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Abstract: This research article explores a hybrid strategy that combines an adaptive iterative filtering
(IF) method and the fast discrete lifting-based wavelet transform (LWT) to eliminate power-line noise
(PLI) and baseline wander from an electrocardiogram (ECG) signal. Due to its correct mathematical
basis and its guaranteed a priori convergence, the iterative filtering approach was preferred over
empirical mode decomposition (EMD). The noisy modes generated from the IF are fed to an LWT
system so as to be disintegrated into the detail and the approximation coefficients. These coefficients
are then scaled using a threshold method to generate a noise-free signal. The proposed strategy
improves the quality and allows us to precisely preserve the vital components of the signal. The
method’s potency has been established empirically by calculating the improvement in signal-to-noise
ratio, cross-correlation coefficient and percent root-mean-square difference for different recordings
available on the MIT-BIH arrhythmia database and then compared to numerous existing methods.

Keywords: electrocardiogram; power-line noise; empirical mode decomposition; iterative filtering;
lifting wavelet transform

1. Introduction

The electrocardiogram (ECG) signal records the electrical action of a human heart
during depolarization and repolarization of heart muscle cells over a stretch of time [1].
It is a non-invasive tool that efficiently depicts the useful electrical information collected
by employing a set of electrodes tied to the surface of the human body. The electrodes are
generally made of non-noble metals such as silver–silver chloride in order to produce a
high electrical performance. A twelve-lead ECG system consists of a combination of three
limb leads designated as I, II and III, six chest leads designated from V1 to V6 and three
augmented limb leads depicted as aVR, aVL and aVF. The three bipolar limb leads define
the potential difference between the left arm and right arm, left leg and right arm and
left leg and left arm, respectively. The three potentials are related to each other through
Einthoven’s law [2]. The unipolar chest leads or precordial leads, which are anatomically
placed over the left ventricle, provide a 3D view in reference to Wilson’s central terminal
(WCT). The WCT is the sum of the potentials of the right arm, the left arm and the left leg.
The remaining three unipolar augmented limb leads consist of a positive electrode in each
limb referenced to a modified WCT. The researchers in [3] have discussed the various types
of ECG acquisition systems in detail.

An ECG signal is necessarily corrupted by different sorts of noise during its acquisition
with frequencies distributed over a wide range of values. These noises include baseline
wander (0.15–0.3 Hz), 50/60 Hz power-line interference (narrow bandwidth of 1 Hz),
artefacts due to muscle movement (large bandwidth), etc. [4]. The PLI and baseline wander
are the most prominent noises that affect and severely distort the clinical information
contained in an ECG signal, thereby making it quite laborious to diagnose. These artefacts
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need to be removed in order to avoid wrong assessments and to improve the diagnostic
correctness.

In this paper, we have, therefore, discussed the usage of the iterative filtering (IF)-
based method along with the less complex lifting scheme-based DWT to remove different
types of noise from an ECG signal. It is pertinent to mention that the IF method does
not utilize the ad hoc cubic spline method to form the upper and the lower envelopes. It
instead relies on the iterative usage of certain types of moving average filters to generate the
oscillatory modes. The improvements generated in the signal quality have been established
in terms of two empirical performance parameters viz. improvements in signal-to-noise
ratio (SNRimp), cross-correlation values (ρ) and percent root-mean-square difference (PRD)
between the original signal and the output denoised signal. These values have further been
compared with various au courant methods to prove its numerical efficacy. The various
methods used for comparative analysis include eigenvalue value decomposition method
as presented in [5] and a hybrid method utilizing highly efficient recursive least squares-
based PLI estimator [6] in conjugation with Hilbert vibrational method [7]. Similarly, the
results have been compared with the values obtained by using the classical EMD approach
in conjugation with DWT or LWT and LPF where the EMD is used to decompose the
noisy signal into modes, while DWT and LPF are used to remove high frequency and low
frequency noise, respectively.

2. Literature Review

Several robust techniques using digital filters have been implemented to de-noise the
ECG signal. In [8], the researchers have introduced two algorithms to realize FIR-based
notch filter with minimal hardware to remove PLI noise. In [9], an adaptive ratio-based
spectrum correction method based on Hanning window has been implemented to acquire
high precision harmonic information with minimal energy leakage. In [10], a comparison
between adaptive and non-adaptive notch filters to eliminate 60 Hz noise reveals that
the adaptive filter is computationally more efficient and more effective in residual signal
entropy reduction. In [11], a new real-time self-parameter-organization piloted acquisition
and FIR filtering mechanism was put forward.

Due to the time–frequency localization ability, multiresolution wavelet transform-
based methods have been implemented for noise reduction from ECG signals. In [12],
DWT-based modulus maximum method has been used, while, as in [13], a threshold
method has been implemented on the decomposed signal coefficients. Likewise, a dual
tree-based DWT method was implemented in [14] to overcome the aliasing effects of the
threshold method. The wavelet-based methods have been successfully used for medical
image denoising as well [15,16].

Many purely data-driven computer-based methods have been presented over the last
few years. In [5], the eigenvalue decomposition (EVD) method was used, while, as in [17],
the Fourier decomposition method (FDM) was utilized. Similarly, many other methods
such as Kalman filter [18], variational mode decomposition [19] and principal component
analysis [20]-based methods were used to enhance the denoising performance.

Empirical mode decomposition has emerged as one of the most widely used data-driven
methods for the removal of various types of noises from ECG signals since it is a purely data-
driven mechanism and provides a good resolution in time–frequency (TF) domain [21–24].

