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Abstract: Load forecasting is one of the main concerns for power utility companies. It plays a
significant role in planning decisions, scheduling, operations, pricing, customer satisfaction, and
system security. This helps smart utility companies deliver services more efficiently and analyze
their operations in a way that can help optimize performance. In this paper, we propose a study of
different techniques: multiple linear regression (MLR), random forests (RF), artificial neural networks
(ANNs), and automatic regression integrated moving average (ARIMA). This study used electricity
consumption data from Dubai. The main objective was to determine the load demand for the next
month in the whole country and different municipal areas in Dubai, as well as to assist a utility
company in future system scaling by adding new power stations for high-demand regions. The
results showed that the accuracy of using ARIMA was about 93% when working with only a single
district, but both ANN and RF achieved excellent accuracy of about 97% in all cases. In addition, the
mean absolute percentage errors improved from 2.77 and 2.17 to 0.31 and 0.157 for ANN and RF,
respectively, after anomaly elimination and the use of our proposal. Therefore, the use of an ANN for
such data types is recommended in most cases, particularly when working on a complete dataset.
Additionally, both the ANN and RF models are good choices when working on a single-category
region because they both attained the same accuracy of almost 91.02 percent.

Keywords: smart meter; load prediction; supervised machine learning; artificial neural networks;
random forest; one-class SVM; ARIMA; PCA

1. Introduction

The smart grid (SG) is the future of the electrical industry, as it uses upgraded power
system components to replace the old electrical infrastructure. It provides two-way digital
communication between the electricity plant and the consumer. Furthermore, it assists
in cost and energy savings and ensures that the energy supply chain is transparent and
reliable. The increased complexity of smart grids has resulted in significant efforts to control
distribution levels, develop fault detection techniques, and ensure system reliability [1].

Smart meters (SMs) are the most important components of a smart grid. They record
the energy usage and send data to utility suppliers. In addition, they provide dependable
real-time monitoring, automatic data gathering, user interaction, and power control. Enor-
mous amounts of data are generated from SMs [2]. The data from smart meters are raw data
that require data analysis techniques to recognize, transform, and obtain conclusions [3].

For several reasons, smart utility companies in the electric, gas, and water sectors face
challenges in expanding their use of smart meters. The main reasons are the need for a
low-cost network to carry all meters’ communications, the complexity of collecting and
analyzing data from a large number of meters, and the ease of smart meter management
and expansion [4,5].

New applications that use smart grids provide various benefits to customers. They
will be able to monitor usage for a given period by using the data received from these
measurements. This will aid in the development of solutions for optimizing the use of
power and water resources [6].
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The accurate processing of data collected by smart meters is a major research topic.
This helps utility companies with the following [7–12]:

• Load forecasting, which plays a significant role in planning decisions, scheduling,
operation, pricing, customer satisfaction, and system security [13].

• Developing new pricing plans to encourage consumers to reduce peak demand and
better manage energy consumption.

• Offering different pricing schemes where consumers are charged higher prices during
peak hours.

• Providing essential insights into electricity usage behaviors during working days
and holidays.

• Detecting malfunctioning meters and targeting them for replacement.
• The detection of abnormal consumption patterns that indicate an electricity theft.

1.1. The Literature and Related Work

Several techniques have been proposed for smart-meter data analysis and load forecast-
ing, including time-series analysis, regression analysis, artificial neural networks (ANNs),
support vector machines (SVMs), fuzzy logic (FL), and genetic algorithms (GAs). In addi-
tion, hybrid techniques combine two or more techniques to overcome the limitations of
single techniques.

Load forecasting can be categorized into four classes in terms of the forecast depth [14].
Very-short-term load forecasting (VSTLF) [15] is popular for load forecasting from a

few seconds to a few minutes. Short-term load forecasting (STLF) is used for lead times
ranging from a few minutes to a few hours. This is the primary source of information for
all daily and weekly activities, including generation commitment and scheduling, and it
is crucial for system operations. By including econometric variables and expanding the
model to a longer horizon, STLF can be converted into MTLF and LTLF.

Medium-term load forecasting (MTLF) [16] is generally used to forecast loads for a
few days to a few months. Finally, long-term load forecasting (LTLF) [17] is used for a
period of a few months to several years, which is helpful for generation growth planning.

The authors of [18] proposed a short-term load forecasting framework based on big
data technologies. It used a decision tree to classify the daily load patterns of individual
loads. A suitable load forecasting model was then selected for each load pattern. The total
load was obtained by aggregating the forecasting results of the individual loads.

The authors of [19] created and implemented an embedded distribution panelboard
system. The connected end-node sensors gathered the voltage and current information
to calculate the power and energy usage. An IoT platform received the computed data
and measurements that were gathered and offered cloud-computing capabilities for data
analysis and action facilitation.

In [20], a hybrid forecast model for short-term electricity load and price prediction
was proposed, and it used wavelet transform and feature selection techniques to handle
fluctuations in the electricity load. Although the performance of the model was successfully
validated based on load and price data collected from the Pennsylvania–New Jersey–
Maryland (PJM) electricity market, it was not suitable for individual household prediction
because it aggregated load forecasting for a single region.

A CNN sequence-to-sequence model with an attention mechanism and multitask
learning was used in [21]. It extracted useful features from the input data by using a CNN.
Then, the weight matrix was updated to improve the forecasting accuracy.

In [22], several deep learning methods were compared to forecast the electric power
consumption in buildings. Long short-term memory (LSTM)/GRU with multiple layers
was used; the sequence-to-sequence model consisted of two recurrent neural networks and
a sequence-to-sequence model with attention mechanisms.

Jeyaranjani and Devaraj proposed a deep neural network (DNN) for residential load
forecasting. The network architecture was implemented with five hidden layers [23].
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In [24], a deep learning (DL) prediction model was suggested to precisely forecast
hourly load consumption. Then, the predicted data for a real-time decision were used to
decide the actions needed to reduce the peak load demand.

