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Abstract: Charging behavior is essential to understanding the real performance and evaluating the
sustainability of battery electric vehicle (BEV) development and providing the basis for optimal
infrastructure deployment. However, it is very hard to obtain the rules, due to lack of the data
support, etc. In this research, analyzing the charging behavior of users with private charging piles
(PCPs) is carried out based on the real vehicle data of 168 BEV users in Beijing, covering 8825 charging
events for a one-year duration. In this study, the charging behaviors are defined by five indexes: the
starting state of charge (SOC) of batteries, charging location selection, charging start time, driving
distance, and duration between two charging events. To further find the influencing rules of the PCPs
owning state, we setup a method to divide the data into two categories to process further analysis
and comparison. Meanwhile, in order to better observe the impact of electric vehicle charging on the
power grid, we use a Monte Carlo (MC) simulation to predict the charging load of different users
based on the analysis. In addition, an agent-based trip chain model (ABTCM), a multinomial logistic
regression (MLR), and a machine learning algorithm (MLA) approach are proposed to analyze the
charging behavior. The results show that with 40% or lower charging start SOC, the proportion of
users without PCPs (weekday: 55.9%; weekend: 59.9%) is larger than users with PCPs (weekday:
45.5%; weekend: 42.6%). Meanwhile, users without PCPs have a certain decrease in the range of
60–80% charging start SOC. The median charging time duration is 51.44 h for users with PCPs and is
17.25 h for users without PCPs. The charging peak effect is evident, and the two types of users have
different power consumption distributions. Due to the existence of PCPs, users have lower mileage
anxiety and more diverse charging time choices. The analysis results and method can provide a basis
for optimal deployment and allocation of charging infrastructure, and to make suitable incentive
policies for changing the charging behavior, targeting the carbon neutral objectives.

Keywords: private charging pile (PCP); battery electric vehicle (BEV); charging behavior;
agent-based trip chain model (ABTCM); multinomial logistic regression (MLR); machine learning
algorithm (MLA)

1. Introduction

The increasing fossil fuel consumption and the resulting climate change have become
an urgent global problem. Electric vehicles (EVs) are regarded as one of the most promising
technologies in the transportation industry for their significant advantages in dealing with
climate change and oil dependence [1]. As the awareness of environmental issues increases,
the Chinese government regards the development of EVs as a strategic goal, and has
introduced various subsidy policies [2]. By the end of 2021, the number of new energy
vehicles in China reached 7.84 million, accounting for 2.60% of the total number of vehicles.
Among them, battery electric vehicles (BEVs) were 6.4 million, accounting for 81.63% of the
total new energy vehicles [3]. In the long run, BEV will play an important role in the future
automobile market [4].
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With the growth of BEV sales, the supporting infrastructure of charging pile construc-
tion is bound to usher in strong growth. According to the analysis report of the China
EV Association (CEVA) [5], from January to September 2022, the national charging pile
increments were 1.871 million units, of which public charging piles increased by 106.3%
year-on-year, and private charging piles (PCPs) built with vehicles increased by 352.6%
year-on-year. As of September 2022, the cumulative number of charging piles nationwide
was 4.488 million units, with a year-on-year increase of 101.9%. At the same time, the use
of PCPs may become an important factor affecting the willingness of people to purchase
BEVs in the next few years [6]. Thus, PCP has amazing development potential.

However, with the substantial increase in PCPs, many problems have emerged. For
example, the PCPs are mostly used at night and are idle during the day, resulting in low
utilization of charging piles [7]. Although the number of charging piles continues to rise,
it is still far from the ideal state (Car–pile ratio reaches 1:1). Increasing battery capac-
ity [8,9] and establishing wider charging opportunities [10] are effective ways to reduce
the peak demand for BEV charging [11]. In response to the prominent problem of difficult
installation of residential charging piles, the government encourages the electrification
of charging facilities into old residential renovation projects, to effectively alleviate the
charging anxiety [12].

The charging pile is the carrier of charging behavior. Scientific analysis of the charging
behavior of BEV users is the basis for improving the layout of charging piles. The current
research on charging behavior is mainly based on public charging station data and vehicle
travel data. For example, Jimenez et al. [13] used ML methods to characterize driver
charging behavior at charging stations to predict and distinguish the energy consumption
of EVs in different seasons. Xing et al. [14] established a new EV charging behavior model to
characterize user selection and decision-making by modeling and mining the ‘Didi’ traffic
travel data set. However, there are few studies on the differences in charging behavior
between users with PCPs and users without PCPs. The possible charging modes of BEV
users are very important for the construction of charging infrastructure and the promotion
of BEVs.

As a result, as illustrated in Figure 1, based on actual charging and driving data
from 168 BEVs in Beijing, this paper will distinguish users into high probability users
with PCPs and high probability users without PCPs, deeply analyze the similarities and
differences between the two types of users in charging and driving behavior, and clarify
the impact of PCPs on the charging behavior of BEV users. The organization of this paper
is as follows. Section 2 summarizes and processes the data sets used in this study to
obtain charging events of all vehicles within 1 year. Section 3 classifies users according
to the point of interest (POI) of the user’s charging location, which is divided into high
probability users with PCPs and high probability users without PCPs. Section 4 compares
and analyzes two types of users from six aspects: charging location selection, charging
start time, charging start state of charge (SOC), time/driving distance since last charging
event, and charging energy consumption. Based on the analysis results, the charging
load prediction of different users is realized, and the influence of the charging load on the
power grid is evaluated. Section 5 proposes an agent-based trip chain model (ABTCM), a
multinomial logistic regression (MLR), and a machine learning algorithm (MLA) approach
to analyze the charging behavior of users with PCPs. At last, we conclude the paper and
provide future prospects in Section 6.
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Figure 1. Analysis process of BEV charging mode for users with PCPs and users without PCPs in 
Beijing based on real data. 

2. Data Collection and Processing 
2.1. Data Sources 

This paper uses the operation data of 168 BEVs in Beijing from January to November 
2020, including vehicle data, drive motor data, and vehicle location data. When the vehicle 
starts, the enterprise platform monitors and collects the real-time operating state 
parameters of the BEV from the CAN-bus through the on-board diagnostic system (OBD). 
According to the transmission control protocol (TCP), the data is transmitted to the data 
center in the form of a data stream to generate the original data set, and the data set is 
saved through the database. The specific process is shown in Figure 2. 
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The data sampling interval is 10 s. The data format is shown in Table 1, including 
vehicle status, charging status, vehicle speed, cumulative mileage, longitude coordinate, 
latitude coordinate and SOC value. 

