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Abstract: This work suggests an enhanced natural environment animal detection algorithm based on
YOLOv5s to address the issues of low detection accuracy and sluggish detection speed when automat-
ically detecting and classifying large animals in natural environments. To increase the detection speed
of the model, the algorithm first enhances the SPP by switching the parallel connection of the original
maximum pooling layer for a series connection. It then expands the model’s receptive field using
the dataset from this paper to enhance the feature fusion network by stacking the feature pyramid
network structure as a whole; secondly, it introduces the GSConv module, which combines standard
convolution, depth-separable convolution, and hybrid channels to reduce network parameters and
computation, making the model lightweight and easier to deploy to endpoints. At the same time, GS
bottleneck is used to replace the Bottleneck module in C3, which divides the input feature map into
two channels and assigns different weights to them. The two channels are combined and connected
in accordance with the number of channels, which enhances the model’s ability to express non-linear
functions and resolves the gradient disappearance issue. Wildlife images are obtained from the
OpenImages public dataset and real-life shots. The experimental results show that the improved
YOLOv5s algorithm proposed in this paper reduces the computational effort of the model compared
to the original algorithm, while also providing an improvement in both detection accuracy and speed,
and it can be well applied to the real-time detection of animals in natural environments.

Keywords: animal recognition; feature fusion networks; YOLOv5s; segmentation gradient flow; GSConv

1. Introduction

Target identification and recognition of animals have grown in importance as computer
vision technology has progressed. However, conventional approaches to these problems
currently do not produce satisfying outcomes, and deep learning has emerged as a break-
through technology in this area. In recent centuries, the expansion of human society into
the natural environment for development has resulted in the loss of wildlife habitats, and
the environment has been severely damaged by the advent of the industrial age and rapid
population growth. Some fauna have already become extinct as a result of these. Therefore, a
novel method for wildlife conservation and ecological study is provided by the application of
target detection algorithms in deep learning to detect and identify animals [1].

Convolutional neural networks (CNN) are a class of feedforward neural networks
(FNN) with convolutional computation and a deep structure, which is one of the represen-
tative algorithms of deep learning [2]. With the development of artificial intelligence and
deep learning, the application of convolutional neural networks to wildlife detection and
identification is of great significance for wildlife conservation as it extracts surrounding
target features in real time. Among the algorithms for target feature extraction, the faster
region-based convolutional neural network (Faster R-CNN) algorithm [3], single shot multi-
box detector (SSD) algorithm [4,5], and the you only look once (YOLO) algorithm [6–8]
have successfully applied deep learning to target extraction and target detection; the YOLO
algorithm is trained and detected in a separate network, and regression and classification
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are performed directly on the whole graph in the CNN, so its performance is improved com-
pared to the Faster R-CNN algorithm and the SSD algorithm, but its recognition accuracy
for small or distant targets is poor [9,10].

In 2020, YOLOv5 was proposed, and its basic structure was divided into the Backbone,
Neck, and Head. YOLOv5s is a subset of YOLOv5, and numerous researchers have made
great strides in fusing the target detection algorithm with real-world uses. Jiale Yao et al.
solved the recognition of vehicle targets in bad weather by increasing the number of model
parameters, merging Transformer and CBAM into the YOLOv5 algorithm, and optimizing
the parameters of the Backbone of YOLOv5 algorithm, using the loss function of EIOU
instead of the original loss function of CIOU, which is beneficial for the recognition of
vehicles [11]. Hao Wang and Shixin Sun et al. created a reinforcement-learning-based
system for improving underwater images, which is comparable to target recognition in
bad weather. YOLOv5 is a lightweight, quick, and accurate object detection method for
underwater environments according to preliminary testing findings. They used a Markov
decision process (MDP) to describe the improvement of underwater images. The MDP
can represent a variety of improved outcomes for underwater photographs after being
trained with reinforcement learning. Their reinforcement learning architecture provided a
series of actual actions that are transparent from an implementation standpoint, in contrast
to the black-box processing approach of deep learning methods. The outcomes of the
experiments supported the framework for reinforcement learning’s efficacy in improving
underwater image quality [12,13]. This has similarities to the identification of animals in
different environments which follows in this paper.

Weimin Liu et al. used coordinate attention to improve YOLOv5 to reduce the loss
of feature information and reduced its size by the lightweight method ShuffleNetV2 [14].
Fenghua Wang et al. used Ghostconv to replace the convolutional layer in YOLOv5s
CSP to improve the detection speed by lightweight network structure and then, as in the
above paper, introduced the BiFPN module to improve the PANet structure of the Neck
to improve the detection accuracy of Xiaomila green pepper in surroundings similar to
the target [15]. In the meantime, other researchers have made progress by fusing target
detection algorithms with animal recognition applications. Ramakant Chandrakar et al.
presented a system for automatic detection and recognition of animals using deep CNN
with genetic segmentation for animal detection [16]. For image fusion, S. Divya Meena et al.
proposed a dual-scale image decomposition-based fusion technique (DDF) that fuses visible
and thermal images and introduced a seed-labels-focused object detector (SLOD) [17].