W. Chandramitasari et al. [25] suggested a technique that combined LSTM and a
feed-forward neural network. They predicted the amount of electricity used every 30 min
for the next day. This study focused only on consumption in a manufacturing company
and did not consider other types of consumption, such as residential, commercial, or
government consumption.

Moreover, many articles have proposed hyperparameter tuning techniques that are
combinations of statistical models and ML models or combinations of various ML models
to provide a more accurate forecast than using only one machine learning technique [14].

In [26], a hyperparameter tuning technique called sequential grid search was based
on the widely used grid search for ANN and hybrid models. It was used to forecast the
daily electricity consumption in Thailand. It combined the advantages of different models
to solve the overfitting problem and improper kernel function selection when dealing with
nonlinear data.

In addition, in [27], a hybrid model of the wavelet transform, simulated annealing,
and feed-forward ANN was proposed to predict electricity consumption in Beijing, China,
one day ahead. The developed approach was able to predict the demand for electricity in a
microgrid with a tolerably small error and a reasonable amount of computing time.

In [28], the authors used two years of residential customer data in Bangladesh to train
and test different types of machine learning (ML) regression algorithms to predict the
power consumption for the following day. The results showed that SVR was associated
with better outcomes. The limitations of this work were that it focused only on residential
customers and neglected utility load prediction.

In [29], deep learning algorithms and decision trees with drift detection techniques
were discussed to forecast the electricity consumption of two buildings on the Valladolid
University campus. Three techniques were used: two active and one passive. The passive
approach involved retraining the models every 24 h under the assumption that they should
be frequently updated. However, the active techniques were based on a variable-length
window approach.

Admir Jahić et al. [30] proposed an ANN-based model to determine missing power
measurement readings to distinguish between truly disconnected loads and loads with
no consumption. Missing power measurement readings were replaced with pseudo-
measurements. Despite its simplicity, this approach required ANN retraining due to
weekends, holidays, and seasonal variations.

Other solutions focused on detecting malfunctioning smart meters and abnormal
consumption patterns that indicate electricity theft have been proposed. The authors of [31]
focused on detecting inaccurate smart meters. The model was based on long short-term
memory (LSTM) and a modified CNN. It collected the difference between the predicted and
observed values, and the meters that could not accurately measure electricity were located.

In [32], a big data modeling method was designed to identify abnormal data detection
through the spectral distribution of the random matrix theory.

The solution suggested in [33] used a support vector machine to detect fraud by
utilizing the predictability of the client consumption profile. The authors of [34] proposed
an approach that used a decision tree to identify abnormal data and categorize them with
different degrees of energy loss. The data were then clustered to obtain different energy
consumption behaviors. The meter error was calculated from the solution of the matrix
equation after constructing the data matrix. Table 1 presents a comparison between related
works and our proposed work.
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Table 1. A comparison between the related work and the proposed work.

Paper Contribution Achievements Limitations

[12] Hourly average load prediction of a
residential house.

A comparison of load forecasting mod-
els using an ANN and ELM.

Focused only on consumption by resi-
dential customers.

[19] Proposed a long short-term memory
(LSTM)-based forecasting algorithm.

Good capabilities of forecasting based
on load and price data collected from
the PJM electricity market.

Not suitable for individual household
prediction, as it aggregated load fore-
casting for a single region.

[20] Proposed a distribution panelboard
system.

A low-voltage electrical distribution
panelboard with real-time load mon-
itoring and the capability of domestic
load forecasting.

The process did not consider the con-
sumer level or features such as fault
detection and identification.

[25] A proposed approach for load forecast-
ing for the next day every 30 min.

Performed forecasting with additional
information to minimize the loss of
forecasting for the next day every 30
min.

Focused only on consumption in a
manufacturing company.

[28] Forecasting of the power consumption
for the next day

A circuit design of GSM-based smart
energy with a microcontroller was
used in calculating the current, voltage,
energy, and cost. The GSM module in-
formed the customers about their daily
power consumption

The work was focused on the cus-
tomer side and neglected the predic-
tion of the utilities’ load. In addi-
tion, it focused only on residential cus-
tomers.

[30] Detection of missing power meter read-
ings.

Determined missing power measure-
ment readings to distinguish between
them and true loads with no consump-
tion.

Required ANN retraining due to
weekends, holidays, and seasonal
variations.

Our
work

Forecasting of the monthly load con-
sumption for a region in the Middle
East.

Determined the demand for the next
month in different municipal areas in
Dubai. Selection of the proper algo-
rithm that was suitable for the DEWA
data. Detection of anomaly values in
the data. Mimicking of the influence of
the weather on the model.

Hourly or daily consumption analysis
was not included in this study due
to the lack of this information in this
dataset.

1.2. Motivation and Contribution

The motivation behind this study was the enhancement of electricity consumption
predictions in Middle Eastern countries. Electricity consumption data are collected hourly
or daily in most parts of the world. The issue in the Middle East is that, in most countries,
electric meter readings are still collected monthly, which makes predictions and correlations
poor. Additionally, there is a lack of research focusing on the consumption behavior of
this region.

Overcoming the problems of poor correlation and the low amount of data per customer
requires powerful forecasting techniques and forecasting customization.

Forecasting the electricity consumption of countries is an important research area, and
many methods have been applied to this problem.

The contributions of this study can be summarized as follows:

• Forecasting of electricity consumption is used to determine the demand for the next
month in different municipal areas in Dubai.

• By adding new power stations to high-demand regions, utility industry decision
makers can anticipate future power consumption with the lowest possible error rate
and future scaling of the grid.

• Three different machine learning techniques (MLR, RF, and ANN) are used, and
their performance in terms of the mean absolute error (MAE), root mean squared
error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R2)
is compared.

• The prediction accuracy is enhanced by adding a new variable to the dataset to mimic
the influence of the weather on the model.
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• The prediction accuracy is enhanced by detecting anomaly values by using a one-
class SVM.