A recent trend utilizing hybrid methods that involve the usage of EMD along with
other filtering methods, such as discrete wavelet transform [25], stationary wavelet trans-
form [26], adaptive switching mean filter [27], non-local means [28] and others [29], have
been implemented to improve its de-noising efficiency. These schemes involve the combi-
nation of the purely data-driven EMD scheme with the various fixed basis methods such as
DWT, SWT, etc. The main aim of this procedure is to generate a pure ECG signal. Since this
procedure may lead to high computational complexity and a reduction in the processing
speed, it becomes pertinent to utilize less complex and faster variants of the EMD as well
as that of the wavelet transform.
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The rest of the paper is organized as follows: Section 3 describes the theory of methods
such as iterative filtering, lifting wavelet transform, wavelet selection, threshold method
and dataset used in the proposed method. Consequently, the proposed denoising procedure
is explained in detail in Section 4. Simulation results and relevant discussions are given
in Section 5 to demonstrate the efficiency of the proposed scheme. Finally, concluding
remarks are drawn in Section 6.

3. Preliminaries
3.1. Iterative Filtering

The traditional EMD is an adaptive, purely data-driven decomposition technique [30]
that disintegrates a non-stationary and non-linear signal into a band of finite band-limited
intrinsic mode functions (IMFs) along with a trend in the TF domain using a recursive
strategy termed as sifting. Each IMF is an amplitude modulated–frequency modulated
(AM–FM) signal defined as:

mk(t) = ak(t) cos φk(t) , with ak(t), φk > 0 ∀ t (1)

It is such that the number of extrema and the zero crossings differ at most by one, such
that the mean of its upper and lower envelopes adds to zero [31]. The traditional method
for calculating the envelopes from the minima and maxima is not supported by a proper
mathematical theory. This is because it relies on an ad hoc method that is unstable and can
cause the process to be sensitive to changes in the input signal [32]. Due to its unpredictable
nature and unstable design, the sifting operation cannot be guaranteed to converge. To
avoid this issue, researchers developed a new method called iterative filtering, which takes
into account the various factors that affect the sifting operation. Instead of calculating the
mean from the peaks, the researchers used an adaptive moving average to calculate the
envelopes [33]. For simplicity, an adaptive local weighted mean is adopted in order for the
sifting operation to converge. Consider a moving average operator £ applied on data Z, so
that the sifting may be defined as:

T = Z − £(Z) (2)

where T is analogous to the first proto-IMF, which consists of several extrema in between
zero crossings and, therefore, cannot be treated as an IMF. In classical EMD, the proto-IMF
W is the mean of the lower and the upper envelopes such that:

W =
1
2
(U + L), (3)

when operator £ is applied to data Z successively n number of times, we obtain first IMF as:

I1 = limn→∞Tn(Z), (4)

Equation (5) implies that the moving average of the signal at each stage of sifting is
subtracted from the previous proto-IMF until the obtained signal satisfies the conditions of
IMF. In general, the kth IMF is calculated as:

Ik = limn→∞ Tn(Z − I1 − I2 − · · · Ik−1) (5)

When the data set D = Z− I1 − I2 − · · · Ik−1 has only one local maximum or local min-
imum, the sifting operation stops. The mode D represents trend of the data function Z. The
moving average of Z is defined as £(Z) = ∑c

k=−c ak(n)Z(n + k), where a(n) = (ak(n))
c
k=−c

is the mask. While extracting the IMFs, the iterative filters make use of adaptively selected
uniform masks for the operator £. The size of such a window can be chosen as:

m = [
αM
K

] (6)
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such that the value of α when adjusted between 2 and 3 fetches best results. Here, M is
the size of the data and K is the peak count in the input data. In [34], a non-uniform mask
length was defined for the decomposition of non-stationary and non-linear data, but the
process takes too much time, which hinders its use for real time applications.

In order to stop the iteration process, a same standard deviation (SD)-based stopping
criterion is adopted as was used in the classical EMD method. For a small SD value, a
greater number of IMFs are obtained, while, as for a larger value, a smaller number of
IMFs are obtained, such that here exists a trade-off between various values of SD. In the
numerical analysis, the SD value is generally chosen between 0.001 and 0.2. Once the
residue signal becomes less than the adopted threshold or becomes a monotone so that
no more IMFs can be derived from it, the process comes to halt. The final monotone or
residue is also treated as an IMF. Let rn be the final residue, then the signal y(t) can be
reconstructed from the generated IMFs as:

y(t) = ∑ Ci(t) + sn (7)

The EMD method uses a spline method to calculate the upper and lower envelope
from the maxima and minima of the data, while as the IF method does so by utilizing a
moving average filter over the regions of data without calculating any envelopes. The
rationale behind using IF is its proper mathematical foundation, which is otherwise lacked
by the EMD. Moreover, the IF is computationally more efficient since it generates lesser
number of IMFs in comparison to EMD. Figure 1 shows the band of IMFs generated by
disintegrating record 102 polluted with 50 Hz PLI and baseline wander noise at −10 dB
input noise power.
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Figure 1. Intrinsic mode functions of a noisy ECG signal using iterative filtering.

Table 1 draws a comparison between IF and EMD in terms of the number of IMFs
generated for multiple ECG records at various input SNR values in the presence of 50 Hz
PLI noise and baseline wander. The data reveal that IF generates a lesser number of IMFs
at all input noise levels, thereby indicating less memory requirements.
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Table 1. Comparison between IF and EMD in terms of the number of IMFs generated at various input
SNR values.

Record
No.

IF EMD

SNRin
(dB) −10 −5 0 5 10 −10 −5 0 5 10

100 6 6 7 7 7 10 9 10 9 9

102 6 6 6 6 6 9 9 10 11 10

103 6 6 6 6 6 9 9 9 9 10

105 6 6 6 6 6 9 9 10 10 11

109 6 6 6 7 8 10 8 9 9 9

116 6 6 6 6 6 9 9 9 10 10

123 6 6 5 5 6 9 9 11 10 11

201 6 6 6 6 6 9 10 10 10 10

221 6 6 6 6 6 9 10 9 9 11

231 6 6 7 7 7 10 10 11 10 12

Moreover, as shown in Table 2, the average CPU time consumed by the proposed
method is less than that consumed when EMD is used in place of IF, indicating lesser
computational complexity of the proposed method.