The proposed networks were applied to edge devices; in addition to YOLOv5s, Jiadong
Chen et al. proposed convolution kernel first (CKF), an efficient scheme for designing
memristor-based fully convolutional neural networks (FCNs). The parameters and circuit
power consumption of the edge device are both reduced by CKF. The test set maintains
high accuracy while lowering power loss, as shown by the simulation results of real
medical image segmentation tasks [18]. Bo Lyu et al. proposed the deployment of spectral
graph convolutional networks (GCNs) on memristive crossbars. They also provided an
accelerated technique that combines diagonal block matrix multiplication with sparse
Laplace matrix reordering. The results showed that the method was effective when used in
the supervised learning graph dataset (QM7) and unsupervised learning dataset (karate
club). The outcomes showed that the model maintained a high level of accuracy and
achieved a memristor number reduction, which is crucial for future network deployment
on edge devices [19]. Subeen Lee et al. introduced the task discrepancy maximization
(TDM) module. The support attention module (SAM) and query attention module (QAM)
are two novel components that TDM uses to learn task-specific channel weights [20]. Heng
Li et al. introduced a gated recurrent unit to improve the result by tracing the temporal
information of the cost graph [21]. To address the issue of gradient disappearance, we also
present the attention mechanism module in this article while adjusting the weights on each
channel and using a normalization unit to combine the number of channels in the model.
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However, the use of target detection algorithms to find animals in natural settings
is not widely accepted in all respects, and recognition accuracy and speed need to be
increased [22]. To improve the accuracy and speed of YOLOv5s in wildlife recognition,
this paper replaces the SPP module in the Backbone with the SPPF module to improve
the detection speed of the model and adjusts the feature pyramid network structure in
the Backbone to enhance the ability of target feature extraction for large sample animals
by expanding the sensory field of the model. Secondly, the Conv module in the Head is
replaced with the GSConv module to reduce the number of parameters in the model and
to enhance the network feature extraction capability. Finally, the VoVGSCSP module is
introduced to divide the input feature map into two channels, which enhances the non-
linear representation of the model and solves the problem of gradient disappearance. The
testing findings demonstrate that the model can more effectively recognize wildlife in
natural settings, has a compact footprint, is simple to deploy on mobile terminals, and has
a high detection accuracy.

2. YOLOv5 Algorithm
2.1. YOLOv5 Network Architecture

YOLOv5, proposed by Jocher in 2020, can be divided into four models, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, according to increasing network size [23]. The four
models differ in the depth and width of the network, and the rest of them are the same.

The network structure of YOLOv5 is shown in Figure 1. YOLOv5 mainly consists
of four parts: the Input, Backbone, Neck, and Prediction [24,25]. Input is responsible for
pre-processing the input images to meet the training requirements. The Backbone, which
includes Focus, CBL, CSP, and SPP [26], is the backbone network responsible for providing
image feature information. The Neck is the structural layer containing the fused features of
the images and passes the feature information to Prediction. Prediction is responsible for
providing prediction frames based on the feature information and filtering the detection
frames by non-maximal value suppression.
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Figure 1. YOLOv5 network structure.

YOLOv5 uses Mosaic data to enrich the dataset at the input side. Four photographs
are randomly selected, then they are combined using a random scale and aligning tech-
nique. Then, it performs adaptive anchor frame computation to preprocess the images and
adaptive scaling to address the black edge problem, which enhances the model’s training
efficiency and network robustness [27,28]. The Backbone uses a Focus structure for slicing
downsampling, which reduces the information entropy brought by convolution. Mean-
while, it improves the CSP structure to C3 by applying C3_1_X and C3_2_X to the Backbone
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and Neck, respectively, which enhances the learning ability of the network. Through the
use of spatial pyramid pooling (SPP), which can partially address the issue of multi-scale
target fusion, it extracts the initial features of the images. The PANet structure used in the
Neck consists of a feature pyramid structure of FPN + PAN, with FPN passing top-down
information from the higher levels to the lower levels to form the feature map, and PAN
passing bottom-up location information to downsample and fuse the feature map. The
simultaneous use of both can strengthen the network feature fusion capability, enhance the
model’s detection function for targets of different sizes, and solve the multi-scale problem.
Prediction includes DIoU_NMS and loss function, using CIoU function to calculate the
position loss, which solves the problem wherein GIoU degrades to IoU when two target
frames intersect. The detection frame is filtered by DIoU_NMS, which can effectively solve
the problem of missed detection and improve the accuracy of network prediction [29–33].

2.2. Backbone
2.2.1. CBS

CBS is a composite convolutional module consisting of a convolutional layer, a BN
layer, and an activation function layer, which is an important part of many modules. The
BN layer mainly normalizes the data and facilitates fast convergence to accelerate the
network. The activation function layer uses SiLU as the new activation function, which is
essentially a weighted linear combination of the sigmoid. The SiLU function is continuous
and smooth. On deeper models, where it can increase the non-linearity of the model and
boost detection precision, it performs better than the original activation function LeakyRelu.
The expressions are as follows:

SiLU(x) = x·sigmoid(x) (1)

sigmoid(x) =
1

1 + e−x (2)

2.2.2. C3

C3 is composed of two nested residual modules. The model is simplified, and the
number of convolution modules is decreased with this structure without impacting the
feature information. Depending on the application location, C3 can be divided into C3_1_X
and C3_2_X. C3_1_X is used in the Backbone convolutional neural network part, which
contains X residual components (Resunit); the larger the X the deeper the network structure.
C3_2_X, on the other hand, is applied to the Neck and contains 2X residual components, the
structure of which differs from C3_1_X only in terms of the number of residual components.
Increasing the number of Resunit can increase the gradient value of backpropagation be-
tween different layers and prevent the gradient degradation problem caused by the deeper
structure of the network. Moreover, the model’s ability to extract and fuse network features
is enhanced. Therefore, along with increasing the network’s capacity for learning and
lowering its computational and parameter requirements, C3 also increases the network’s
precision in target detection.