• Principal component analysis (PCA) is used as a feature selection technique that
determines the weight of each predictor.

• An ARIMA time-series model is used to predict consumption for the whole of Dubai,
one district, and one customer.

• The study focused on data from Dubai, as we preferred working with new and real
traces of smart meters. This was due to the lack of research that focused on the
consumption behavior of this region (Middle Eastern countries), which has resulted in
poor electricity load forecasting.

• The proper algorithm that is suitable for DEWA data is selected.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 describes the method
and the dataset. Section 3 presents the results and discussion. Finally, Section 4 presents
the conclusion and directions for future work.

2. Materials and Methods

The details of the techniques employed, the dataset, and the data pretreatment method-
ology are described in this section. Figure 1 shows a summary of the methodology used in
the proposed method.

The first stage was data preprocessing, which included data cleaning, duplicate re-
moval, fixing spelling and syntax errors, handling missing values, identifying and eliminat-
ing outliers, feature selection, and sampling.

The second stage included the use of MLR, RF, and ANN algorithms for load prediction
while working on the original dataset.

The third stage included our method of enhancing prediction accuracy by detecting
anomaly values by using a one-class SVM and adding a new feather to mimic the influence
of the weather.

Figure 1. Framework of the load forecasting model.

2.1. Forecasting Algorithms

Machine learning is the process of extracting information from data. It is also known
as predictive analytics or statistical learning and is a subject of study at the crossroads
of statistics, artificial intelligence, and computer science. Over the last several years,
machine learning techniques have become increasingly prevalent in daily life. The most
effective machine learning algorithms are those that automate decision-making processes
by generalizing them from existing examples. This approach is known as supervised
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learning (SL). Using supervised learning, a machine is trained by using a set of labeled data,
where each element is composed of given input/outcome pairs [35]. The machine learns
the relationship between the input and outcome, and the goal is to predict behavior or
make a decision based on previously provided data. This can assist in building a model for
predicting outcomes in future cases. Deciding among them is important because multiple
techniques are employed to achieve the same goal. The required output determines the
algorithm to be used. No single optimal algorithm continuously produces the best results.
Moreover, it is crucial to test several algorithms to understand how they function. There
are several methods for improving performance. The relative performance of two methods
may be altered after analyzing the input data; however, the most important aspect is that
developing the optimal algorithm is an iterative trial-and-error process [36–38].

2.1.1. Multiple Linear Regression (MLR)

MLR is a regression model that involves more than one regressor variable. The
relationship between two or more independent variables and one dependent variable is
estimated by using this method. The dependent and independent variables have a linear
relationship. The correlation between unrelated variables is not very high [39,40].

Yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε (1)

where i = 1, 2, 3, . . . , n.
Yi is the dependent variable, xi is the independent variable, β0 is the value of Y when

all independent variables (x1 through xp) are equal to zero (constant term), βp are the
estimated regression coefficients (there are p + 1 (β0, β1, β2 . . . βp)), and ε is the model’s
error term (also known as the residuals).

In matrix representation, this is

Y = Xβ + ε (2)

CUn×1 =


CU1
CU2

...
CUn

 , xn×4 =


1 C12 RG13 CP14
1 C22 RG23 RG24
...

...
...

...
1 Cn2 RGn3 CPn4

 , β4×1 =


β0
β1
β2
β3

 , εn×1 =


ε1
ε2
...

εn


where RG is the rate category, CP is the consumption period, C is the community, and CU
is the consumption unit.

2.1.2. Random Forest (RF)

Random forest is a machine learning algorithm that is a supervised learning technique.
It can be used for classification and regression prediction [41]. It is based on the idea of
ensemble learning, which is a technique for integrating many classifiers to solve complex
problems and enhance the performance of a model [42]. Ensembles build many solutions
for a given issue and, in order to create the final result, incorporate all of the single results
to form the best solution [43].

It achieves better performance than that obtained from the constituent learning algo-
rithms alone. It constructs N trees by using a decision tree algorithm. A larger number of
trees leads to higher accuracy and overcomes the overfitting problem.

They are trained by using the “bagging” method. This is a method within ensemble
algorithms that ensures that different trees are trained on different subsets of the dataset
to ensure that all trees are not correlated with each other. Each decision tree makes a
prediction. It takes the prediction from each tree and then predicts the final output based
on the majority votes of predictions. The weaknesses of the decision tree algorithm were
eliminated by this algorithm [44].

It constructs N trees based on a decision tree algorithm, as shown in Figure 2. The
decision tree breaks a dataset down into smaller subsets based on the standard deviation.
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A decision leaf is split into two or more branches, which represent the value of the attribute
under examination. The splits are performed with thresholds that provide the minimum
sum of squared residuals.

The residual sum of squares (RSS) with the minimum threshold is a candidate for the
tree root. When the algorithm can no longer add further information to the leaf, the node
stops splitting and becomes a leaf node.

εi = yi − ŷi (3)

RSS =
n

∑
i=1

(yi − ŷi)
2 (4)

RSS = ε2
1 + ε2

2 + · · ·+ ε2
n (5)

where ε is the model’s error term and RSS is the residual sum of squares.

Figure 2. Structure of an RF model with n trees.

The parameters to be adjusted when running the model are:

• “N_estimators” is the number of trees to build in the forest.
• “Max_depth” is the maximum depth of a tree.
• “Minimum_lea f _samples” is the minimum number of samples required to be at a

leaf node.
• “Max_ f eatures” is the number of features to use for splitting.

The number of features for achieving the best split can equal the number of input
features, sqrt(n_features), or log2 (n_features).

2.1.3. Artificial Neural Network (ANN)

Artificial neural networks are a subfield of artificial intelligence (AI). They are designed
to mimic the human brain by analyzing and processing information similarly to humans.
This allows computer programs to identify patterns and resolve common problems in the
fields of deep learning, machine learning, and AI.