Table 2. Comparison between IF and EMD based methods in terms of execution time (in seconds) at
various input SNR values.

Input SNR −10 −5 0 5 10

IF-LWT 1.2500 1.1891 1.0344 1.1484 1.2672
EMD-LWT 1.4953 2.1609 2.2391 2.0328 2.1641

3.2. Lifting Wavelet Transform

Wavelet transform is a very dynamic mechanism for the analysis and study of non-
linear, non-stationary signals. Based on the shifts and dilations of scaling and wavelet
functions, a real-valued signal is decomposed into a set of scaling coefficients holding coarse
signal data and wavelet coefficients containing detail information. Relying on the property
of vanishing moments, a real signal such as ECG is compressed into a few coefficients
having large magnitude [35]. Moreover, after every level of decomposition, the frequency
resolution doubles while the time resolution is halved. The term “vanishing moments”
specifies how many zero moments there are in a wavelet, and it is always equivalent
to half the entire number of coefficients. It restricts the ability of wavelets to represent
polynomial behavior in a signal. A wavelet with a single vanishing moment encodes a
polynomial with a single coefficient (a constant signal element), whereas a wavelet with
two vanishing moments encodes a polynomial with two coefficients (constant and linear
signal components), and so on. The association between a wavelet’s vanishing moments
and its frequency characteristics has been examined analytically in [36].

The traditional wavelets, which are the dyadic translates and dilates of a particular
mother wavelet, are regarded as first-generation wavelets. All these wavelets with the
exception of Donoho wavelet depend on Fourier transform as their basic construction
tool. In 1996, Sweldens developed a lifting method that completely avoided the usage of
Fourier transform-based bandpass filter banks and instead divided the data into approx-
imation and detail coefficients using a three-step iteration method utilizing prediction
and update operators [37].

Since the classical wavelet transforms rely on the Fourier transform, the scaling co-
efficients at some scale are viewed as ‘predictors’ for the next higher level of resolution,
while as the wavelet coefficients are taken to be the ‘errors’ generated in this prediction
process between the scaling coefficients and the predicted data of higher resolution. A
DWT framework based on the lifting scheme allows the designing of the second-generation
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wavelets, which demonstrate improved spectral as well as spatial localization preservation
when compared to first generation wavelet-based DWT. The lifting method operates by
minimizing the prediction error, while, at the same time, maintains the bi-orthogonality of
the wavelets [38]. The algorithm to realize lifting scheme-based wavelet transform varies
significantly from the Mallat algorithm used to calculate DWT.

The LWT of a discrete signal Y(n) is performed using the following three steps:

(a) Split: The signal Y(n) is decomposed into two disjoint even and odd subsets as:

Yeven
i = Yi(2n − 1) (8)

Yodd
i = Yi(2n) (9)

where i = 1, 2, 3 . . . length (Yi)/2.

(b) Predict: Based on the close relationship between the two subsets, the odd subset
is predicted from various neighboring samples of the even subset using a linear
prediction operator (P). The odd subset is then replaced by the difference between
Yodd

i and the predicted sample, giving the next detail or wavelet coefficient given by:

di+1 = Yodd
i+1 + P

(
Yeven

i+1
)

(10)

(c) Update: The even set is updated based on di+1 and an updating operator (U) as:

Si+1 = Yeven
i+1 + U(di+1) (11)

Through lifting, the high frequency detail coefficients di and the low frequency ap-
proximation coefficients Si are generated.

The above process is repeated until the intended decomposition level is attained. The
signal can be reconstructed using the inverse LWT, which is symmetrical to LWT. The
complete lifting scheme involving decomposition and reconstruction is shown in Figure 2.
The symbols S, P and U in the forward step represent splitting, predict and update steps,
while, as in the reconstruction step, the symbols U, P and M denote update, predict and
merge steps, respectively.
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The lifting scheme is a much more efficient, fast and flexible method resulting in
the construction of bi-orthogonal wavelets with better spatial and spectral localization
preservation when compared to the first-generation wavelet decomposition method [39].
It requires less memory while at the same time featuring all the important properties of
conventional DWT [40,41].



Electronics 2023, 12, 387 7 of 22

3.3. Selection of Wavelet

Selection of an optimal wavelet for ECG denoising plays a crucial role in the improve-
ment of the performance metrics in a wavelet transform. By the dilation and translation of a
single mother wavelet ψ(t), a wavelet basis is formed, which is orthonormal and compactly
supported. The discrete wavelet transform offers a variety of mother wavelets having
different characteristics. The general wavelet families mainly include Haar, Daubechies,
symlet, Coiflet, Meyer, etc. In the lifting scheme, the choice of mother wavelet remains
confined to Haar, Daubechies, symlet and Cohen–Daubechies–Feauveau (CDF) wavelets
because other types of wavelets are not eligible for the lifting process. Furthermore, out
of the eligible wavelets, only those with a limited order can be lifted. The CDF wavelets,
which are also termed as db9/7 wavelets, constitute of two lifting steps containing five
operations. It results in the increase in the number of filter coefficients, and, therefore, the
complexity increases. Moreover, it does not provide more considerable improvements in
the results than sym4 wavelet.

Each wavelet is characterized by the number of vanishing moments, symmetry, orthog-
onality and bi-orthogonality. The selection of a proper wavelet depends on the particular
problem at hand, and, as such, we cannot prioritize any wavelet over another. Based on
its symmetry and the similarity with the QRS complex, a symlet wavelet has been chosen
for the denoising. The order of symlet wavelets varies from 2 to 45 but wavelets only with
order 2 to 8 are feasible for lifting. Out of these, a wavelet of order 4 was chosen since it
produced relatively better results in comparison to the other wavelets.