  

Figure 1. Analysis process of BEV charging mode for users with PCPs and users without PCPs in
Beijing based on real data.

2. Data Collection and Processing
2.1. Data Sources

This paper uses the operation data of 168 BEVs in Beijing from January to November
2020, including vehicle data, drive motor data, and vehicle location data. When the vehicle
starts, the enterprise platform monitors and collects the real-time operating state parameters
of the BEV from the CAN-bus through the on-board diagnostic system (OBD). According
to the transmission control protocol (TCP), the data is transmitted to the data center in the
form of a data stream to generate the original data set, and the data set is saved through
the database. The specific process is shown in Figure 2.
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The data sampling interval is 10 s. The data format is shown in Table 1, including
vehicle status, charging status, vehicle speed, cumulative mileage, longitude coordinate,
latitude coordinate and SOC value.
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Table 1. The format of data collected.

Time Vehicle ID Vehicle
State

Charging
State

Speed
(km/h)

Mileage
(km) Longitude Latitude SOC

(%)

1 January 2020
00:00:06 98,341 2 1 0 34,279 116.3608 40.1142 68

1 January 2020
00:00:16 98,341 2 1 0 34,279 116.3608 40.1142 68

. . .
4 August 2020

07:12:47 98,341 1 3 21.8 41,911 116.2863 40.0129 43

4 August 2020
07:12:57 98,341 1 2 18.3 41,911 116.2857 40.0128 43

. . .
4 November 2020

02:17:28 98,341 2 1 0 45,970 116.3608 40.1142 100

Three types of BEVs are studied in this paper, and the main parameters are shown
in Table 2, including battery capacity, battery type, fast charge power, slow charge power,
driving range and maximum speed. In this paper, vehicle battery capacity is chosen as a
measure of vehicle heterogeneity standards.

Table 2. Battery parameters of the vehicles involved in the data.

Brand GAC Thriving 14 BAIC EU260 SAIC Roewe ERX5
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• Extracting fragment for the first time 

In this paper, the charging start (end) time of the user is judged by the change of the 
charging state at two adjacent moments. For instance, if the charging state is 3 and the 
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Capacity (kWh) 47.5 37.8 48.3

Battery Type Lithium iron
phosphate battery

Nickel–Cobalt–
Manganese

Nickel–Cobalt–
Manganese

Fast Charge Power
(kW) 49.15 50.87 63.32

Slow Charge
Power(kW) 3.05 6.13 6.42

Driving Range (km) 253 260 320
Maximum Speed

(km/h) 150 140 135

2.2. Data Preprocessing

Due to the influence of sensor equipment failure, signal interference, and other factors,
the data have the problems of wrong vehicle state, accumulated mileage, SOC, and latitude
and longitude coordinates, so it is necessary to carry out data preprocessing, such as data
cleaning and data filtering. The data cleaning is mainly about extracting abnormal data
such as: (i) SOC is 0; (ii) the speed is negative; (iii) cumulative mileage is 0; (iv) abnormal
vehicle operating status (charging status and vehicle status), filling the null value, zero
value and missing value, and correcting the error value.

2.3. Extraction of Charging Segments

The running state of the vehicle can be determined by the vehicle state and charging
state in Table 1 of Section 2.1. For the vehicle state, 1 indicates the start state, 2 indicates
the power off state, and 3 indicates other states. For the charging state, 1 indicates parking
charging, 2 indicates brake charging, 3 indicates uncharged state, and 4 indicates charging
completed. The vehicle state can be used to determine whether the vehicle is in a parking
state, and the charging state can be used to determine whether the vehicle is in a charging
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state. Table 3 shows the different states of the vehicle by combining the vehicle state,
charging state, and vehicle speed.

Table 3. List of possible states of the vehicle.

Vehicle
State

Charging
State Speed State

1 + 3 + 0 → Status 1. Parking but power on
1 + 3 + 6= 0 → Status 2. Driving
2 + 3 + 0 → Status 3. Parking and power off
2 + 1 + 0 → Status 4. Parking and charging

2 + 4 + 0 → Status 5. Charging completed but
not unplugged

• Extracting fragment for the first time

In this paper, the charging start (end) time of the user is judged by the change of the
charging state at two adjacent moments. For instance, if the charging state is 3 and the
vehicle state is 1 at time t1; while at next time t2, the charging state becomes 1, the vehicle
state becomes 2, and the vehicle speed is 0, then it can be considered that t2 is the charging
start time, and the corresponding SOC is the charging start SOC, that is, SOCstart. Similarly,
if the charging state is 1 and the vehicle state is 2 at time t3, while at next moment t4, the
charging state becomes 3 (if the charging is completed, the charging state becomes 4) and
the vehicle state becomes 1 (or still 2, that is the charging is completed but the user does
not start the car immediately), then it can be considered that t3 is the end of the charging
time, and the corresponding SOC is the end SOC of the charging, that is SOCend.

We combine the records between t2 and t3 into a charging fragment and obtain
12,357 charging fragments.

• Extracting fragment for the second time

EV charging uses AC or DC power supply. At the same voltage level, DC charging is
faster. The current DC fast charging (DCFC) technology can fully charge EVs in 20 min [15],
while the AC charging may require 10–20 h charging time [16]. Based on the above research,
we set the reasonable time duration of the charging segment between 10 min and 20 h. In
addition, “mileage interval between adjacent charging event (Section 4.2.3) exceeds the
driving range of the vehicle (Table 2)”, “data acquisition error [17] caused by the duration
between adjacent charging events is too small” and “variation of SOC (SOCend − SOCstart)
is less than 0” are also listed as outliers. After filtering, 8825 charging segments are obtained.

3. User Classification of BEVs

In order to study the impact of PCPs on the charging behavior of BEV users, the
following four steps are needed to determine whether the 168 BEV users have PCPs.
(i) Convert the geographic coordinates corresponding to the user’s charging position to
satisfy the coordinate system of Amap; (ii) Using the inverse geocoding function in the
Amap open platform to convert coordinates into address information; (iii) Taking the
POI type corresponding to the address as the first filtering standard; (iv) Excluding the
possibility of charging at public charging station in a residential area, according to the
public charging station data on the website.