In the human brain, neurons are linked to one another. Similarly to natural neural
networks, artificial neural networks feature interconnected neurons, which can have any
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number based on the needs of the application. Neurons are connected to each other in
several layers of the network.

Neurons communicate with one another through electric pulses. Each neuron has
a threshold and associated weight. Any node whose output is greater than the specified
threshold value is activated and begins sending data to the next layer of the network [45],
and the importance of the node is determined by associating weights.

The most common structure of an artificial neural network comprises an input layer,
one or more hidden layers, and an output layer. The input layer receives data, which
are often vectors. The number of parameters in the input vector is typically equal to the
number of input nodes in the input layer. It preprocesses the data and passes them to the
hidden layers. The main processing happens in the hidden layer. There may be one or
more hidden layers.

The hidden layers use an activation function as a processing function. There are many
different activation functions: linear, binary sigmoid, and bipolar sigmoid functions. A
linear activation function multiplies the input by weights and creates an output. A binary
sigmoid function provides an output between zero and one. A bipolar sigmoid gives the
output between the negative and positive ones. The output layer can be connected to both
the input and hidden layers. Sometimes, the information is sent back to the input layer
from the output layer. This yields the final prediction value [46,47].

CUi = Ci.ω1 + RGi.ω2 + CPi.ω3 (6)

The numbers of layers and nodes in each hidden layer are the two primary hyper-
parameters for artificial neural networks, and they affect the design or topology of the
network. Additionally, the size of the input layer depends on the number of input features.
The prediction was performed by using a typical neural network with one hidden layer.
The number of hidden neurons was selected by using a trial-and-error method. Figure 3
shows a sample ANN with seven neurons.

Figure 3. Structure of an ANN model with one hidden layer and seven neurons.

2.1.4. Automatic Regression Integrated Moving Average (ARIMA)

ARIMA is a mathematical model used in time-series analysis. It is a powerful tool for
predicting the future values of a series based on past values. ARIMA models are based on
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the assumption that a series is stationary, meaning that the mean and variance of the series
remain constant over time.

The components of the ARIMA(p,d,q) model are the autoregressive (AR) compo-
nent, the integrated (I) component, and the moving average (MA) component. The AR
component uses past values of the series to predict future values. The order of the AR
component is represented by (p). The optimal value of (p) is determined with a partial
autocorrelation function (PACF) plot, as shown in Figure 4. The I component is used to
remove any non-stationary components from the series. (d) represents the total differencing
steps performed by the I component to make the time series stationary. The MA component
uses past errors to predict future values. The order of the MA component is represented by
(q). By using an autocorrelation function (ACF) plot, we determined the optimal value for
(q), as shown in Figure 5.

The equation for the AR model is:

CUt = β1 + φ1CUt−1 + φ2CUt−2 + . . . + φpCUt−p (7)

where φ is the respective weight of the corresponding lagged observation.
The equation for the MA model is:

CUt = β2 + ω1εt−1 + ω2εt−2 + . . . + ωqεt−q + εt (8)

where ε represents the errors observed at respective lags and ω represents the respective
weights of the corresponding error depending on the correlations.

When we combine the AR and MA equations, we get:

CUt = (β1 + β2) + (φ1CUt−1 + . . . + φpCUt−p) + (ω1εt−1 + . . . + ωqεt−q + εt) (9)

If the mean is non-constant, we need to calculate the difference between consecu-
tive observations.

for d = 1, Zt = CUt+1 − CUt (10)

for d = 2, Qt = Zt+1 − Zt (11)

Figure 4. Example of a PACF plot.
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Figure 5. Example of an ACF plot.

2.2. Dataset

The dataset was provided by the Dubai Electricity and Water Authority (DEWA) [48].
This dataset was chosen to represent the electricity consumption of the Arabian Gulf due
to the lack of research on data for the Middle East. It contained 26,084,029 records for
monthly electricity consumption measurements collected from the whole of Dubai over
four years, from 2019 to 2022. Customers were divided into four categories: commercial,
residential, industrial, and governmental. Bills were typically generated once per month for
each customer. If a customer was moving out, they could request a bill for a short time (less
than a month). Personal digital assistant (PDA) devices were used to gather each meter’s
periodic reading, which was then transferred into a systems, applications, and products
(SAP) system. There was a mediator (head-end system) in the case of a smart meter that
converted readings into an SAP system [48]. Table 2 presents all variables in the dataset.

Table 2. Feature description of the DEWA dataset.

Variable Name Description

Billing portion Dubai was divided into 27 portion cycles for meter-reading purposes
Community The community number refers to the number assigned by the Dubai Municipality to

the areas in Dubai
Rate category The customer category refers to residential, commercial, industrial, and governmental

customers
Consumption period The monthly period for the bill/invoice
Calendar month Refers to the calendar month in which the bill invoice is issued
Contract account The customer contract account number in which all financial transactions of customers

are recorded
Business partner The number assigned to a customer at the time of registration with the DEWA for the

first time
Consumption unit Monthly electricity consumption in kilowatt hours

2.3. Data Preprocessing

The available data represented four years of collected data; each month’s data were
separated into a CSV file. We merged all files from the same year into one file and worked
separately for each year. The numbers of records for each year are listed in Table 3.
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Table 3. Dataset record statistics.

Year Number of Records Missing Values Duplicates

2019 5,079,860 1261 15,207
2020 9,481,682 3107 23,753
2021 9,717,104 2817 24,359
2022 1,734,927 972 7133

Data cleaning: This is a data-mining method that focuses on eliminating or modifying
data that are incorrect, missing, irrelevant, duplicated, or improperly formatted to prepare
the data for analysis. There may be data instances that are insufficient or lack the informa-
tion required to address the problem, and these instances should be removed. Moreover,
some attributes can contain sensitive information; as a result, these attributes might need
to be completely deleted from the data or anonymized. Predictions are more accurate and
findings are more valuable when the quality of the data used is higher [49].