3.4. Threshold

The threshold method plays a vital role in the denoising process. Obtaining a threshold
value can be accomplished by various methods such as universal, rigrsure, heursure and
minimaxi, etc. [42]. In this paper, the fixed universal method of calculating the threshold
was used due to its wide usage and simplicity. It was proposed by Donoho and Johnston
and is calculated as:

λ = σ
√

2 log(N) (12)

where σ represents the standard deviation and N is the number of samples in the noisy signal.
The application of threshold on a signal is carried out by two methods [43]:

(a) Hard threshold: It scales the coefficients with absolute values below the threshold to
zero and keeps the remaining coefficients as such. It is implemented as:

k =

{
Dk, if |Dk| > λ

0, if |Dk| ≤ λ
(13)

(b) Soft threshold: It scales the coefficients with absolute value below the threshold to
zero and scales down the remaining coefficients such that:

k =

{
sign(Dk)(Dk − λ), if |Dk| > λ

0, if |Dk| ≤ λ
(14)

Here k is the updated detail coefficient, Dk is the DWT coefficient and λ is the threshold.
Moreover, to account for any distortions produced by the boundary effects, a signal

extension method-based DWT periodization has been used in place of the default symmetric
extension mode.

3.5. Dataset Used

The ECG recordings used were obtained from MIT-BIH arrhythmia database available
online. The used MIT-BIH arrhythmia database contains 48 half-hour excerpts of two-
channel ambulatory ECG recordings, which have been collected from 47 subjects, from
which 25 belonged to male patients aged between 32 to 89, while 22 belonged to female
subjects aged between 22 to 89 with records 201 and 202 belonging to a single male patient.
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From a set of 4000 recordings gathered from a 60% populace of inpatients and 40% from
outpatients at Boston’s Beth Israel Hospital, 23 recording signals were chosen at random,
while the other 25 recordings were chosen from the same set, which included less prevalent
but scientifically significant arrhythmias that otherwise are not well-presented in a small
arbitrary sample. All the recorded signals are digitized with a sampling rate of 360 elements
per second per channel having a bit-resolution of 11 over a space of 10 mV. Each record
has been separately verified by two or more cardiologists with all the differences settled to
attain the reference glossary of each beat, which are computer-readable [44]. The dataset
has been widely used as a reference for ECG feature extraction [45], classification [46], QRS
detection [47] and signal de-noising [48]. The records available of MIT-BIH arrhythmia
have been divided by the Association for the Advancement of Medical Instrumentation
(AAMI) into five major classes, which contain all the annotated beat types. The five AAMI
classes are mapped to MIT-BIH beat types as [49]:

(a) Non-ectopic beat (N): It contains normal (N), left bundle branch block (LBBB), right
bundle branch block (RBBB), atrial escape (AE) and nodal escape (NE) beats.

(b) Supraventricular ectopic beat (S): It consists of atrial premature beat (APB), aber-
rated atrial premature beat (AP), nodal premature beat (NP) and supraventricular
premature beat (SP).

(c) Ventricular ectopic beat (V): It consists of only two beat types viz. premature ventricu-
lar contraction (PVC) and ventricular escape (VE) beat.

(d) Fusion beat (F): It contains a fusion of ventricular and normal beat.
(e) Unknown beat (Q): It includes paced beat (P), fusion of paced and normal beat (f) and

unclassified beat (U).

The records along with their MIT-BIH annotations selected for the analysis are 100 (N),
102 (P), 103 (N), 105 (N), 109 (LBBB), 116 (N), 123 (N), 201 (N), 221 (N) and 231 (RBBB). The
dataset for the analysis not only consists of records with normal beats only but also with
medical conditions such as paced beat, LBBB beat and RBBB beat as well.

Similarly, various ECG records were obtained from PTB diagnostic ECG database
available online [50]. The PTB prototype recorder was used to collect the ECGs for this
database, which has 549 records from 290 people and is broadly divided into nine groups,
(i) Myocardial Infarction (ii) Cardiomyopathies (iii) Bundle Branch Blocks (iv) Dysrhythmias
(v) Myocardial Hypertrophy (vi) Valvular Heart Disease (vii) Myocarditis (viii) Other
Conditions and (ix) Healthy Controls. Seven records were chosen from the directory based
on different clinical conditions as s0010 (i), s0200 (ii), s03221 (ix), s03641 (iii), s03651 (vi),
s03381 (iv) and s03901 (v) [51].

Furthermore, the baseline wander noise has been retrieved from the MIT-BIH Noise
Stress Test Database available online at [52].

4. Proposed ECG Denoising Process

We exploit the fast and efficient decomposition capabilities of the lifting method-based
discrete wavelet transform along with the adaptive decomposition ability of IF to remove
50/60 Hz power-line interference and low frequency baseline wander from noisy ECG
signals. We construct a noisy signal by adding a combination of the two noises at different
SNR values to a clean, unadulterated ECG signal in MATLAB software. We have made use
of Wavelet and DSP toolboxes present in MATLAB R2016a on a PC with Intel 2.4 GHz core
i5 running on 64-bit Windows 10 operating system.

The block diagram of the proposed procedure for denoising is shown in Figure 3.
Initially, a complete ensemble empirical mode decomposition-based R-peak detection

method, as presented in [53], is applied to accurately locate all the fiducial points in the
noisy signal. The selected detection method succeeds in providing a sensitivity of 99.96%,
positive prediction value of 99.9% and 0.13% error. Once the fiducial points are located,
the noisy signal is fed to an IF system to be decomposed into a band of IMFs along with a
residue signal. The band of IMFs operates as a dyadic filter bank consisting of overlapping
band-pass filters, with the first IMF being a high-frequency component, while the last
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one being a low-frequency component. The high frequency PLI noise is assumed to be
distributed over the first few IMFs, while the low frequency baseline wander is supposed to
remain confined over the last few IMFs. The number of such IMFs that contribute to noise
are termed as noise order. The number of IMFs containing the PLI noise is represented
by p while as the number of IMFs constituting the baseline wander is represented by q.
The values of the noise order can be calculated by running a statistical t-test based on the
zero-averaging property of the individual IMFs. However, instead of running the statistical
t-test, the number of such IMFs is selected by visual scrutiny of the IMFs or a hit and trial
method. Figure 4 draws a comparison between the choices of different noise orders in terms
of percentage root mean square deviation (PRD) for recording number 100 in presence of
50 Hz PLI and baseline wander. It is evident that the PRD carries smallest value when p = 1
(with q = b − 3), where b is the number of IMFs generated by IF. The IMFs contributing to
PLI noise are added to form the first sub-signal, while the second sub-signal is constructed
by combining the IMFs containing baseline wander.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 3. Block diagram of the proposed denoising process. 