3.1. Coordinate System Transformation

This paper mainly involves two common map coordinate systems: the world geodetic
system (WGS-84) and the national survey bureau coordinate (GCJ-02). The positioning
information obtained through the underlying interface usually belongs to the WGS-84
coordinate system, so the coordinate information in the data source uploaded by the BEV
belongs to the WGS-84 coordinate system. For privacy protection, the GCJ-02 coordinate
system uses the confusion algorithm by adding random offsets in latitude and longitude of
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WGS-84 system. Most domestic internet map providers are using the GCJ-02 coordinate
system, including Amap, Google Maps China, and so on. Since the inverse geocoding in
Section 3.2 is based on the GCJ-02 coordinate system, the original coordinate system WGS-
84 needs to be transformed into the GCJ-02 coordinate system. In this paper, a coordinate
transformation tool Change Coordinate [18] is used to convert the vehicle positioning
coordinates (WGS-84) into Amap’s applicable coordinates (GCJ-02), as shown in Figure 3.
The red dot is the actual charging position of the vehicle, and the purple dot is the converted
vehicle position. It can be seen that the converted coordinates have a significant offset. If
we put the coordinates of the purple point into the Amap, the visualized point is coinciding
with the position of the red point on the Figure 3, which is located in the residential area.
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Figure 3. Coordinate visualization.

3.2. Inverse Geocoding

Through the function of inverse geocoding in the Amap open platform [19], the
transformed latitude and longitude coordinates of the BEVs at charging time are taken as
input, and the corresponding information is returned as shown in Table 4. The Vehicle
ID is the BEV number; Name represents the address name of the building closest to the
charging location; District represents the area of the building belonging to; Type represents
the POI type of the building; Minimum range represents the distance from the nearest
building to the charging location (units m). The charging location here refers to the parking
position of the electric vehicle in a charging state. Meanwhile, the reason for setting the
item ‘Minimum range’ is that, in general, we can directly obtain the POI of the charging
position through the address corresponding to the BEV coordinates, which is helpful for us
to determine the POI type of charging position (such as residential area). However, some
address information does not have a corresponding POI; in order to minimize data loss,
we consider using the POI of nearby buildings to supplement based on the premise that
the address name is similar. Position represents the longitude and latitude coordinates
corresponding to the building. The accuracy of the method is verified by coordinate
visualization as shown in the blue flag in Figure 4; the charging position is indeed within
the range of the returned address.

Table 4. The format of data returned by inverse geocoding.

Vehicle ID Name District Minimum
Range (m) Type Position

98,363

Beijing
University of

Chinese
Medicine

Chaoyang
District 145.2680 School 116.428250,

39.971307
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3.3. User Classification

Generally speaking, the charging locations of the BEV users with PCPs are relatively
fixed in residential areas. Thus, whether a user has a PCP is determined by the POI type
of the charging location in Section 3.2. If most of one user’s charging locations are in a
relatively fixed residential area, then it is considered that the user has a high probability
of owning a PCP. When all of the user’s charging positions are not in residential areas,
i.e., the ratio of the user’s residential charging r is 0, it is considered that the user has
no PCP. By preliminary screening, we found a total of 24 BEV users without residential
charging records, so we classify them as users without PCPs. We will further distinguish
the remaining users in two steps, as follows.

3.3.1. First Screening

Figure 5 is the flow chart of the PCP user classification method. The blue block shows
the method of obtaining how many different residential areas that the charging point is
located for one user by traversing all the residential area names. If the similarity between
two residential names exceeds a certain threshold ρ, the difference between the two names
can be considered small. The similarity here is compared using Python’s module-difflib.
It is found that when the similarity exceeds 0.7, the two residential names are highly
coincident, so let ρ = 0.7. When the traversal is completed, the number of different charging
residential areas for each user is obtained.
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The yellow block shows how to classify users according to the number of different
residential areas where the charging is located. Firstly, we exclude public charging piles
near residential areas based on online public charging station data. Method details will
be discussed in Section 3.3.2. At the same time, we believe that the residential location
of users with PCPs general is relatively fixed, and not likely to appear in many different
residential charging phenomena. Based on this principle, we set the judgment threshold to
2, that is, the number of different residential areas of the user cannot exceed 2 (certainly
greater than 0). We believe that the user is a high probability PCPs user, and otherwise it is
a high probability of a non-PCP user.

3.3.2. Second Screening

As shown in Figure 6, some public charging stations may locate in residential areas.
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Figure 7 shows the existing public charging station data on the website [20]. Accord-
ing to the above data and combining with Geohash algorithm, we determine whether
there is a public charging station near the user’s charging location, and then perform
further screening.
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The distance between one user’s charging location and each public charging station can
be calculated directly and then sorted to find the nearby public charging station. However,
for the increasing number of charging stations, this method is obviously unrealistic with the
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large amount of calculation. Geohash can solve this problem well. Geohash is a geospatial
algorithm that can retrieve adjacent areas, so that the coordinate points in a certain area
share a string, so we only need to filter the public charging stations in the user’s charging
area according to the string. Since there may be multiple charging stations in the area, the
nearest public charging station can be judged according to Equation (1).

d = R× arcos[cos(y1)× cos(y2)× cos(x1 − x2) + sin(y1)× sin(y2)] (1)

In the formula, (x1, y1) represents the longitude and latitude coordinates of the user’s
charging location, and (x2, y2) represents the longitude and latitude coordinates of the
public charging station; d is the distance between the two points; R is the radius of the earth,
let R = 6371 km.