2.2.3. SPP

SPP transforms the input feature map of arbitrary dimension into a fixed dimensional
feature vector to ensure the same feature dimension as the fully connected layer. SPP
first halves the number of channels by the composite convolution module (CBS), then
downsamples it using three maximum poolings of 5 × 5, 9 × 9, and 13 × 13, respectively,
and, finally, outputs; thus the output of the convolutional layer retains local features
at different scales. The SPP has a skip connection before downsampling, and the three
pooling results are overlaid with the image’s initial features through the Concat feature
connection. This allows the local features to be fused with the global features of the original
convolutional layer output, providing good feature extraction capability. Furthermore, the
number of channels after feature stacking becomes twice as many as the original, which
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increases the number of channels to a larger extent at a smaller cost and improves the field
of perception.

2.3. Prediction
DIoU-NMS

NMS is the post-processing of the detection results. It obtains the final detection results
by removing the redundant and useless frames for each object. However, NMS tends to
filter frames solely based on IoU, which might cause issues when the intersection of frames
for various objects is empty.

In YOLOv5, the frames are filtered using DIoU_NMS. Only the frames with the highest
scores remain after the NMS filtering because the IoU values are often higher when objects
are very close to one another. The DIoU_NMS adds the distance between the midpoints of
the frames as an indicator, which effectively solves the problem of missed detections. The
calculations are as follows:

si =

{
si, IoU − RDIoU(M, Bi) < ε
0, IoU − RDIoU(M, Bi) ≥ ε

(3)

RDIoU =
ρ2(b, bgt)

c2 (4)

where A is the prediction frame, B is the true frame, and C is the minimum convex set of A
and B. Where si is the score for the different categories, ε is the threshold set in the NMS;
ρ2(b, bgt) is the Euclidean distance between the centroids of A and B; c is the maximum
distance of C; i is the number of anchor frames in each grid [34–36].

3. The Improved YOLOv5s Algorithm in This Paper
3.1. SPP Improvements

In this paper, SPPF is improved on SPP, and experiments show that SPPF can achieve
the same computational results as SPP, but SPPF is almost twice as fast [37]. As shown in
Figure 2, SPPF first halves the number of channels in the feature map using the composite
convolution module (CBS) and then downsamples it through the maximum pooling layer,
which uses three maximum poolings of size 5 × 5 in series instead of the three maximum
poolings in parallel in SPP to further fuse the image features. It also superimposes the three
pooling results with the initial features of the picture to fuse the local features with the
global features, changing the number of channels to twice the original at a smaller cost,
which improves the receptive field and can solve the problem of multi-scale target fusion to
a certain extent. SPPF can convert feature maps of arbitrary dimensions into feature vectors
of fixed dimensions and increase the receptive field, which is more efficient than SPP under
the condition of having the same adaptive scaling output results [38].
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3.2. Upgrading of the Feature Pyramid Structure

To enhance the effectiveness of target detection, the receptive field must be expanded
due to the large size of the targets in the dataset used in this study. Most studies tend
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to increase the receptive field by increasing the convolutional layer and increasing the
downsampling ratio [39]. However, in convolutional neural networks, the feature maps
obtained by deep convolution are more semantic, but the location information is lost and the
computational effort is increased. Therefore, in this paper, we increase the downsampling
rate based on the original algorithm [40,41] and stack the feature pyramid network structure
one level up, i.e., the original P3–5 structure is improved to a P4–6 structure. The newly
added P6 detection layer is more suitable for detecting larger targets and can achieve higher
accuracy under higher-resolution training conditions [42].

Due to the small number of downsampling layers of YOLOv5s, the detection effect on
large-sized objects is not ideal. Therefore, we add a 64× downsampling feature fusion layer
P6 in the Backbone, which is output by the backbone network with 64× downsampling and
1024 output channels, generating a feature map of size 10 × 10. The smaller the feature map,
the sparser the newly generated feature map’s segmented grid, the more advanced the
semantic information contained in every grid, and the larger the receptive field obtained,
which is conducive to the recognition of large-sized targets [43]. At the same time, the
original 8× downsampling feature fusion layer is removed, i.e., only P4, P5, and P6 are
used to downsample the image. In this way, the original image is sent to the feature fusion
network after 16×, 32×, and 64× downsampling to obtain 40 × 40, 20 × 20, and 10 × 10
feature maps in the detection layer. Three sizes of feature maps are used to detect targets of
different sizes, and the original feature extraction model is shown in Figure 3.
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As shown in Figure 3, P4, P5, and P6 are three different layers of feature maps,
corresponding to 16, 32, and 64 times downsampling magnification, respectively. Feature
maps P4, P5, and P6 carry out feature fusion through feature pyramids, i.e., fusing the
high-level and low-level feature maps by passing high-level information from top to
bottom and location information from bottom to top, combining the location information
of the low-level network with the semantic information of the high-level network. The
model can be used to enhance the detection function of targets of different sizes and
strengthen the multi-scale prediction capability of the network for targets. P6 has a higher
downsampling multiplier and contains a larger receptive field per pixel, which provides
more sufficient information on large-sized targets during the fusion of feature information
transfer, thus, enhancing the learning capability of the network. The feature map then
enters the detection layer for prediction, which consists of three detection heads and is
responsible for identifying feature points on the feature map and determining whether
there is a target corresponding to it.