The SPSS modeler was used for all data preprocessing steps. It is a leading visual data
science and machine learning solution designed by IBM. This helps enterprises accelerate
the time to value by speeding up operational tasks for data scientists. Organizations world-
wide use it for data preparation and discovery, predictive analytics, model management
and deployment, and ML to monetize data assets [50,51]. The data preprocessing stream is
illustrated in Figure 6.

Figure 6. Data preprocessing stream with SPSS.

Removal of duplicates: Duplicate data most often occur during the data collection
process. This issue typically occurs when combining data from multiple sources or when
receiving data from clients or multiple departments. A distinct node is employed to find or
remove duplicate records from the dataset.

Fixing spelling and syntax errors: Some records contained syntax errors that were
discovered when using the SPSS statistical data analysis tool. These records were modified
to the correct values. For example, “2019” was discovered to be written incorrectly in the
2019 files and was changed from “201” to “2019”.

Handling missing values: A data audit node was used to report the data statistics
depending on the field measurement levels. For categorical fields, the data audit reported
the number of unique values (number of different categories). For continuous fields, the
most important statistics were the minimum and maximum values because these criteria
made it easy to detect out-of-range values. There are different methods for dealing with
missing values, such as imputing or discarding them. Choosing the best technique depends
on the size of the dataset, the number of fields containing blanks, and the amount of missing
information. In this study, records with invalid values were discarded [49]. The number of
removed duplicates and data with missing values was 78,609 records. The remaining data
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after data cleaning comprised 26,005,420 records. More details regarding the distribution of
eliminated data are presented in Table 3.

Identifying and eliminating outliers: An outlier is another type of data anomaly that
requires attention during the cleaning process. Outliers are data records that do not conform
to the overall data distribution [52]. The mean and standard deviation of consumption
for each month were computed. Typically, a threshold of three times the mean was used
to mark the outliers. An outlier was said to be extreme if it was more than five standard
deviations from the mean. Records with outliers or extremes were discarded because their
numbers were very small relative to the dataset size.

Feature selection: This process involves choosing the input variables that have the
strongest relationships with the target variable. This aids in creating an accurate predictive
model. It can be used to identify and eliminate redundant, unnecessary, and irrelevant
attributes from data that do not contribute to the model.

One of the commonly used methods for dimensionality reduction is principal com-
ponent analysis. It helps in identifying the relationships among different variables and
performs orthogonal transformations to convert them into a set of linearly correlated fea-
tures [53]. Dimensionality reduction refers to the technique of reducing the dimensions of
a training dataset by transforming high-dimensional data into a lower-dimensional space.
The higher the number of features in a dataset, the more difficult it is to visualize and work
on [54]. PCA can be classified into two categories:

• Feature selection: This is used to maintain the high accuracy of a model by carefully
choosing the relevant features and eliminating all others.

• Feature extraction: This is used to identify new features in data after transforming
them from a high-dimensional space to a low-dimensional space.

The difference between feature selection and extraction is that feature selection main-
tains a subset of the original features, whereas feature extraction creates new features [55].

As shown in Figure 7, we used PCA as a feature selection technique that determined
the weight of each predictor. The results revealed that the most important predictors were
rate_category, consumption_period, and community; other input fields were filtered out by
using the filter node.

Figure 7. Feature selection using PCA.

Sampling: This was used to improve the performance and reduce the time consump-
tion of the algorithm. The models generated from the samples were frequently as accurate
as those obtained from the full dataset. In this study, two different sample types were used:
a random sample and a sample that was stratified by using the SPSS sample node.

3. Results and Discussion

The main objective of forecasting electricity consumption is to determine the demand
for the next month’s municipal areas in Dubai. Utility industry decision makers can
anticipate future power consumption with the lowest possible error rate and future scaling
of the grid by adding new power stations to high-demand regions.
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3.1. MLR, RF, and ANN Performance Evaluation

Three machine learning techniques (MLR, RF, and ANN) were applied to the same
dataset for a comparison based on their performance.

Figure 8 shows a graph of the entire SPSS flow, which includes the streams for all
12 scenarios. Scenarios 1, 2, and 3 used the original dataset and a random sampling method.
Scenarios 4, 5, and 6 used the original dataset and a stratified sampling method.

According to Table 4, the accuracy of the original prediction was poor. Our work
focused on enhancing the accuracy by using two steps: first, eliminating anomaly values
from the dataset and then adding the influence of the weather to the model.

(a) SPSS stream for feature selection, anomaly detection, and sampling.

(b) SPSS sample machine learning models and analysis nodes.

Figure 8. Stream components of the machine learning models in the SPSS Modeler.

Anomaly detection involves observing abnormal status/events/entities that deviate
from the majority of the system when they occur [56]. Anomaly detection methodologies
can be divided into three categories: supervised, unsupervised, and semi-supervised [57].
To improve the prediction accuracy, we performed anomaly detection based on the one-
class SVM algorithm, which can find abnormal consumption values in a dataset before
model training. One-class SVM is an unsupervised algorithm. It classifies data into a single
category. A decision boundary is first learned by using the characteristics of the normal
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samples of data, and then the anomalous data are identified and eliminated when they
exceed this boundary. One-class SVM was implemented in Python with the scikit-learn
version 1.1.3 library. Figure 9 shows that the one-class SVM had a clear boundary and
labeled the data points outside of the boundary as anomalies that accounted for 2% of the
sample dataset.

Figure 9. Anomaly detection graph created with the one-class SVM.

According to previous studies [58–60], weather fluctuations in temperature, humidity,
wind, and precipitation significantly affect energy usage in the residential sector. This
effect is typically measured in terms of the energy demand for cooling and heating. The
agreement is that very hot temperatures reduce the electricity consumption for heating and
increase the electricity consumption for cooling, and vice versa.

This dataset lacks the existence of weather data. To handle this, a new variable was
added to the dataset, “average_consumption_unit (CPavg)”, which is the average power
consumption for the three previous months to represent the consumption over one season.
The added field was used to improve the correlation between the month of the year and
the average power consumption.