This article uses Python to implement Geohash encoding. The realization process
is mainly divided into four steps: (i) The range represented by longitude and latitude is
regarded as a two-dimensional plane rectangle; (ii) As shown in the Figure 8, the longitude
and latitude coordinates are classified by the similar dichotomy. If the target longitude and
latitude are in the division area, the assignment is 1, otherwise the assignment is 0, until
the set accuracy requirements are met, and a binary code is obtained; (iii) Figure 9 shows
the process of grouping codes based on the coding results. Each binary code is merged by
the principle of even-digit longitude and odd-digit latitude; (iv) In order to facilitate the
storage and usage, 32 letters in the Table 5 are used for Base32 encoding.
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Table 5. Base32 encoding/decoding.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Base32 0 1 2 3 4 5 6 7 8 9 b c d e f g h j k m n p q r s t u v w x y z

The string length corresponds to the accuracy of the position. The longer the string
is, the smaller the divided area is, and the higher accuracy of the position is. Take the
coordinates (116.42, 39.97) in Figure 8 as an example. If we require the length of the string
to be 4, according to the above process, first, we can obtain the binary codes of longitude
and latitude: 1101001011, 1011100011. Then we group the code according to the rules in
Figure 9, and the result is 11100 11101 00100 01111. Finally, Base32 coding is performed
according to Table 5, and the result is w x4 g.
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After analysis and filtering, there are 135 users with PCPs, accounting for about 80.4%,
and 33 users without PCPs. The classification results of all charging positions are marked
on the map, as shown in Figure 10. In addition, for the case where two charging points are
close, the distance is also marked in the figure.

1 

 

＞100m

 

Figure 10. Distribution of users using private and public charging piles.

4. User Charging Behavior Analysis
4.1. Charging Location Selection

By mining the POI types of users’ common charging points, it can provide assistance
in the planning and layout of future charging piles construction [21]. Pagany et al. [22]
distinguished categories based on user groups of different POI types, which constitutes the
basic method for requirements calculation. Figures 11 and 12 show the POI distribution of
charging points of users without PCPs and users with PCPs, respectively. The larger the
font is, the larger the proportion of the POI type is. For POI of users without PCPs, a larger
proportion is office buildings, industrial parks, public parking, and shopping related places.
In general, office buildings or industrial parks can be regarded as the workplace, thus it
can be concluded that the users without PCPs often charge in the company; followed by
public places (shopping malls, parks, etc.) and public charging stations.
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Figure 12. Charging location classification of users with PCPs.

In addition to charging in fixed residential areas, users with PCPs also charge in public
places, like users without PCPs. It can be found that users are not completely dependent
on PCPs. When the SOC level is low or the user’s willingness to charge is strong, the user
with PCPs will also choose to charge in public places.

4.2. Charging Behavior

The current research on charging behavior mainly focuses on the analysis of the distri-
bution of daily driving distance, charging start time, driving distance since last charge, and
SOC before and after charging [23]. This paper mainly analyzes the difference in charging
behavior between users with PCPs and users without PCPs from four aspects: charging
start time [24], charging start SOC, driving distance since last charge, and time since last
charge, and summarizes the possible reasons for the difference in charging behavior.

4.2.1. Charging Start Time

Figure 13a,b shows the charging start time distribution of users with PCPs and users
without PCPs. On weekdays, the peak of the charging start time of users with PCPs appears
at 18:00–19:00. The possible reason is that people return home from work, then charge in
PCPs. However, the peak time of users without PCPs is between 8:00 and 9:00. During this
period, consumers may charge in public charging piles near workplaces. Correspondingly,
the proportion of users with PCPs choosing to charge in this period is small. The existence
of PCPs greatly reduces the users’ dependence on public charging piles.
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Whether on weekdays or weekends, the variation trend of charging start time of
users with PCPs is roughly the same, explaining that the existence of PCPs ensures the
convenience of charging and leads people to form a certain charging habit. The peak
charging time of users without PCPs on weekends occurs between 15:00 and 16:00, and
there could be many reasons for the difference between the peak charging time on week-
days and weekends, such as the availability of charging piles nearby or the SOC level at
this time.

4.2.2. Charging Start SOC

Figure 14 shows the distribution of charging start SOC. Among charging events with
40% or lower start SOC, the proportion of users without PCPs (weekday: 55.9%; weekend:
59.9%) is larger than users with PCPs (weekday: 45.5%; weekend: 42.6%). Unreasonable
charging station network layout and weak information interconnection between BEVs
and charging piles could cause some problems, such as long charging waiting time and
unbalanced utilization of charging stations [25]. Therefore, it can be inferred that the lack
of available charging piles nearby is the main reason for the low charging start SOC level.
Studies have also shown that the lower the remaining SOC of an BEV, the higher the
driver’s mileage anxiety [26,27], so that users without PCPs have higher mileage anxiety.
Battery life is shortened in the case of over discharged batteries [28]. For users with PCPs,
in order to extend the battery cycle life, it is recommended that people carry out shallow
charging and shallow discharging, and to start charging at a relatively high SOC level.
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On the weekends, the start charging SOC of users with PCPs has a certain increase in
the range of 80–100% SOC, mainly because they consider charging before the weekdays
and pay no attention to the current SOC level. Meanwhile, users without PCPs have a
certain decrease in the range of 60–80% start charging SOC. They do not choose to charge
because of no available charging piles nearby, and the relatively high SOC level that the
psychological pressure of users from cruising range anxiety is small.

4.2.3. Driving Distance since Last Charge

In order to ignore contingency, an interquartile range (IQR) analysis [29] was used
to quantify the characteristics of the driving mileage distribution between two adjacent
charging events, as shown in Table 6, where Q1, median, and Q3 represent the 25th, 50th
and 75th percentiles of the mileage, respectively. In Section 4.2.4, IQR analysis will also be
performed on the interval time since last charge and charging energy consumption.
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Table 6. IQR analysis of different users regarding driving mileage since last charge event.

Minimum Q1 Median Q3 Maximum

Have PCP?
Yes 1.0 79.00 117.00 159.00 288.00
No 1.0 83.00 120.00 154.25 296.00

After data processing, the average driving distance between two adjacent charging
events for users without PCPs is 120.25 km, with a median of 120.00 km and a maximum
driving distance of 296.00 km. The average driving distance between two adjacent charging
events for users with PCPs is 119.15 km, with a median of 117.00 km and a maximum of
288.00 km. It is further confirmed that, in most cases, the two types of users are not inclined
to discharge the battery deeply, because the average driving distance after the last charging
is less than half of their corresponding maximum driving range.