We carry out ablation experiments because target detection layers add more parame-
ters. The experimental findings demonstrate that the number of parameters increases only
slightly after the P4–P6 structure is improved due to the addition of only feature layers and
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not a significant number of extra convolutional layers; however, the detection accuracy is
improved. In conclusion, by increasing the downsampling multiplier to obtain a smaller
feature map, the feature map receptive field is larger, which is helpful for fully refining the
image feature information, reducing the information loss, and strengthening the network’s
learning capability, thus, improving the accuracy of target detection and recognition while
decreasing the computational effort.

3.3. GSConv

Although P4–6 are improved, it still introduces a certain number of parameters, which
is not optimal for the creation of lightweight networks even if it leads to significant accuracy
advances. The design of lightweight networks often favors the use of depth-wise separable
convolution (DSC). The greatest advantage of DSC is its efficient computational power,
with approximately one-third of the number of parameters and computational effort of
conventional convolution, but the channel information of the input image is separated
during the calculation. This deficiency leads to a much lower feature extraction and fusion
capability of DSC than even the standard convolution (SC). To make up for this deficiency,
MobileNets first compute channel information independently and then fuse it with a large
number of dense convolutions; ShuffleNets use shuffle to achieve channel information
interaction; GhostNet only inputs half of the number of channels for ordinary convolution
to retain the interaction information. Many lightweight networks are limited to similar
thinking, but all three approaches use only DSC or SC independently, ignoring the joint
role of DSC and SC and, thus, cannot fundamentally solve the problems of DSC [44].

To make effective use of the computational power of DSC and, at the same time,
make the detection accuracy of DSC reach the standard of SC, this paper proposes a new
hybrid convolutional approach, GSConv, based on research on lightweight networks. The
GSConv module is a combination of SC, DSC, and shuffle, and its structure is shown in
Figure 4. Firstly, a feature map with the input channel number c1 is input, half of the
channel number is divided for deep separable convolution, and the remaining channel is
convolved for normal convolution, after which the two are joined for feature concatenation.
Then, the information generated by SC is infiltrated into the various parts of the information
generated by DSC using shuffle, and the number of output channels in the feature map is
c2. Shuffle is a channel-mixing technique that was first used in ShuffleNets [45]. It enables
channel information interaction by allowing information from the SC to be fully blended
into the DSC output by transferring its feature information on various channels.
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During the convolution process, the spatial information of feature maps is gradually
transferred to the number of channels, i.e., the number of channels increases while the
width and height of the feature map decrease, thus, making the semantic information
stronger and stronger. In contrast, each spatial compression and channel expansion of the
feature map results in a partial loss of semantic information, which affects the accuracy
of target detection. SC retains the hidden connections between each channel to a greater
extent, which can reduce the loss of information to a certain extent, but the time complexity
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is greater; on the contrary, DSC completely cuts off these connections, causing the channel
information of the input image to be completely separated during the calculation process,
that is, the feature map is separable with minimal time complexity. GSConv retains as
many of these connections as possible while keeping the time complexity small, which
reduces information loss and enables faster operation, achieving a degree of unity between
SC and DSC.

The time complexity of the convolution calculation is usually defined by FLOPs, and
the time complexity of SC, DSC, and GSConv is calculated as follows:

TSC ∼ O(WHK1K2C1C2) (5)

TDSC ∼ O(WHK1K2C2) (6)

TGSConv ∼ O(WHK1K2C2(C1 + 1)/2) (7)

where W and H are the width and height of the output feature map, respectively; K1 and
K2 are the size of the convolution kernel; C1 is the number of channels of the input feature
map; C2 is the number of channels of the output feature map.

Applying each of the three convolution patterns to the same image of the dataset in
this paper, the visualization results for SC, DSC, and GSConv are as shown in Figure 5.
Compared to DSC, the feature maps output by GSConv are more similar to those output by
SC, and, in some cases, the detection of the target is even better than SC with the highest
detection accuracy; some of the output colors of DSC are darker, and there is a lack of
detection accuracy.
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Further, the convolutional kernel size of the DSC used in the original GSConv is 5 × 5,
which is replaced with a 7 × 7 sized convolutional kernel to adapt it to the detection of large
targets so we can obtain a larger scale of features and receptive field. This study reduces
the network parameters and computation, minimizing the drawbacks of DSC, reducing
its detrimental effects on the model, and making full use of the effective computational
capacity of DSC to make the model easier to deploy to the endpoints.

3.4. VoVGSCSP

Based on a new hybrid convolutional approach, GSConv, we introduce a GS bottleneck
based on Bottleneck and replace Bottleneck in C3 with GS bottleneck to improve C3.
Bottleneck originally comes from Resnet and is proposed for high-level Resnet networks. It
consists of three SCs with convolutional kernels of sizes 1 × 1, 3 × 3, and 1 × 1, respectively,
where the 1 × 1 convolutional kernel serves to reduce and recover dimensionality, and
the 3 × 3 is the bottleneck layer with smaller input and output dimensions. The special
structure of Bottleneck means that it is easy to change dimensionality and achieve feature
dimensionality reduction, thus, reducing the computational effort [46].