Initially, a complete ensemble empirical mode decomposition-based R-peak 
detection method, as presented in [53], is applied to accurately locate all the fiducial points 
in the noisy signal. The selected detection method succeeds in providing a sensitivity of 
99.96%, positive prediction value of 99.9% and 0.13% error. Once the fiducial points are 
located, the noisy signal is fed to an IF system to be decomposed into a band of IMFs along 
with a residue signal. The band of IMFs operates as a dyadic filter bank consisting of 
overlapping band-pass filters, with the first IMF being a high-frequency component, while 
the last one being a low-frequency component. The high frequency PLI noise is assumed 
to be distributed over the first few IMFs, while the low frequency baseline wander is 
supposed to remain confined over the last few IMFs. The number of such IMFs that 
contribute to noise are termed as noise order. The number of IMFs containing the PLI 
noise is represented by p while as the number of IMFs constituting the baseline wander is 
represented by q. The values of the noise order can be calculated by running a statistical 
t-test based on the zero-averaging property of the individual IMFs. However, instead of 
running the statistical t-test, the number of such IMFs is selected by visual scrutiny of the 
IMFs or a hit and trial method. Figure 4 draws a comparison between the choices of 
different noise orders in terms of percentage root mean square deviation (PRD) for 
recording number 100 in presence of 50 Hz PLI and baseline wander. It is evident that the 
PRD carries smallest value when p = 1 (with q = b − 3), where b is the number of IMFs 
generated by IF. The IMFs contributing to PLI noise are added to form the first sub-signal, 
while the second sub-signal is constructed by combining the IMFs containing baseline 
wander.  

Figure 3. Block diagram of the proposed denoising process.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 4. Performance comparison for noise order for record 100. 

Moreover, a Tukey window-based method is used to preserve the QRS complex from 
the first three IMFs based on the pre-determined positions of the zero crossings on two 
sides of the R-peaks adjacent to the Q and S peaks. The noisy IMFs are independently fed 
to an LWT system that decomposes the sub-signals into a band of approximation and 
detail coefficients at a given level of decomposition. A sym4 wavelet was used since it 
produces smaller PRD values than sym8, as is evident from Figure 5. Furthermore, due to 
its nearly symmetric nature and a smaller number of vanishing moments, its use has been 
preferred over the Daubechies wavelet.  

 
Figure 5. Performance comparison between various types of wavelets used for record 100. 

By applying a multi-level decomposition on the two sub-signals, the data are split 
into the approximation and the detail coefficients. The level of wavelet decomposition has 
a considerable effect on the evaluation process. The higher the level to which data is 
decomposed, the better the results fetched by the thresholding method. A level 3 
decomposition is carried out on the first sub-signal, while a 2-level decomposition is 
adopted for the second sub-signal. These values are selected so as to ascertain the minimal 
computational complexity whilst obtaining good improvement results. This 
decomposition level has been experimentally verified to generate relatively better results 
than the lower levels of decomposition. Table 3 compares the computational complexity 

Figure 4. Performance comparison for noise order for record 100.



Electronics 2023, 12, 387 10 of 22

Moreover, a Tukey window-based method is used to preserve the QRS complex from
the first three IMFs based on the pre-determined positions of the zero crossings on two
sides of the R-peaks adjacent to the Q and S peaks. The noisy IMFs are independently fed
to an LWT system that decomposes the sub-signals into a band of approximation and detail
coefficients at a given level of decomposition. A sym4 wavelet was used since it produces
smaller PRD values than sym8, as is evident from Figure 5. Furthermore, due to its nearly
symmetric nature and a smaller number of vanishing moments, its use has been preferred
over the Daubechies wavelet.
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By applying a multi-level decomposition on the two sub-signals, the data are split
into the approximation and the detail coefficients. The level of wavelet decomposition
has a considerable effect on the evaluation process. The higher the level to which data
is decomposed, the better the results fetched by the thresholding method. A level 3
decomposition is carried out on the first sub-signal, while a 2-level decomposition is
adopted for the second sub-signal. These values are selected so as to ascertain the minimal
computational complexity whilst obtaining good improvement results. This decomposition
level has been experimentally verified to generate relatively better results than the lower
levels of decomposition. Table 3 compares the computational complexity for various levels
of wavelet decomposition in terms of execution time (T) in the units of second along
with the SNR improvement produced. Here, (a,b) represents the number pair indicating
decomposition levels selected for PLI and baseline removal, respectively.

Table 3. Comparison between various wavelet decomposition levels in terms of execution time (T)
and the corresponding SNR improvements generated at various input SNR values.