Figure 15 shows the driving distance distribution since last charge. The number of
users who choose to charge in 100–150 km is the largest, accounting for 35.03% (users
without PCPs) and 31.85% (users with PCPs), respectively. In addition, only 4.78% (users
without PCPs) and 8.66% (users with PCPs) of charging events occurred after 200 km. Users
with a mileage of 50–200 km account for 86.69% (users without PCPs) and 80.40% (users
with PCPs). In view of the maximum driving range of the sample vehicle (Table 2), it can
be found that people seem unwilling to make the BEV’s mileage exceed this buffer range
(50–200 km) before charging, which is consistent with the conclusion of Weldon et al. [30].
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Distance parameters since the last charge can be used to analyze the charging habits
of users relative to their driving range. At a relatively small mileage interval (0–50 km), the
proportion of users with PCPs (10.95%) is larger than that of users without PCPs (8.53%).
Due to the existence of PCPs, consumers have the habit of charging regularly, that is,
charging at home after work every time. Therefore, it is possible to predict the charging
behavior of users with PCPs [31], so as to provide a reference for optimizing the layout of
charging infrastructure, PCP sharing, and realizing the intelligent dispatching of the power
grid to some extent.

4.2.4. Time since Last Charge

The time parameters since last charge can quantify the frequency of charging require-
ments. Figure 16 shows the duration distribution between two adjacent charging events,
and Table 7 is a quantitative result of the duration. The average duration of users with
PCPs is 88.69 h (3–4 days), and the median is 51.44 h (2–3 days). The average duration for
users without PCPs is 55.38 h (2–3 days), and the median is 17.25 h (0–1 day).
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Table 7. IQR analysis of different users regarding time since last charge event.

Minimum Q1 Median Q3 Maximum

Have PCP?
Yes 0.27 20.74 51.44 109.66 2592.27
No 0.26 7.58 17.25 48.61 3145.59

Due to the existence of extreme values, it is difficult to describe the overall level using
the average value, so the median value is used. Obviously, the overall charging intervals of
users without PCPs are shorter than that of users with PCPs, indicating that PCPs greatly
decrease the charging frequency of users, and also shows that most users choose to charge
1–3 times a week [32].

In the range of 0–24 h duration, users without PCPs charged more frequently (60.51%)
than users with PCPs (30.39%); due to the existence of mileage anxiety, users without PCPs
are much more concerned about insufficient battery power during driving [15], which is
consistent with the analysis in Section 4.2.2. For other durations, the proportion for users
without PCPs is lower than users with PCPs. Therefore, compared with users without
PCPs, due to the existence of PCPs, users with PCPs have lower mileage anxiety, more
diversity of charging time selection, and wider charging time spans.

Meanwhile, combined with the results in Figure 17, it can be found that users without
PCPs will have a long charging interval, but a large driving mileage. As shown in Figure 16,
in the duration of 0–24 h since last charge, the driving mileage of users with PCPs is lower
than that of users without PCPs. The possible reason is that the user buys a BEV car and
installs a PCP just to meet the daily commuting requirements and charging convenience.
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4.3. Charging Energy Consumption

The energy consumption E (kWh) during the charging process are calculated according
to Equation (2) referring to the study of Siddique et al. [33]:

E = C × ∆SOC = C × (SOC t2
− SOCt1) (2)

where C represents the battery capacity of BEVs, the range of SOC is between 0 and 1,
∆SOC represents the change of SOC in the i-th charging process, the start SOC and end
SOC of the i-th charging data are recorded as SOCt2 and SOCt1 , respectively, t1 represents
the start time of the i-th charging, and t2 represents the end time of the i-th charging.

Table 8 lists the IQR analysis results of charge energy consumption. It can be found
that in most cases, the charging energy consumption of the two types of users is much
lower than the rated capacity of the battery, and that the ratio of the median to the rated
capacity is less than 0.6. One of the reasons might be that the battery is not fully charged
(less than 100% SOC) at the end of the charging process. Another reasonable reason is that
even at a high level of SOC, most drivers will charge the vehicles. It can also be verified
from Figure 14 that users start to charge when the SOC is higher than 60%, accounting for
about 20% of the total charging events.

Table 8. IQR analysis of different users about charging energy consumption.

Minimum Q1 Median Q3 Maximum

Have PCP?

Yes
Total 0.47 14.08 22.33 31.40 47.82

Weekday 0.47 14.73 22.80 31.86 47.82
Weekend 0.48 11.59 20.90 29.95 47.03

No
Total 0.41 14.49 22.36 30.64 46.08

Weekday 0.41 14.25 22.33 30.43 46.08
Weekend 0.83 16.56 23.44 31.45 45.60

In addition, Figure 18 shows the distribution of charging energy consumed by different
users on weekdays (outer ring) and weekends (inner ring). The distribution trend of
charging energy consumption of the two types of users is similar, whether on weekends or
weekdays. On weekdays, the peak charging energy consumption of users without PCPs is
in the range of 24–30 kWh, and for users with PCPs, it is in the range of 18–24 kWh, while
on weekends, the peak charging energy consumption of both types of users is consistent
in the range of 24–30 kWh. Because the distribution of charging energy consumption is
approximately consistent with the normal distribution, it is meaningful to analyze the
difference in the average value between two types of users. By analyzing the data, it is
found that on weekdays, the average charging energy consumption of users with PCPs
and users without PCPs are 22.91 kWh and 23.61 kWh, respectively. On weekends, the
average charging energy consumption of users with PCPs and users without PCPs are
21.25 kWh and 22.32 kWh, respectively. There is no significant difference in charging
energy consumption between the two types of users.

4.4. Prediction of Charging Load

Based on the above analysis results, we use a Monte Carlo simulation method to
calculate the charging load of different types of users and explore the impact of charging
load on the grid load. Figure 19 is the flow chart of BEV charging load simulation. The
specific steps are as follows:
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(1). Determine the total number N of BEVs in the region; this paper set N to 50,000.
(2). Determine the model of BEV. Since the three types of vehicles in Table 2 occupy a

large proportion of the BEV market, these three types of vehicles are taken as the
main object. The possibilities of extracting these three types of vehicles are set to be
the same.

(3). Determine the charging mode of the electric vehicle, namely fast charging or slow charging.
(4). According to the previous analysis results, the charging start time and the charging

start SOC are randomly selected. The charging duration T(h) is calculated according
to Equation (3).