A comparison of the structure of Bottleneck and GS bottleneck is shown in Figure 6.
Compared to Bottleneck, GS bottleneck replaces the two 1 × 1 SCs with GSConv and
adds a new skip connection. The two branches of GS bottleneck, thus, perform separate
convolutions without sharing weights and by splitting the number of channels so that the
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number of channels is propagated via different network paths. The propagated channel
information thus gains greater correlation and discrepancy, which not only ensures the
accuracy of the information but also reduces the computational effort [47].
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In this paper, we use an aggregation method to embed the GS bottleneck in C3 to
replace Bottleneck and design a newly structured VoVGSCSP module. A comparison of the
structure of C3 and VoVGSCSP is shown in Figure 7.
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In VoVGSCSP, the input feature map splits the number of channels into two parts,
the first part first passing through the Conv for convolution, after which the features are
extracted by the stacked GS bottleneck module. The other part is connected as residuals
and passes through only one Conv to convolve. The two parts are fused and connected
according to the number of channels and finally output by Conv convolution. VoVGSCSP
is not only compatible with all the advantages of GSConv but also has all the advantages
that GS bottleneck brings. Thanks to the new skip-connected branch, VoVGSCSP has
a stronger non-linear representation compared to C3, solving the problem of gradient
disappearance. Meanwhile, similar to the segmentation gradient flow strategy of a cross-
stage partial network (CSPNet), VoVGSCSP’s split-channel approach enables rich gradient
combinations, avoiding the repetition of gradient information and improving learning
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ability. Ablation experimental results showed that VoVGSCSP reduces the computational
effort and improves the accuracy of the model [48,49].

Combining the above improvements in the Backbone of YOLOv5s, we replace the
SPP module with the SPPF module to improve the pooling efficiency while adding the
Conv module to achieve 64× downsampling output; in the Head of YOLOv5s, we replace
all the Conv modules with GSConv modules to reduce the number of parameters and
computation brought by the upgrade of the feature pyramid structure. The C3 module
is replaced with VoVGSCSP module, and the features are extracted by the stacked GS
bottleneck for better compatibility with the GSConv module; at the same time, the original
8-fold downsampling feature fusion layer is deleted, and a 64-fold downsampling feature
fusion layer is added to strengthen the learning capability of the network and give full
play to the efficient computational capability of GSConv. The rest of the original modules
of YOLOv5s remain unchanged [25]. Since all the improvements in this paper have good
compatibility for different numbers of residual components and convolutional kernels and
are not affected by the deepening of the network structure, for the YOLOv5m, YOLOv5l,
and YOLOv5x models, which differ only at the network size and depth levels, the same
improvements are also applicable. In this paper, we only take YOLOv5s as an example,
and the improved network structure is shown in Figure 8.
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4. Experiments and Analysis of Results
4.1. Experimental Environment

The software environment for the experiments is Linux Ubuntu 20.04, Pytorch 12.0 as
the deep learning framework, CUDA 11.6, and Python 3.8.

The hardware environment for the experiments is Intel(R) Core (TM) i7-10750H
CPU@2.60 GHz (12 CPUs), ~2.6 GHz, Nvidia Tesla A40, 48 G (From NVIDIA, Santa
Clara, CA, USA).
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4.2. Target Detection Experiments Based on Wildlife Datasets
Experimental Dataset

In the training phase, the image size is redefined in this paper as 640 × 640 to reduce
the computational effort of a single image. The images are randomly cropped, randomly
scaled, and randomly lined up. The dataset is enhanced and enriched by using the Mosaic
data. The experimental weight decay is set to 0.0005, the learning rate to 0.015, and the
number of iterations to 600. The wildlife dataset used for the experiments is sourced from
the OpenImages public dataset, which covers real wildlife images in several scenarios. The
dataset is annotated using labeling in XML format. There are a total of 2800 sample images
in the dataset, so 1680 images are divided into the training set, 560 images into the test set,
and 560 images into the validation set in a ratio of 6:2:2. The distribution of the constructed
dataset is shown in Table 1.

Table 1. Distribution of datasets.

Experimental Datasets Number

Training set 1680
Test set 560

Validation set 560
Total 2800

Figure 9 shows an example image of the wildlife dataset in this paper.
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In this paper, precision, recall, AP (average precision), mAP (mean average precision),
model parameters (Parameters), model operation (GFLOPs), and frames per second (FPS)
are used to evaluate the model [50].

TP refers to the number of detected frames where IoU is greater than the set threshold
(denoted as I, 0.5 in this paper, and the same true frame is only recorded for the first
time) [51], while frames with IoU ≤ I are FP, i.e., the number of extra detected frames
where the same true frame is detected, FN refers to the number of true frames that are not
identified, and TN refers to the number of samples that are themselves negative and are
also identified as negative ones. The confusion matrix is shown in Table 2.
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Table 2. Confusion matrix relationship table.