−5 dB 0 dB 5 dB

(a,b) T (s) SNR (dB) T (s) SNR (dB) T (s) SNR (dB)

(1,1) 0.007809 3.13124 0.007503 3.0896 0.007376 2.6055

(1,2) 0.009387 3.3119 0.009838 3.0891 0.009979 2.6053

(2,1) 0.009511 8.1494 0.009488 7.5454 0.01029 6.4635

(2,2) 0.0111 8.1476 0.01109 7.5442 0.01056 6.4631

(3,2) 0.0127 19.78 0.012804 14.8382 0.01105 10.7725
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A universal thresholding scheme utilizing a hard thresholding program is then used
on the wavelet coefficients because it generates relatively better results in comparison to
other adaptive thresholding methods. The hard thresholding scheme is preferentially used
over the soft or semi-soft thresholding since it provides smoother and better results by
avoiding the discontinuities around the boundaries (see Figure 6).
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Once the threshold is applied on the coefficients from the first sub-signal by assigning
the noisy coefficients a zero value while as keeping the signal coefficients unaltered, the
inverse LWT reconstructs the sub-signal back to its original state. Similarly, the processed
coefficients of the second sub-signal are rebuilt using the inverse LWT, and, by subtracting
it from the input sub-signal, the baseline-wander-free signal is constructed. The processed
noise-free sub-signals and the unprocessed IMFs are finally combined to build a clean ECG
signal. It is the place to mention that any attenuation produced in R peaks during the
process may result in the loss of vital medical information. Hence, an R-peak correction
method based on the algorithm presented in [27] is utilized. According to the algorithm, the
data elements around each of the located R-peaks present in the denoised signal obtained
after filtering it using wavelet thresholding are replaced by the corresponding elements of
the noisy signal. It helps in the improvement of SNR values since most of the energy of the
ECG signal is contained in the QRS complex.

5. Results and Discussion
5.1. Qualitative Analysis

A combination of a synthetic 50/60 Hz PLI noise and the baseline is supplemented
to an ECG signal at various input SNR values of −10 dB, −5 dB, 0 dB, 5 dB and 10 dB
in MATLAB R2016a software. A normal ECG signal mainly consists of a P-wave, a QRS
complex and a T-wave. The P-wave epitomizes atrial depolarization, the QRS complex
indicates ventricular depolarization, while the T-wave is the indication of ventricular
repolarization. The presence or absence of any of these waves indicates an underlying
cardiological problem. Hence, it becomes imperative that each portion of the ECG signal
remains preserved along with its voltage as well as the time axis, otherwise the accurate
clinical information may not be inferred, thereby leading to wrong assessments. Figure 7
shows the clean ECG wave from MIT-BIH database, the noisy wave and the denoised wave
for recording 102 at an input SNR of 0 dB with 50 Hz PLI noise and baseline wander.
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baseline wander at SNR 0 dB (c) Denoised output signal using IF-LWT method.

Through visual inspection of Figure 7, it can be seen that the morphological charac-
teristics such as P wave, S wave, as well as the morphology of the QRS complex and its
amplitude are well preserved. Likewise, the shapes of the various ECG beats present in
different recordings have been preserved. The possibility of R-peak attenuation is overcome
by the R-peak correction method applied using the information of their location using a
proper method. The visual inspection of the waveforms depicts that the presented methods
have been successful in judiciously eradicating the noise to a large extent.

The proposed denoising method is able to de-noise the ECG signals with certain
cardiac conditions as well. Figure 8 compares the clean ECG record no. 119 affected by
premature ventricular contraction (PVC), its noisy form and the final denoised signal.
Again, we infer from the visual inspection of the signals that the method has successfully
preserved the important features of the signals.
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5.2. Quantitative Analysis

For the quantitative analysis of the data, 20 sections of signals with time span of 10-sec
of lead I at a sampling rate of 360 are utilized. The PLI artefact with fundamental harmonics
of 50/60 Hz and baseline wander are added to the clean ECG signals at −10 dB, −5 dB,
0 dB, 5 dB and 10 dB input SNR values, to ascertain that the analysis is performed over a
broad range of noise power. The fundamental harmonics of PLI are generated using the
sinusoidal signal A(t) = A0 sin(2π f × t), where f is the frequency of PLI, and A0 is chosen
to have a value of unity. The equation has been used to generate both 50 Hz as well as
60 Hz noise signals. The baseline wander noise signal has been obtained from the noise
stress test database, which is available online at [44]. Both noises have been properly scaled
corresponding to the required input SNR before adding them to the unblemished ECG
signal. The effectiveness of the method has initially been verified individually for both
the 50/60 Hz PLI and the baseline wander. The quantitative performance of the proposed
denoising method has been evaluated primarily in terms of improvement in the signal-to-
noise ratio, cross-correlation coefficients and percent root mean squared difference.

The improvement in SNR of the denoised ECG signal is calculated as:

SNRimp = 10log10
∑N

n=1(z(n)− x(n))2

∑N
n=1(y(n)− x(n))2 (15)

Additionally, the cross-correlation between the two signals is given by:

ρ =
∑N

n=1 x(n)y(n)√
∑N

n=1|x(n)|
2 ∑N

n=1|y(n)|
2

(16)

Similarly, the PRD is calculated as:

PRD =

√√√√∑N
n=1(x(n)− y(n))2

∑N
n=1(x(n))2 × 100 (17)

where x(n) is the clean input signal, z(n) is the noisy signal, and y(n) is the output
denoised signal.

Table 4 enumerates the improvements in SNR, cross-correlation coefficient ρ and PRD
values between the denoised output signals and the clean input signals against each of the
records at various input SNR values when evaluated in presence of 50 Hz PLI noise, while
Table 5 records the corresponding values when evaluated in presence of 60 Hz noise. The
data is highly suggestive that the proposed method improves the SNR values substantially
while producing an excellent correlation between the input and the denoised output signal
at all levels of input noise. In the case of 50 Hz PLI, the proposed method provides average
SNR improvement values of 12.93 dB, 17.43 dB and 21.62 dB at 5 dB, 0 dB, and −5 dB
input SNR, respectively. The cross-correlation values are improved by an average of 0.9904,
0.9886 and 0.9868 at the respective input noise levels. Moreover, the average PRD values
are 15.03, 16.68 and 17.33, respectively. Similarly, the data recorded in Table 3 reveals the
efficiency of the proposed method when used to remove 60 Hz PLI noise.