T = (SOC targ − SOCstart)× C/(η × P) (3)

In the formula, SOCtarg is the target SOC, SOCstart is the SOC at the beginning of
charging, C is the battery capacity, η is the charging efficiency, and P is the charging power.
In this simulation, the SOCtarg of each charging of the vehicle is set to be 100%. At the same
time, the vehicle battery capacity C and charging power P are shown in Table 2.

(5). The charging load of each time period is calculated in hours. Then the charging load
curve of one vehicle is generated.

(6). Repeat the above process, accumulate the charging load curve generated each time,
and finally obtain the charging load curve of all vehicles.

(7). Variance coefficient is used to judge whether the algorithm converges in this paper:

βi =
σi
(

P
)

√
k·Pi

(4)

where βi is the variance coefficient of charging load at time i; σi
(

P
)

is the standard deviation
of charging load at time i; Pi is the expectation of charging load at time i; and k is the
number of calculations. We set max(βi) ≤ 0.05%.

In comparing the charging load differences in different types of users, as shown in
Figure 20, we calculated the charging load distribution of users with or without PCPs on
weekdays and weekends. It can be found that: (i). On weekdays, users without PCPs
have obvious load peaks around 10:00 and 17:00; while on weekends, the peak time of the
charging load appears at about 19:00; (ii). The peak time of the charging load curve of users
with PCPs on weekdays and weekends are not much different, which is concentrated at
about 20:00; (iii). Due to the existence of PCPs, whether on weekdays or on weekends, the
charging load of users with PCPs are lower than the users without PCPs.
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In addition, in terms of the impact of charging load on the power grid, as shown in
Figure 21, we superimpose the charging load of different types of BEV users and base load.
It can be found that the electricity demand is the largest in the period of 19:00–21:00. At the
same time, there is an obvious phenomenon of peak addition, which increases the pressure
of the power grid to a certain extent. Therefore, it is necessary to take orderly charging or
optimize power equipment to meet greater power demand.
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5. Influence of Trip Chain

Based on the discretization of the user’s charging time, the utilization rate R of the
PCP is analyzed. The utilization rate Ri in the i-th time period is equal to the ratio of the
number of users being charged during this time period Numi to the total number of users
Num. Figure 22 shows the utilization rate of PCPs on 6 January. It can be found that the
using peaks of PCPs are at 6:00–7:00 and 19:00. In addition, the utilization rate of PCPs is
very low, or even 0, in some time periods. PCP sharing is an effective way to improve the
utilization rate of PCPs.
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Figure 22. PCP utilization rate on a certain day.

In Beijing, there have been many enterprises exploring the sharing mode of charging
piles as shown in Figure 23, but it still needs to be improved. This section will analyze
the charging behavior of users with PCPs and summarize the influence mechanism of the
user’s charging mode. Finally, the MLA is used to analyze the charging behavior, which
provides a reference for the future realization of intelligent sharing of PCPs.
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5.1. Trip Chain Generation

According to the results obtained in Part 3, the data of users with PCPs are screened
from all users. According to the Table 3, the “Parking and power off” is used as the main
criterion for distinguishing trips. When the “Parking and power off” state lasts for more
than 3 min [34], the trip is considered to be over. When the state is switched to another
state, the corresponding data point is the beginning of the next trip. Similarly, the charging
state is mainly judged according to state 4. When the “Parking and Charging” state lasts
more than 5 min, it is considered that the current vehicle is in charging.

A preliminary trip chain is generated for each trip in chronological order. It is necessary
to test the consistency of the starting position and the ending position, since the trip chain
should be a closed loop. Considering that there will be a certain deviation in each parking
location, the start point and the end point of the trip chain may differ by a certain distance.
Referring to the research of Zhao et al. [35], this paper sets the threshold to 1000 feet. When
the distance between the start points and the end point is less than 1000 feet, the travel
chain is retained. Otherwise, the travel chain is discarded.

The statistical results of trip chains are shown in Table 9. A total of 13,341 trip chains
are extracted from 168 BEV users. It can be found that in the trip chains involving charging
behavior, the proportion of PCP charging is 17.73%, and non-PCP charging also accounts
for a certain proportion of 11.59%. Figure 12 also shows that users with PCPs have many
other charging options besides charging in residential areas. At the same time, it is noted
that the above two charging trip chains are far less than the no-charging trip chain (70.68%),
which is indicating that most BEVs users do not choose to charge during their daily trips.

Table 9. Overview of trip chain summary results.

Type Non-PCP
Charging PCP Charging No-Charging Total

Number of chains 1547 2365 9429 13,341
Rate (%) 11.59 17.73 70.68 100

The ABTCM method [36] is adopted to extract the charging and driving behavior of
users with PCPs from vehicle operation data. This section focuses on charging in PCPs
for users with PCPs, who start and end at home among their trips and may pass many
places in a day, as depicted in Figure 24. There are many factors that affect a user’s charging
behavior, such as season, weekday, charging location, charging fees, etc. [37,38]. This study
systematically extracted the corresponding trip information involving vehicle state and
external environment from ABTCM, as shown in Table 10.
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Table 10. List of affecting variables.

Type Variables Description

Vehicle State

Start SOC SOC at the beginning of the journey
SOC decline SOC declined in the trip
Start Time The start time of the trip
Travel time Travel time (excluding parking)

Mileage Distance in trip
Average Speed Average speed in a trip

External
environment

Average Temperature Temperature of the day of travel
Month Represents the change of seasons
Week Whether or not is weekday

Figure 25 is a schematic diagram of the BEV trip chain. Assuming that the number of
trips on the user’s i-th day is n, the user’s entire travel chain is {Trip1, Trip2, . . . , Tripn}.
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5.2. Key Factors Analysis

Figure 26 shows the comparison of the factors affecting the choice of different charging
methods. In the three cases of PCP charging, Non-PCP charging and No-charging, the
initial SOC is partially concentrated at 90–100%. Because the users with PCPs choose to
travel at a higher SOC level in many cases, no matter whether it is charged or not in the
day. Through comparison, it is found that the possibility of users charging during travel
will increase significantly with the decrease in SOC at the beginning. In Figure 26a,b, for
the Non-PCP charging, the SOC decline by 0–20% is more obvious. The SOC decline of
Non-PCP charging and PCP charging is obviously concentrated between 20% and 60%. It
can be found that the larger the SOC decline, the greater the willingness of the users to
choose to charge, but the selected charging method is not fixed. Meanwhile, as shown in
Figure 26c, people are less likely to charge at higher SOC levels.
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It can also be found that for short-distance travel (0–50 km), the proportion of users No
charging (76.8%) is significantly higher than other types (PCP charging: 13.2%; Non-PCP
charging: 10.0%). In the case of mileage greater than 50 km, the proportion of users No
charging only accounted for 55.1%. It is worth mentioning that the user might turn on the
automotive air conditioner in lower or higher temperatures, which will accelerate the SOC
decline and stimulate the user’s charging behavior.