Confusion Matrix
Predicted Condition

Positive Sample Negative Sample

True condition
Positive sample TP (True Positive) FN (False Negative)

Negative sample FP (False Positive) TN (True Negative)

Because of the possible limitations of precision and recall, the two need to be evaluated
in combination, and the AP and mAP are evaluated while precision P and recall R are
considered [52]. The formulae for each of these metrics are as follows:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

Considering the possible limitations of precision and recall, neither metric is sufficient
to evaluate model performance alone. Since the extent to which the model is affected by
precision and recall respectively is unknown, to explore and measure both, we introduce a
P–R curve, where the P in the P–R curve refers to precision, and R represents recall. The
P–R curve represents the correlation between the precision rate and recall rate. In general,
recall is set as the abscissa, and precision is set as the ordinate. AP is defined as the mean
value of the precision rate for different recall rates, which is a measure that visually reflects
the degree of model misidentification. It is calculated by finding the area under the P–R
curve with the following formula:

AP =
∫ 1

0
P(R)dR (10)

The mean average precision mAP represents the average accuracy of all species. The
formula is as follows:

mAP =
1
N

N

∑
i=1

APi (11)

mAP includes mAP@0.5 and mAP@0.5:0.95. mAP@0.5 is calculated when the IoU
threshold value is 0.5. For one of the categories with n positive example samples, its
mAP@0.5 is the average resulting value of the AP for these n samples. Increasing the
IoU threshold from 0.5 in steps of 0.05 to 0.95 and taking the mean value of AP, their
corresponding mAP@0.5 can show the trends in AP and R. The higher the mAP@0.5,
the easier it is to maintain a high level of both AP and R. mAP@0.5:0.95 is the overall
performance under different IoU thresholds, which takes the overall situation into account.
A higher mAP@0.5:0.95 means that the model is more capable of high-precision boundary
regression, i.e., the more accurate the fit of the prediction frame to the anchor frame. FPS
represents the number of images that is detected per second. Supposing it takes t seconds
to process each picture, the calculation formula is as follows:

FPS =
1
t

(12)

4.3. Experimental Results and Analysis

The selection of the initial anchor frame in YOLOv5s is extremely important. After
calculating the distance between the prediction frame and the real frame based on the initial
anchor frame, the network must repeat in order to update the network parameters in the
opposite direction. Adaptive anchor frame calculation can calculate the optimal anchor frame
coordinates in the training set by an adaptive, iterative update with each instance of training.
However, the outcome of such calculations is occasionally not ideal, so this paper uses the
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genetic clustering method to conduct dimensional clustering analysis on the width and height
of the target frame [53] to calculate new anchor values, which can speed up the model’s
convergence and boost recognition accuracy. The anchor boxes obtained by clustering are
matched according to the feature map scale, and the results are shown in Table 3.

Table 3. Anchor box matching.

Feature Map 40 × 40 20 × 20 10 × 10

Anchors
(57,61) (221,170) (376,375)

(107,113) (231,322) (368,534)
(129,244) (409,247) (535,419)

Based on the object classification of the dataset, the sample images can be classified into
five categories: antelope, elephant, leopard, eagle, and giraffe. A total of 560 images of each
animal are selected, and we use the original YOLOv5s model and the improved YOLOv5s
model to perform the experiments. The improved YOLOv5s target detection method
proposed in this paper contains improvements to the feature pyramid network structure,
anchors, and GSConv. To demonstrate the effectiveness of these three components, ablation
experiments are performed on the animal dataset in this paper for these three improved
components. To ensure the fairness of the experiments, the input image size is always kept
at 640 × 640, and the hyperparameters are all set to be constant, and the experimental
results are shown in Table 4.

Table 4. Ablation experiment.

Models Size Parameters/106 GFLOPs/109 mAP@0.5 mAP@0.5:0.95 Latency (ms)

YOLOv5s 640 7.02 15.8 82.2 52.9 2.1
+SPPF 640 7.02 15.8 82.4 54.5 1.5

Improvement - - - +0.2% +1.6% −28.6%

+P4–6 640 11.7 13.4 83.5 57.4 1.7
Improvement - +66.7% −15.2% +1.1% +2.9% +13.3%

+GSConv 640 10.6 13.0 83.4 57.6 1.4
Improvement - −9.40% −3.0% −0.1% +0.2% −11.8%

+VoVGSCSP 640 11.0 12.2 85.4 59.7 1.7
Improvement - +3.77% −6.15% +2% +2.1% +21.4%

(1) The effectiveness of SPPF. In this paper, the SPPF is improved in the first set of
experiments based on the SPP by halving the number of channels of the feature
map through the CBS, downsampling the maximum pooling layer, and replacing
the original parallel maximum pooling layer with a series one, which improves the
receptive field. Compared to SPP, SPPF has a higher detection speed with the same
output results, for which a comparison is made below in this paper. As can be
seen from Table 4, after improving SPP, mAP@0.5 increases by 0.2%, mAP@0.5:0.95
increases by 1.6%, and latency decreases by 28.6%. This is because SPPF solves the
problem of multi-scale target fusion, and the receptive field is improved, which is
conducive to improving target detection accuracy and speed;