Similarly, the average parameter values when the signal is processed for low-frequency
baseline wander noise are given in Table 6. Again, the data reveal that the results are
excellent at all levels of input noise. The average values of SNR improvement at 5 dB, 0 dB
and −5 dB input noise levels are 11.42 dB, 12.11 dB and 13.15 dB, respectively. Similarly,
the average cross-correlation values are 0.9729, 0.9404 and 0.8769, while the corresponding
PRD values are 25.79, 42.67 and 69.93.

The performance comparison of the proposed method with EVD and NSLMS in
eliminating 50 Hz PLI from a few ECG records has been drawn in Figure 9.
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Table 4. Improvement in SNR, cross-correlation and PRD values between the denoised signal and the
clean input signal in presence of 50 Hz PLI at various input SNR value.

5 dB 0 dB −5 dB

Record
No. SNRi ρ PRD (%) SNRi ρ PRD (%) SNRi ρ PRD (%)

100 11.25 0.9869 16.75 15.25 0.9834 18.71 18.88 0.9771 20.48

102 11.64 0.9877 19.92 16.98 0.9887 20.66 21.17 0.9864 20.72

103 12.07 0.9896 10.83 16.73 0.9887 12.58 22.36 0.9899 15.01

105 17.77 0.9970 11.83 22.41 0.9968 15.81 25.20 0.9946 16.19

109 13.43 0.9919 15.71 18.04 0.9911 19.31 21.90 0.9887 19.68

116 12.44 0.9904 15.29 16.11 0.9866 17.81 20.45 0.9843 18.37

123 13.11 0.9925 15.53 16.24 0.9885 17.95 19.29 0.9875 19.02

201 13.95 0.9929 15.34 18.67 0.9924 18.15 22.81 0.9907 18.57

221 12.82 0.9908 17.85 17.50 0.9899 19.62 21.17 0.9863 20.50

231 13.66 0.9924 14.93 18.14 0.9913 15.96 21.14 0.9862 15.79

S0010 8.55 0.9748 22.28 13.45 0.9743 22.53 18.33 0.9735 22.84

S0200 18.10 0.9972 7.41 20.58 0.9951 9.91 25.06 0.9944 10.53

S0322 15.59 0.9950 9.90 18.90 0.9927 12.03 23.54 0.9921 12.54

S0364 14.43 0.9935 11.31 18.08 0.9912 13.22 22.79 0.9906 13.66

S0365 13.65 0.9923 12.38 16.45 0.9873 15.94 21.19 0.9865 16.44

S0338 8.80 0.9763 21.63 13.76 0.9760 21.74 18.65 0.9755 22.01

S0390 8.63 0.9962 16.78 19.08 0.9932 11.78 23.72 0.9925 12.28

Table 5. Improvement in SNR, cross-correlation and PRD values between the denoised signal and the
clean input signal in presence of 60 Hz PLI at various input SNR value.

5 dB 0 dB −5 dB

Record
No. SNRi ρ PRD (%) SNRi ρ PRD (%) SNRi ρ PRD (%)

100 13.42 0.9919 15.54 18.29 0.9917 16.71 22.98 0.9911 17.26

102 13.43 0.9919 17.49 18.42 0.9919 17.55 22.53 0.9900 17.57

103 15.33 0.9949 10.42 20.20 0.9948 11.30 25.56 0.9952 12.62

105 19.51 0.9980 8.90 24.15 0.9978 11.58 27.51 0.9968 12.13

109 14.73 0.9940 13.80 19.60 0.9938 16.18 23.42 0.9919 16.56

116 14.58 0.9938 13.33 17.46 0.9902 14.86 22.89 0.9912 16.14

123 15.85 0.9954 13.64 20.76 0.9953 15.04 23.80 0.9926 15.91

201 16.33 0.9959 13.08 20.81 0.9954 14.99 24.89 0.9943 15.08

221 14.75 0.9941 14.76 19.28 0.9934 16.54 23.43 0.9919 17.11

231 15.56 0.9950 12.18 19.79 0.9941 11.81 25.19 0.9946 11.79

S0010 9.11 0.9779 20.88 14.06 0.9777 21.00 18.94 0.9771 21.29

S0200 18.07 0.9972 7.44 22.74 0.9970 7.73 26.87 0.9963 8.548

S0322 15.88 0.9953 9.58 19.84 0.9941 10.79 24.39 0.9935 11.37

S0364 14.54 0.9937 11.17 19.42 0.9935 11.33 24.04 0.9929 11.84

S0365 13.89 0.9928 12.04 17.76 0.9906 13.72 22.41 0.9898 14.28

S0338 9.82 0.9813 19.21 14.78 0.9811 19.32 19.63 0.9805 19.66

S0390 18.51 0.9975 7.08 21.23 0.9958 9.20 25.64 0.9952 9.849
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Table 6. Improvement in SNR, cross-correlation and PRD values between the denoised signal and the
clean input signal in presence of baseline wander at various input SNR value.

5 dB 0 dB −5 dB

Record
No. SNRi ρ PRD (%) SNRi ρ PRD (%) SNRi ρ PRD (%)

