55] 86 s 0.745 0.962 0.948 - 89 s 0.784 0.976 0.951 -
[35] 80 s 0.812 0.971 0.963 0.951 81 s 0.809 0.969 0.958 0.949
Proposed Method 920 ms 0.821 0.962 0.961 0.967 925 ms 0.811 0.959 0.954 0.966

4.1.8. Comparison with Other Deep Learning or CNN-Based Methods

For more validation of the proposed method, we compared our proposed method
with the deep learning method as many researchers have used these methods nowadays.
Table 8 shows the comparisons and our methods outperform many methods in terms of
accuracy on the DRIVE as well as STARE as well.
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Table 8. Comparison of Proposed Segmentation Methods with CNN-Based learning methods.

Database DRIVE STARE

Methods Time SE SP AC AUC Time SE SP AC AUC

[56] 20 s - - 0.940 - - - - - -
[57] - - - 0.947 - - - - - -
[58] - - - 0.949 0.973 - - - 0.949 0.982
[59] - 0.760 - 0.952 - - 0.741 - 0.958 -
[60] - - - - 0.97 - - - - -
[61] - 0.773 0.960 0.936 - - - - - -
[62] 90 s - - - 0.822 - - - - 0.831
[63] - 0.753 0.969 0.926 - - - - - -
[64] - 0.660 0.985 0.956 - - - - - -
[65] 0.75 0.979 0.949 - - - - - -
[66] - 0.746 0.917 0.948 0.831 - 0.748 0.922 0.947 0.835
[67] - - - - 0.965 - - - - -
[68] - 0.742 0.982 0.954 - - - - - -
[33] - 0.765 0.981 0.954 0.975 - 0.758 0.984 0.961 0.981
[69] - 0.739 0.956 0.948 0.844 - 0.748 0.962 0.947 0.855
[70] - 0.798 0.973 0.951 0.974 - 0.791 0.972 0.953 0.970
[71] - 0.702 0.984 0.965 - - 0.731 0.995 0.957 -
Proposed Method 920 ms 0.821 0.962 0.961 0.967 925 ms 0.811 0.959 0.954 0.966

After analyzing the performance of our proposed method, especially the experimental
validation and comparison with the state of the art, it is clearly observed that our proposed
method has the ability to perform well on databases as well as challenging images and
pathological images and also to detect tiny vessels accurately as it is experimentally proven
with quantification and visualization of retinal vessels. The performance of the proposed
method compared to the state of the art is either the machine learning method or the
image processing based methods, and it is clearly observed that our proposed method
outperforms the existing methods as well as our method takes less time compared to many
methods.

5. Conclusions

This research work contains an analysis of the impact of the coherence of the retinal
vessels on the segmentations. Previous methods for segmenting retinal vessels were used
to address the issue of poor varying contrast and noise, however, these techniques were
ineffective in increasing the sensitivity of small vessel detection, and small vessel detection
requires good coherence of the segmentation of the retinal vessel. The competence to
correctly identify retinal vessels has given medical experts an advantage in analyzing
disease progression and recommending appropriate treatment. In this study, the suggested
coherency of retinal vessels (pre-processing step) and its impact on the segmentation
modulus (post-processing step) resulted in promising results for small vessel segmentation.
The reported method gave a good performance and is comparable to existing methods on
the STARE and DRIVE datasets. We compared the performance of our proposed method
against traditional methods and methods based on deep learning. We achieved a sensitivity
of 0.821 on DRIVE, 0.811 on STARE, a specificity of 0.962 on DRIVE and 0.959 on STARE,
an accuracy of 0.961 on DRIVE and 0.954 on STARE, an AUC of 0.967 on DRIVE and 0.966
on STARE and this performance of our proposed method surpasses the traditional and
deep learning methods. Our proposed method takes less computation time compared to
existing methods.

There are still many improvement ideas for future work. We will implement a robust
CNN model as well as a coherency module as a pre-processing to achieve improved
performance. Another future improvement is the work on the databases and the generation
of the synthetic image to improve the training process in order to obtain a well-segmented
image. However, these suggested future studies based on machine learning-based retinal
vessel segmentation. The suggested consistency of retinal vessel segmentation can play
an important role to improve the training process of these suggested studies and this
research work can be a productive software to detect retinal blood vessels for retinal blood
vessel detection.
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