(2) The effectiveness of P4–6. The feature pyramid network structure is stacked up one
level overall in the second set of experiments in this paper to increase the receptive
field to improve target detection performance. The new P6 target detection layer
provides more sufficient large-size target information in the fusion process of feature
information transfer to improve the feature fusion and feature extraction capability of
the network. As can be seen from Table 4, after improving P4–6, mAP@0.5 increases by
1.1%, and mAP@0.5:0.95 increases by 2.9%, which is due to the higher downsampling
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magnification of P6 and the larger receptive field per pixel point, and a larger receptive
field can improve the target detection accuracy;

(3) Effectiveness of GSConv. This paper introduces the GSConv hybrid convolution
module to replace the standard convolution in the Neck in the third set of experiments
in order to decrease the number of parameters and computation of the model while
retaining more channel information and enhancing the feature extraction and fusion
capability of the network. GSConv stacks SC and DSC on top of the lightweight
network so that SC and DSC are feature connected. Additionally, it makes use
of ShuffleNets to enable the fusion of channel information from SC and feature
information from DSC into the output of DSC for channel information interaction.
This lessens the negative effects of DSC on the model while maintaining a lower
number of model parameters, reducing computational effort, and minimizing the
loss of channel information. As can be seen from Table 4, the introduction of GSConv
results in an all-round improvement in the detection performance of the model, with
mAP@0.5 and mAP@0.5:0.95 remaining largely unchanged, while Parameters are
reduced by 9.4%, GFLOPs by 3.0%, and latency by 11.8%;

(4) Effectiveness of VoVGSCSP. In this paper, we use VoVGSCSP to replace C3 in the
fourth set of experiments and design the GS bottleneck module based on GSConv,
splitting the number of channels so that information is passed through different paths,
reducing the computational effort of the original Bottleneck module. VOVGSCSP
replaces Bottleneck with the GS bottleneck and embeds it in C3. The GS bottleneck
splits the number of channels and adds a new branch through Conv convolution,
and the two parts are then feature connected. This method of splitting the number
of channels enables a rich combination of gradients, avoiding repetition of gradient
information and improving learning ability. It can also enhance the non-linear rep-
resentation of the model and improve its accuracy. As can be seen from Table 4, the
detection accuracy of the model is improved by using VoVGSCSP; mAP@0.5 increases
by 2%, and mAP@0.5:0.95 increases by 2.1%, while the computational effort of the
model is also reduced, with a 6.15% reduction in GFLOPs.

In addition, in order to prove the superiority of the experimental results, we synthesize
multiple sets of experimental results and compare them together. Figure 10 shows the
visualization of the ablation experimental data of the improved methods.
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The AP values of each model in the ablation experiments for individual categories are
shown in Table 5. The experimental results show that the detection accuracy is higher when
the wild animals themselves are clearly distinguished from their environment. The improved
YOLOv5s detection algorithm in this paper gives higher performance for certain animals that
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are large targets, such as elephants and giraffes, and the AP values of elephants are improved
by 5.6% and giraffes by 5.2%. The images of eagles in the dataset of this paper are mostly small
targets, while, in the model of this paper, the pyramidal network structure is stacked one level
up overall, which improves the perceptual field and enhances the detection ability for large
targets, and the detection ability for small targets may be weaker, but it still maintains high
accuracy. Compared with other classical algorithms in the YOLO series, such as YOLOv3-tiny
and YOLOv4-tiny, the improved YOLOv5s detection algorithm in this paper has advantages
for the detection accuracy of all five types of animals, and, overall, the improved YOLOv5s
detection algorithm in this paper has a performance that surpasses other algorithms in the
same series and can better perform the target detection task.

Table 5. The AP value of each model in a single category in the ablation experiment.

Method Antelope Eagle Elephant Giraffe Leopard

YOLOv3-tiny 0.574 0.783 0.609 0.687 0.630
YOLOv4-tiny 0.521 0.784 0.566 0.645 0.614

YOLOv6s 0.731 0.809 0.766 0.818 0.936
YOLOv7-tiny 0.739 0.825 0.720 0.878 0.869

YOLOv5s 0.723 0.911 0.781 0.814 0.892
YOLOv5s-SF 0.772 0.805 0.780 0.858 0.901

YOLOv5s-SF + P4–6 0.764 0.823 0.845 0.880 0.911
YOLOv5s-SF + P4–6 + GSConv 0.799 0.854 0.868 0.857 0.879

YOLOv5s-SF + P4–6 + GSConv + VoVGSCSP 0.765 0.867 0.837 0.866 0.903

The improved YOLOv5s algorithm has better robustness and environmental adapt-
ability, and the detection accuracy is further improved. Since the five animals analyzed in
this paper are similar to most animals in nature, it is, therefore, feasible to extend the model
to other animals for classification, and the model in this paper can be better applied to the
detection of wild animals. This also verifies that the improvement of the network structure
of YOLOv5s in this paper makes the model improve the mAP of all the sample images.

4.4. Comparative Analysis of Algorithms
4.4.1. Comparison with Mainstream Target Detection Algorithms

To objectively evaluate the performance of the model, we conduct a side-by-side
comparison with the mainstream target detection models YOLOv3-tiny, YOLOv4-tiny,
Faster R-CNN, and SSD through the YOLOv5s before improvement as well as through
the YOLOv5s after improvement. We also use mAP@0.5 and FPS for comparison, which
further verify that the improved YOLOv5s algorithm in this paper outperforms other target
detection algorithms in detecting wild animals in natural environments.