Because it is a multi-classification problem, the MLR model [39] is used to quantify
the impact of relevant variables on the user’s charging mode, assuming that there are p
independent variables, k response variables, and n samples. In order to construct logic in
the case of polynomials, one of the categories will be considered as a reference, and all
other logit are constructed relative to it. Without loss of generality, category 1 is set as the
reference. Let pj denote the probability that the target value belongs to class j, and the
multivariate logistic regression model illustrates the relationship between the probability
pj and the p explanatory variables x1, x2, . . . , xp, according to Equation (5).

log(
pj(xi)

p1(xi)
) = ai + β1jx1i + β2jx2i + . . . + βpjxpi, i = 1, 2, . . . , n, j = 2, . . . , k (5)

Taking the No-charging data as a reference, the model parameters are estimated by the
maximum likelihood method. The model results are shown in Table 11. These results are
generally consistent with our intuitive understanding of BEV charging behavior. The fact
is that users decide to charge or not based on whether the remaining energy is sufficient
to support their remaining trip, and the remaining energy is related to the SOC at the
time of departure and the SOC reduction during the trip. Obviously, Start SOC and SOC
decline have significant negative and positive effects, respectively. In the case of lower start
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SOC and higher SOC decline during driving, users will choose to charge. The charging
probability also increases with the increasing travel distance.

Table 11. Logistic Regression outputs.

Variables Coefficient Standard
Error Odds Ratio p [95% Conf. Interval]

PCP charging
Start SOC (%) −4.513 0.161 0.011 <0.001 0.009 0.014

SOC Decline (%) 3.574 0.129 35.651 <0.001 15.940 79.738
Mileage (km) 4.134 0.411 62.413 <0.001 21.387 182.135

Average Speed
(km/h) 1.294 0.546 3.649 <0.001 2.269 5.867

Week 0.023 0.242 1.023 0.777 0.872 1.200
Start Time (h) −1.435 0.081 0.238 <0.001 0.151 0.374

Travel Time (h) −0.190 0.231 0.827 0.202 0.617 1.107
Month −0.026 0.149 0.974 0.820 0.777 1.221

Average
Temperature (°C)

−0.661 0.115 0.516 <0.001 0.401 0.665

Non-PCP charging
Start SOC (%) −4.897 0.151 0.007 <0.001 0.006 0.010

SOC Decline (%) 5.360 0.497 212.682 <0.001 80.303 563.285
Mileage (km) −0.135 0.686 0.873 0.843 0.228 3.351

Average Speed
(km/h) 3.588 0.273 36.157 <0.001 21.159 61.789

Week −0.020 0.096 0.980 0.833 0.812 1.182
Start Time (h) −2.535 0.279 0.079 <0.001 0.046 0.137

Travel Time (h) −1.086 0.186 0.338 <0.001 0.235 0.486
Month 0.411 0.133 1.509 0.002 1.163 1.957

Average
Temperature (°C)

−0.682 0.149 0.506 <0.001 0.377 0.678

Reference Category: No charging. Pseudo R-squared: 0.321.

In addition, by comparing the differences in the charging attributes of Non-PCP
charging and PCP charging, it can be found that: (i) The choice of PCPs charging is more
sensitive to distance than that of Non-PCP charging. For PCP charging, the driving distance
shows a positive impact, which indicates that the longer the driving distance, the greater
possibility of choosing PCP charging. (ii) When the user chooses to charge in public
charging piles, the average speed in the trip has a more obvious impact, which is indicating
that during the trip, the faster the user’s speed, the greater possibility of charging in PCPs
due to mileage anxiety.

5.3. Influencing Analysis

In order to better understand the user’s charging behavior and make a foundation for
the future intelligent sharing of PCPs, in this section, 13,341 trip chain data extracted by
ABTCM are used to analyze the user’s charging behavior, and the importance of influencing
factors are sorted. The model has three categorical variables, including No-charging, Non-
PCP charging and PCP charging. All potential impact variables (independent variables)
considered to be related to the charging mode are input into the model. For the selection of
training data and verification data, random sampling is used to ensure that training data
and verification data obey the same distribution condition. Due to the high imbalance of
different types of data, the training effect of the model is poor. Therefore, the method of
oversampling is adopted in this paper to increase the number of charging samples.

At present, many studies have used machine learning methods to predict charging
behavior [40–42], and the prediction effect is good. Therefore, Random forest (RF), Deep
neural network (DNN), XGBoost, and Support vector machine (SVM) are selected in this
paper to predict the charging behavior of BEV users, and the prediction results of different
models are compared.
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5.3.1. Support Vector Machine

SVM has the advantages of global optimization and simple structure, and it still has
strong classification in the case of small samples and high dimensions [43].

According to SVM theory, there is a hyperplane for the samples to be classified, so that
the two types of samples are completely separated. The hyperplane is:

wTx + b = 0 (6)

In Equation (6): w represents the normal vector of the hyperplane and determines
the direction of the hyperplane; b represents the distance between the hyperplane and
the origin:

miny =
‖ w ‖2

2
+ C

(
n

∑
i=1

ξi

)
(7)

s.t. yi

(
xi·wT + b

)
≥ 1− ξi, i = 1, 2, . . . , n (8)

where C is the penalty factor, which controls the penalty degree of the misclassified samples;
ξi is a slack variable, and each sample has a corresponding slack variable that characterizes
the extent to which the sample does not satisfy the constraint.

By optimizing Equations (7) and (8), an optimal hyperplane can be found that separates
different types of data and separates the farthest.