CPavgn
=

CPn−1 + CPn−2 + CPn−3

3
(12)

The other six scenarios (7)–(12) repeated the previous scenarios after anomaly elimina-
tion and with the newly added field CPavg.

For MLR, Figures 10 and 11 present the residual analysis of the linear regression, which
shows the distance between the actual and predicted values. This refers to the difference
between the observed and predicted values of electricity—“consumption_unit”. To ensure
that the model’s prediction line was, on average, as close to the actual values as possible,
we aimed for the minimum residual standard error when the newly added field was used.

As shown in Figure 11, the performance was improved by using CPavg; however, it was
noted that many of the points were below the line and did not perfectly flow through each
of the points. MLR did not achieve good results for this dataset because of the assumption
of a simple and non-universally applicable straight-line relationship between the dependent
and independent variables.

In the RF, we found the best values of N_estimators, Max_depth, Minimum_lea f _size,
and Max_ f eatures by using a trial-and-error mechanism. From the results, it was found
that although using a large number of trees was better, it could take a long time to compute.
In addition, it should be noted that the results would plateau after a certain number of
trees and stop improving considerably. Using a lower number of features reduced the



Electronics 2023, 12, 389 15 of 25

variance, but would also lead to a greater increase in bias. Empirically good results were
frequently obtained by combining Max_ f eatures = sqrt (using a random subset of size
sqrt(n_features)), Max_depth = None, and Minimum_lea f _samples = 2.

For the ANN, the prediction was performed by using a typical neural network with
one hidden layer. The number of hidden neurons was selected by using a trial-and-error
method. In this work, 5, 7, 10, 16, and 32 neurons were used. The best model accuracy was
achieved by using 32 neurons.

Figure 10. Residual analysis of MLR.

Figure 11. Residual analysis of MLR with CPavg.

Scatter plots are frequently used to show the relationship between actual and pre-
dicted values and to observe the nature of a relationship. The horizontal axis is the actual
consumption unit, and the vertical axis is the forecast consumption unit, as illustrated in
Figures 12–14. The results in part (a) demonstrate that the shape was nonlinear, with a
weak association in the original dataset. After using the newly added field (CPavg), the data
appeared to be linearly related, and the spread of the data was similar across the regression
line, which achieved the homoscedasticity and linearity assumptions.

(a) Scatter plot of the original dataset
Figure 12. Cont.
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(b) Scatter plot of the enhanced dataset
Figure 12. Scatter plots showing the relationship between the actual and predicted power consump-
tion values using MLR.

(a) Scatter plot of the original dataset
Figure 13. Cont.
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(b) Scatter plot of the enhanced dataset
Figure 13. Scatter plots showing the relationship between the actual and predicted power consump-
tion values using the ANN.

(a) Scatter plot of the original dataset
Figure 14. Cont.
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(b) Scatter plot of the enhanced dataset
Figure 14. Scatter plots showing the relationship between the actual and predicted power consump-
tion values using the RF.

The performance of the three algorithms was validated by comparing the obtained
results by using four statistical parameter values: the root mean square error (RMSE), mean
absolute percentage error (MAPE), mean absolute error (MAE), and correlation coefficient
(R2), as well as the processing time [61]. Their values were calculated by using Python code
after exporting the predicted output values from the SPSS program. The calculated values
are presented in Table 5.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (13)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (14)

MAPE =
100%

n

n

∑
i=1
|yi − ŷi

yi
| (15)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳi)2 (16)

where y is the actual value, ŷ is the predicted value, and ȳ is the mean value.
Table 4 provides a comparison of the accuracies obtained from the different models.

Working with the original dataset resulted in poor performance, with an accuracy of 66%
in the best case. When using the CPavg field, both the ANN and RF achieved excellent
accuracy. The RF was slightly better than the ANN.

Table 5 lists the values of the criteria used to estimate the prediction errors of the
models. When comparing the performance of the models, it was observed that the forecast
errors were higher when using MLR, which made it inappropriate for this dataset. The RF
performed better than the ANN in terms of the MAPE, MAE, RMSE, and R2 values. The
model building and prediction times of the three algorithms are listed in Table 6. The ANN
required a longer time than the RF to build the model, while the ANN had a much faster
prediction time than that of the RF.
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The results indicate that, in most cases, using an ANN is recommended for such data
types, particularly when dealing with a complete dataset, for several reasons:

• The accuracy is almost the same between an ANN and RF.
• An ANN has a significantly lower prediction time than that of an RF.

Additionally, when concentrating on a single categorical area, such as a residential
area, the ANN performed better than the RF, with an accuracy of 91.02%. When applied to
a single residential customer, both models attained the same accuracy (90.01%).

Table 4. Comparative accuracies of the training and testing models of different algorithms on both
the original and enhanced dataset.

Original Dataset Enhanced Dataset

Sample Type Linear
Regression Neural Random

Forest
Linear

Regression Neural Random
Forest

Stratified Training 46% 48.7% 66.3% 92% 97.5% 98.5%
Testing 45.5% 47.9% 59.6% 91.9% 97.4% 97.1%

Random Training 46% 49.1% 66.4% 90.6% 97.5% 98.5%
Testing 45.9% 48.7% 60.5% 90.7% 97.4% 97.1%

Table 5. Evaluation metrics of the trained machine learning models on both the original and en-
hanced dataset.

Original Dataset Enhanced Dataset

Sample Algorithm MAPE MAE RMSE R2 MAPE MAE RMSE R2

Linear 2.79 1182.49 1935.78 0.19 0.75 481.56 936.79 0.81
Stratified Neural 2.77 1159.78 1908.53 0.215 0.31 229.06 513.51 0.943

Random
Forest 2.14 954.61 1674.28 0.396 0.157 131.44 333.04 0.976

Linear 2.79 1184.32 1939.06 0.191 0.739 466.45 908.08 0.822
Random Neural 2.761 1160.58 1911.2 0.214 0.328 221.51 488.1 0.948

Random
Forest 2.14 956.39 1679.46 0.393 0.158 132.98 338.36 0.975

Table 6. Model building and prediction times (in seconds) of different algorithms on both the original
and enhanced dataset.