The datasets in this paper are applied to the YOLOv3-tiny, YOLOv4-tiny, Faster R-
CNN + VGG16, SSD + VGG16, YOLOv6s, and YOLOv7-tiny target detection algorithms
for experiments [54,55], all of which are performed independently. We use mAP@0.5, FPS,
and GFLOPs [56,57] for comparison; the results are shown in Table 6. By comparing the
final analysis, it can be obtained that, for both the detection accuracy and the detection
speed of the models, on the animal dataset used in this paper, the mAP@0.5 and FPS of
the improved YOLOv5s are superior to other mainstream target detection algorithms.
Furthermore, the GFLOPs of the improved model reaches the lowest of all the mainstream
target detection models.

4.4.2. Comparison of the Detection Effect of the Model before and after the Improvement

Six sample images are taken from the test set of the improved YOLOv5s model before
and after the comparison, and the results are shown in Figure 11.
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Table 6. Object detection model performance comparison.

Model mAP@0.5 FPS GFLOPs

YOLOv3-tiny 65.7 87.9 12.9
YOLOv4-tiny 62.6 99.6 20.6

Faster R-CNN + VGG16 74.0 40.1 172
SSD + VGG16 82.5 65.4 31

YOLOv6s 80.1 109.3 44.07
YOLOv7-tiny 81.7 107.2 13.1

YOLOv5s 82.2 102.5 15.8
YOLOv5s-SF 82.4 109.4 15.8

YOLOv5s-SF + P4–6 83.5 107.3 13.4
YOLOv5s-SF + P4–6 + GSConv 83.4 119.8 13.0

YOLOv5s-SF + P4–6+ GSConv + VoVGSCSP 85.4 111.9 12.2
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From the comparison diagram in Figure 11a, it can be seen that the original YOLOv5s
model does not detect the eagle on the left, while the improved model does not miss the
eagle, and the detection accuracy of the original model is further improved. From the
comparison diagram in Figure 11b, it can be seen that the elephant is a large target detected
in this figure. Since the newly added P6 target detection layer provides more sufficient
large-size target information during the fusion process of feature information transfer,
increasing the receptive field, the model before the improvement recognizes one elephant
as two, and the model after the improvement has no false detection, which reflects the
further improvement of the large target detection ability. From the comparison chart in
Figure 11c, it can be seen that, in the case of three giraffes with body overlap, the detection
accuracy of the improved model for giraffes is higher than that of the original model. The
upgraded YOLOv5s model outperforms the original model in detection and recognition,
and it lowers the rate of missed detection and false detection of target animals according to
the study of the sample picture detection findings.

4.4.3. Comparison of the Detection Effect of the Model before and after Improvement on
the VOC2007 + 2012 Dataset

In order to test the generalization ability of the model, we further test the detection
ability of the improved model in this paper on other public datasets so as to judge the
recognition ability of the improved model for targets of various sizes. In this paper, the
Pascal VOC2007 + 2012 public dataset [58] is selected for testing experiments, in which
the proportion of small targets is increased to better test the model’s ability to detect small
targets. A comparison of the performance of the original YOLOv5s and the improved
model in this paper on the Pascal VOC2007 + 2012 public dataset is shown in Table 7.

Table 7. Performance comparison between YOLOv5s and YOLOv5_ours on Pascal VOC2007 + 2012 datasets.

Models Size Parameters/106 GFLOPs/109 mAP@0.5 mAP@0.5:0.95 Latency (ms)

YOLOv5s 640 7.06 16.0 63.6 41.6 1.5
YOLOv5_ours 640 11.1 12.3 69.1 49.2 1.4
Improvement - +57.22% −23.13% +5.5% +7.6% −6.67%

As can be seen from Table 7, the improved YOLOv5s model in this paper improves the
detection accuracy and comprehensive performance in the Pascal VOC2007 + VOC2012 public
dataset, and the improved method is still applicable to the detection of small target objects.
Other indicators of this experiment and simulation results are shown in Figures 12 and 13.
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5. Conclusions

In this paper, YOLOv5s is better applied to large datasets of animals in natural envi-
ronments by improving the feature pyramid network structure and convolution module,
which effectively improves the detection accuracy and speed of YOLOv5s model on this
animal dataset. The final experimental findings demonstrate that the updated YOLOv5s
algorithm’s detection accuracy and model performance are enhanced to varying degrees
when compared to other mainstream networks in the same experimental setting. The final
improved YOLOv5s algorithm has a mAP@0.5 of 85.4% for the animal dataset in this paper
and a mAP@0.5:0.95 of 59.7%. Compared with the original YOLOv5s, the improved model
mAP@0.5 increases by 3.2%, mAP@0.5:0.95 increases by 6.8%, and GFLOPs decreases by
22.78%. While increasing the number of model parameters, FPS increases by 9.4. It can
be seen that the model in this paper is improved in both detection accuracy and model
lightness for large animal recognition. The accuracy and real-time performance of the
detection meet the demand and can finally achieve high-accuracy real-time detection with
a small amount of model calculation. In actual natural environment tests, our network
structure needs to further improve the detection ability of some wild animals due to their
mimetic ability, and, considering the simultaneous occurrence of multiple wild animals,
further spatial features need to be extracted to obtain the correlation between different
targets in space. The next phase of study will, therefore, concentrate on further network
structure optimization and the addition of an attention mechanism to enhance performance
in this area.
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