100 13.94 0.9926 21.29 14.45 0.9796 37.42 14.72 0.9422 67.60

102 14.03 0.9928 20.94 14.47 0.9799 39.55 13.31 0.9238 67.71

103 15.99 0.9955 20.15 17.82 0.9907 35.20 18.50 0.9758 62.38

105 12.60 0.9899 21.20 16.10 0.9858 36.39 18.034 0.9717 66.78

109 9.74 0.9811 23.27 16.74 0.9878 37.75 17.72 0.9703 66.76

116 15.88 0.9953 21.39 17.93 0.9908 36.41 18.83 0.9769 63.36

123 10.69 0.9844 24.24 14.32 0.9787 38.34 16.68 0.9619 64.43

201 13.16 0.9913 21.97 16.42 0.9870 37.21 18.02 0.9723 69.76

221 13.93 0.9926 22.29 16.23 0.9862 40.12 17.63 0.9690 69.52

231 14.55 0.9926 21.23 14.07 0.9796 39.89 13.60 0.9422 63.87

S0010 9.152 0.9546 29.81 5.21 0.8111 58.84 7.83 0.7112 77.32

S0200 7.24 0.9411 34.07 6.65 0.8704 49.84 8.41 0.7615 72.34

S0322 8.02 0.9746 22.93 7.30 0.8927 46.21 8.43 0.8080 72.23

S0364 8.73 0.9268 38.11 6.20 0.8785 52.45 7.89 0.7828 76.86

S0365 9.41 0.9693 24.60 7.98 0.9063 42.78 8.16 0.7963 74.45

S0338 7.81 0.8899 48.74 5.52 0.8574 56.70 6.94 0.6390 85.67

S0390 9.40 0.9758 22.20 8.49 0.9256 40.30 8.97 0.8024 67.86

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 9. Comparison of the proposed method with EVD and NSLMS methods in eliminating 50 
Hz PLI in terms of the improvements in the SNR values at 0 dB input SNR. 

Similarly, the improvements in SNR provided by the proposed method in presence 
of baseline wander have been compared with those provided by EVD and EMD-EWT [54] 
methods in Figure 10. 

 
Figure 10. Comparison of the proposed method with EVD and NSLMS methods in eliminating 
baseline wander in terms of the improvements in the SNR values at 0 dB input SNR. 

The comparison drawn in Figures 9 and 10 reveals that the proposed method 
generates better signal quality in comparison to some of the state-of-the-art methods.  

The proposed method fetches excellent results when implemented to remove both 
PLI as well as baseline wander simultaneously. Figures 11–13 collect the average 
improvements in SNR values, cross-correlation coefficients and PRD values. Moreover, 
the results are compared with various other methods for each record at different input 
SNR values in presence of 50 Hz PLI along with baseline wander [5–7,54].  

Figure 9. Comparison of the proposed method with EVD and NSLMS methods in eliminating 50 Hz
PLI in terms of the improvements in the SNR values at 0 dB input SNR.

Similarly, the improvements in SNR provided by the proposed method in presence of
baseline wander have been compared with those provided by EVD and EMD-EWT [54]
methods in Figure 10.
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Figure 10. Comparison of the proposed method with EVD and NSLMS methods in eliminating
baseline wander in terms of the improvements in the SNR values at 0 dB input SNR.

The comparison drawn in Figures 9 and 10 reveals that the proposed method generates
better signal quality in comparison to some of the state-of-the-art methods.

The proposed method fetches excellent results when implemented to remove both PLI
as well as baseline wander simultaneously. Figures 11–13 collect the average improvements
in SNR values, cross-correlation coefficients and PRD values. Moreover, the results are
compared with various other methods for each record at different input SNR values in
presence of 50 Hz PLI along with baseline wander [5–7,54].
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Figure 13. Comparison between the proposed method and various other methods in terms of average
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baseline wander.

In Figures 14–16, a similar comparison has been drawn between the proposed
method and other various methods when implemented to remove 60 Hz PLI along with
baseline wander.
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Figure 15. Comparison between the proposed method and various other methods in terms of average
cross-correlation values between the clean input and denoised output signals in presence of 60 Hz
PLI and baseline wander.

At −10 dB input SNR, the mean values of SNRimp, cross-correlation and PRD gener-
ated by the proposed method are 23.28 dB, 0.9456 and 72.9%, while at 10 dB input SNR
these values are 10.47 dB, 0.9888 and 21.55 %, respectively. These values are better than the
results from the other four methods used in comparison. Similarly, the proposed method



Electronics 2023, 12, 387 19 of 22

improves the SNR by a significant amount of 21.41 dB in presence of 60 Hz PLI and baseline
wander at −10 dB input SNR. The corresponding cross-correlation and PRD values are
0.9258 and 70.12 %, respectively. At higher input SNR value of 10 dB, the equivalent
value produced are 10.25 dB, 0.9894 and 17.22%, respectively. The remaining four methods
produce lower values of SNRimp and cross-correlation and higher values of PRD, thereby
indicating the superiority of the proposed method over them.
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6. Conclusions

In this paper, the performance of an adaptive data-driven iterative filtering for denois-
ing an ECG signal has been demonstrated. The IF method has been used to decompose an
ECG signal into a band of IMFs in presence of narrowband PLI with frequency 50 Hz or
60 Hz in combination with the wideband low-frequency baseline wander. The denoising
has been performed by discarding those IMFs that contribute to noise and then recon-
structing the signal from the remaining IMFs. An optimized value for the noise order
representing the number of IMFs contributing to noise has been selected. Similarly, the
QRS complex has been preserved using a Tukey window-based method. Furthermore,
the denoising has been carried out by applying a universal hard threshold on the wavelet
coefficients of the noise-affected IMFs using discrete wavelet transform based on the lifting
scheme. An R-peak location detection method has been used to apply a window function
for the correct preservation of the QRS complex when convolved with the signal com-
ponents. Finally, R-peak correction method has been applied to undo any attenuation
caused in the peak value of QRS complex. The efficiency of the presented method has been
validated primarily in terms of the improvements in SNR, cross-correlation coefficients and
PRD value between the clean input and the output signal. The numerical values are better
in comparison to the results fetched by other considered methods such as EMD-LWT, EVD,
MRLS-HVD and EMD-WT-LPF. The signal extension method based on periodization en-
sures better edge preservation in comparison to the default symmetric method. Moreover,
the proper mathematical theory behind the proposed IF method and the lesser number
of IMFs generated makes it a better choice for signal decomposition in comparison to the
classical EMD method. The presented IF-based method can be modified by using adaptive
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mask length-based IF, so as to be able to decompose the non-linear and non-stationary data
efficiently. Moreover, instead of using a wavelet method for noise removal, other reliable
data adaptive schemes such as EWT or FBSE-EWT methods can be availed. These methods
can further be used to remove other types of noises such as muscle artefact and electrode
motion artefact as well.
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