Original Dataset Enhanced Dataset

Sample Algorithm Model
Building (s)

Prediction
(s)

Model
Building (s)

Prediction
(s)

Linear 12 7 14 8
Stratified Neural 158 7 569 7

Random
Forest 37 980 85 987

Linear 9 7.3 11 7.9
Random Neural 179 6.7 617 7

Random
Forest 40 953 71 978

3.2. ARIMA Performance Evaluation

ARIMA time-series analysis was also considered for several reasons. It is simple to
use and suitable for a wide range of data. It is also relatively accurate, and it can be used
to forecast long-term trends. However, ARIMA has certain limitations. It is not always
accurate and can be difficult to interpret. A large amount of data is also required for it to be
effective [62].
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ARIMA was applied to the entire dataset in three different scenarios. Scenario 1 was
used to predict the future consumption of Dubai. Scenario 2 was applied to a single area to
predict district loads and provide insights into capacity expansion. Scenario 3 was used for
individual customers to predict specific customer consumption and send notifications as
required [63].

For each scenario, the actual and predicted consumption was plotted against time to
demonstrate the prediction performance. As shown in Figure 15, the prediction perfor-
mance was outstanding in the beginning, but did not achieve the same performance in
2020. Figure 16 illustrates that the best ARIMA performance was achieved by forecast-
ing one district scenario. Poor results were obtained when ARIMA was used to predict
single-user consumption, as shown in Figure 17. Table 7 lists the performance of the three
scenarios based on the MAPE, MAE, RMSE, R2, and accuracy. This Table demonstrates
that ARIMA can be used to predict future district consumption. Because of the poor values
of the accuracy and prediction error in scenarios 1 and 3, ARIMA is not recommended in
these cases.

Figure 15. Actual and predicted load consumption values in MW versus time for the entirety of
Dubai using the ARIMA model.

Table 7. Evaluation metrics of the ARIMA model on the DEWA dataset for different scenarios.

Scenario MAPE MAE RMSE R2 Accuracy

ARIMA, whole of Dubai 28 813 1114.1 0.575 78%
ARIMA, one district 14 307 414.5 0.85 93%
ARIMA, one customer 66 307 410 0.42 71%
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Figure 16. Actual and predicted load consumption values in KW versus time for one district of Dubai
using the ARIMA model.

Figure 17. Actual and predicted load consumption values in W versus time for one customer using
the ARIMA model.

4. Conclusions and Future Work

Electricity load forecasting is one of the important considerations in operating a
nation’s electric power system. In this study, we focused on selecting an appropriate
machine learning technique for the LTLF in Dubai to assist smart utility companies by
saving power and reducing costs. The electricity demands of the different categories were
predicted, and the total demand for the entire country was obtained. This study focused on
the DEWA dataset because of the lack of research focusing on the consumption behavior of
this region (Middle Eastern countries).

The steps of the methodology are summarized as follows: The first stage was data
preprocessing, which included eliminating or modifying incorrect, missing, irrelevant,
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duplicated, or improperly formatted data to prepare for the analysis. PCA was used as
a feature selection technique that determined the weight of each predictor and chose the
most revealing predictors that affected our study. Sampling was used to improve the
performance and reduce the time required to run the algorithms.

In the second stage, MLR, RF, and ANN were used for load prediction by using the
original dataset. The results showed that the accuracies were approximately 46%, 48.7%,
and 66.3% for MLR, ANN, and RF, respectively.

The third stage included our method of enhancing the prediction accuracy by detecting
anomaly values with one-class SVM. A decision boundary was first learned by using the
characteristics of the normal samples of data, and then the anomalous data were identified
and eliminated when they exceeded this boundary. In addition, we added a new variable,
“CPavg”, to mimic the influence of the weather on the model, as the dataset lacked the
inclusion of weather data. This represented the consumption in one season. Repeating
the prediction, the results showed that the performance was significantly enhanced after
anomaly elimination and the use of the proposed field.

In addition, ARIMA was applied to the entire dataset after anomaly illumination in
three different scenarios: predicting the future consumption of the entirety of Dubai, predict-
ing that of a single area in order to predict district loads, and predicting specific customers’
consumption. The results showed that the best accuracy of ARIMA was approximately
93% when working in only a single district.

The results showed that both the ANN and RF achieved an excellent accuracy of
approximately 97%. Therefore, the use of an ANN for such data types is recommended
in most cases, particularly when working on a whole country, for several reasons—the
accuracy is almost the same between an ANN and RF, and an ANN has a significantly
lower prediction time than that of an RF.

Furthermore, when working on a single categorical area, both the ANN and RF models
were good choices because they achieved the same accuracy of approximately 91.02%.

Future work will concentrate on including real weather data to study seasonal fluctua-
tions that affect consumer behavior and load usage, using anomaly detection and prediction
data to identify abnormal events in consumption, such as theft, metering malfunctions,
and technical losses, and developing a program for revealing customers’ current and
expected usage.
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30. Jahić, A.; Konjić, T.; Hivziefendić, J. Detection of missing power meter readings using artificial neural networks. In Proceedings
of the 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo,
Bosnia and Herzegovina, 26–28 October 2017; pp. 1–6.

31. Liu, M.; Liu, D.; Sun, G.; Zhao, Y.; Wang, D.; Liu, F.; Fang, X.; He, Q.; Xu, D. Deep learning detection of inaccurate smart electricity
meters: A case study. IEEE Ind. Electron. Mag. 2020, 14, 79–90. [CrossRef]

32. Wanxing, S.; Keyan, L.; Huanna, N.; Yuzhu, W.; Jingxiang, Z. The anomalous data identification study of reactive power
optimization system based on big data. In Proceedings of the 2016 International Conference on Probabilistic Methods Applied to
Power Systems (PMAPS), Beijing, China, 16–20 October 2016; pp. 1–5.

33. Amara korba, A.; El Islem karabadji, N. Smart Grid Energy Fraud Detection Using SVM. In Proceedings of the 2019 International
Conference on Networking and Advanced Systems (ICNAS), Annaba, Algeria, 26–27 June 2019; pp. 1–6. [CrossRef]

34. Liu, F.; Liang, C.; He, Q. Remote malfunctional smart meter detection in edge computing environment. IEEE Access 2020,
8, 67436–67443. [CrossRef]

35. Canepa, G. What You Need to Know about Machine Learning; Packt Publishing: Birmingham, UK, 2016.
36. Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Sebastopol,

CA, USA, 2016.
37. Harrington, P. Machine Learning in Action; Simon and Schuster: New York, NY, USA, 2012.
38. Fitzek, F.; Granelli, F.; Seeling, P. Computing in Communication Networks: From Theory to Practice; Academic Press: Cambridge, MA,

USA, 2020.
39. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021.
40. Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [CrossRef]
41. Pujara, P.; Chaudhari, M. Phishing website detection using machine learning: A review. Int. J. Sci. Res. Comput. Sci. Eng. Inf.

Technol. 2018, 3, 395–399.
42. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
43. Kartelj, A.; Kotlar, M. (Eds.) Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms; IGI Global:

Hershey, PA, USA, 2022.
44. Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095.
45. Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons: Hoboken, NJ, USA, 2020.
46. Ahamed, K.; Akthar, S. Survey on artificial neural network learning technique algorithms. Int. Res. J. Eng. Technol. 2016, 3, 36–39.
47. Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial neural networks-based machine learning for wireless networks: A

tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 3039–3071. [CrossRef]
48. Dubai Consumption Dataset Link. Available online: https://www.dubaipulse.gov.ae/organisation/dewa/service/dewa-

consumption (accessed on 5 March 2022).
49. Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmannp: San Francisco, CA, USA, 2022.
50. Wendler, T.; Gröttrup, S. Data Mining with SPSS Modeler: Theory, Exercises and Solutions; Springer: Berlin/Heidelberg,

Germany, 2016.
51. Nasir, M.A.; Bakouch, H.S.; Jamal, F. Introductory Statistical Procedures with SPSS; Bentham Science Publishers: Sharjah, United

Arab Emirates, 2022.
52. Abdallah, Z.S.; Du, L.; Webb, G.I. Data Preparation. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I.,

Eds.; Springer: Boston, MA, USA, 2017; pp. 318–327. [CrossRef]
53. Vidal, R.; Ma, Y.; Sastry, S.S. Principal component analysis. In Generalized Principal Component Analysis; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 25–62.
54. Sano, N. Synthetic Data by Principal Component Analysis. In Proceedings of the 2020 International Conference on Data Mining

Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020; pp. 101–105.
55. Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal

Inf. Process. 2020, 4, 173–175. [CrossRef]
56. Lin, X.X.; Lin, P.; Yeh, E.H. Anomaly detection/prediction for the Internet of Things: State of the art and the future. IEEE Netw.

2020, 35, 212–218. [CrossRef]
57. Tsai, C.W.; Chiang, K.C.; Hsieh, H.Y.; Yang, C.W.; Lin, J.; Chang, Y.C. Feature Extraction of Anomaly Electricity Usage Behavior in

Residence Using Autoencoder. Electronics 2022, 11, 1450. [CrossRef]
58. Kang, J.; Reiner, D.M. What is the effect of weather on household electricity consumption? Empirical evidence from Ireland.

Energy Econ. 2022, 111, 106023. [CrossRef]
59. Erba, S.; Causone, F.; Armani, R. The effect of weather datasets on building energy simulation outputs. Energy Procedia 2017,

134, 545–554. [CrossRef]
60. Gutiérrez González, V.; Ramos Ruiz, G.; Du, H.; Sánchez-Ostiz, A.; Fernández Bandera, C. Weather files for the calibration of

building energy models. Appl. Sci. 2022, 12, 7361. [CrossRef]
61. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the

literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

http://dx.doi.org/10.1109/MIE.2020.3026197
http://dx.doi.org/10.1109/ICNAS.2019.8807832
http://dx.doi.org/10.1109/ACCESS.2020.2985725
http://dx.doi.org/10.1016/j.sbspro.2013.12.027
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/COMST.2019.2926625
https://www.dubaipulse.gov.ae/organisation/dewa/service/dewa-consumption
https://www.dubaipulse.gov.ae/organisation/dewa/service/dewa-consumption
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.4236/jsip.2013.43B031
http://dx.doi.org/10.1109/MNET.001.1800552
http://dx.doi.org/10.3390/electronics11091450
http://dx.doi.org/10.1016/j.eneco.2022.106023
http://dx.doi.org/10.1016/j.egypro.2017.09.561
http://dx.doi.org/10.3390/app12157361
http://dx.doi.org/10.5194/gmd-7-1247-2014


Electronics 2023, 12, 389 25 of 25

62. Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
2003, 18, 1014–1020. [CrossRef]

63. Jagait, R.K.; Fekri, M.N.; Grolinger, K.; Mir, S. Load forecasting under concept drift: Online ensemble learning with recurrent
neural network and ARIMA. IEEE Access 2021, 9, 98992–99008. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1109/ACCESS.2021.3095420

	Introduction
	The Literature and Related Work
	Motivation and Contribution
	Paper Organization

	Materials and Methods
	Forecasting Algorithms
	Multiple Linear Regression (MLR)
	Random Forest (RF)
	Artificial Neural Network (ANN)
	Automatic Regression Integrated Moving Average (ARIMA)

	Dataset
	Data Preprocessing

	Results and Discussion
	MLR, RF, and ANN Performance Evaluation
	ARIMA Performance Evaluation

	Conclusions and Future Work 
	References