5.3.2. XGBoost

XGBoost is to continuously add a new weak estimator to fit the error generated by
the previous weak estimator training, so that the residual between the true value and the
predicted value is continuously reduced. After iteration ends, the predicted results on
each estimator are weighted and combined to obtain the predicted results. In XGBoost, its
prediction function is shown in Equation (9):

y∗i =
N

∑
j=1

f j(xi) (9)

In the formula: xi is the input of the i-th sample; N is the number of decision trees;
f j(xi) is the predicted value of the i-th sample on the j-th tree; and y∗i is the predicted value
of the i-th sample.

The objective function of XGBoost consists of two parts: loss function and regulariza-
tion. The regularization objective function is shown in Equations (10) and (11):

Obj(t) =
n

∑
i

l(yi, y∗i ) +
t

∑
i=1

Ω( fi) (10)

Ω( fi) = γT +
1
2

α
T

∑
j=1

w2
j (11)

In Equation (10) Obj(t) denotes the objective function after t iterations; yi represents the
actual value of the i-th sample; Ω( fi) is the penalty term of the t-th iteration model, which
can reduce the overfitting of the model. In Equation (11), wj is the weight of leaf node; T is
the number of leaf nodes; γ is the penalty coefficient; and α is the regularization coefficient.

5.3.3. Random Forest

Different from other machine learning models, random forest samples and random
sampling of features reduce the sensitivity to data noise and outliers in the classification
process, and effectively avoid overfitting.
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The basic classifier of random forest algorithm is Classification and Regression Tree
(CART). The algorithm constructs a decision tree based on information entropy and specific
criteria. The Gini index minimum criterion is used to select the feature attributes when the
node is split. The feature attributes can be selected by the Gini index and the purity of the
sample can be reflected by the Gini value.

The purity of the data set δ is defined as:

Gini(δ) =
I

∑
i=1

∑
i′ 6=i

pi pi′ = 1−
I

∑
i=1

p2
i (12)

In the formula: pi is the probability that the sample point belongs to the class i; I
represents the category of the data set δ.

The Gini index is defined as:

Gini(δ, α) =
I

∑
k=1

δk

δ
·Gini

(
δk
)

(13)

In the formula: α is the characteristic condition; k represents the class in the data set δ
that satisfies the characteristic condition α.

5.3.4. Deep Neural Network

The most important functions of DNN are nonlinear mapping function and strong
generalization ability. This paper implements the DNN model through the TensorFlow deep
learning framework. The DNN structure is shown in the Figure 27. The input variable of the
network is x = (x 1, x2, . . . , xn)

T , the output vector is y = (y 1, y2, . . . , yk)
T , and the weight

matrices w and v in the hidden layer are (w1, w2, . . . , wm) and (v1, v2, . . . , vl), respectively.
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For hidden layers:

oj = f 1

(
N

∑
i=0

wijyi

)
i = 1, 2, . . . , l (14)

For output layer:

yj = f 2

(
N

∑
i=0

vijxi

)
i = 1, 2, . . . , n (15)

The function f 1 corresponding to the hidden layer is the relu function, and the function
f 2 corresponding to the output layer is the SoftMax function.

As shown in Figure 28, the RF uses the Bagging method to generate an independent
identically distributed training sample set for each decision tree, and the final classification
result depends on the voting of all decision trees. In this paper, the grid search method
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is used to determine the hyperparameters of SVM, XGBoost, and RF models. For RF: the
number of trees is 250 and the depth of the tree is 25; for SVM: Gaussian kernel function
is selected, the kernel function coefficient is 0.01, and the penalty coefficient is 1000; for
XGBoost: the learning rate is 0.3, the maximum depth of the tree is 15, and the number of
trees is 300.
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For ANN training, when the number of hidden layers of the network is three (the
numbers of neurons in each layer are 128, 256 and 128, respectively), the structure is the
most suitable, and the dropout method is used to prevent overfitting during the training
process. The Adam algorithm is used to optimize the model, with Relu as the activation
function of the hidden layer and softmax as the activation function of the output layer. In
addition, the learning rate is set to 0.001, the batch size is 32, and the number of iterations
is 15 epochs.

Table 12 shows the output of the model’s test set. A confusion matrix is used, and
three test metrics are adopted to evaluate the prediction effect of the models, which are
Precision, Recall, and F1-score. It can be found that the Precision of RF and XGBoost is
slightly higher, which indicates that the prediction results of the RF model are often closer
to the actual results.

Table 12. Results of different models.

Type Precision Recall F1-score

PCPC NPCPC NC PCPC NPCPC NC PCPC NPCPC NC

ANN 0.67 0.68 0.77 0.68 0.76 0.68 0.67 0.71 0.72
RF 0.84 0.88 0.85 0.87 0.91 0.79 0.86 0.90 0.82

XGBoost 0.84 0.89 0.87 0.89 0.91 0.81 0.87 0.90 0.84
SVM 0.54 0.56 0.78 0.29 0.13 0.96 0.38 0.21 0.86

Stacking
Ensemble 0.86 0.86 0.91 0.89 0.90 0.83 0.87 0.90 0.85

Voting Ensemble 0.85 0.90 0.87 0.89 0.91 0.81 0.87 0.90 0.84

PCPC: PCP Charging; NPCPC: Non-PCP Charging; NC: No Charging.
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To further improve the accuracy of the model, the above two best performing models
are then integrated as the Ensemble model. We use two variants of ensemble superposition,
namely voting classifier and stacking classifier. In the voting classifier, multiple base
classifiers are trained on the entire training set, and the average prediction made by the
base model is taken as the final prediction. The stacking classifier is based on the concept
of stacked generalization, where prediction from the underlying model is used as inputs to
the final estimator, which is trained using cross-validation to generate prediction [44]. It
can be found that the best prediction results are obtained using the integrated algorithm
with a maximum accuracy of 91%.

6. Conclusions

Based on the on-board data of 168 private BEV users in Beijing, deep insight on the
charging behaviors are carried out to find the rules and relationship between the influencing
factors, such as driving cycle, temperature, owning private charging piles or not, etc. The
appearance of the PCPs can affect the users’ charging behaviors to a certain extent. The
main conclusions are summarized as follows:

The charging peak effect is evident, no matter on the weekday or weekend. The
different charging patterns for weekdays and weekends among users with PCPs and users
without PCPs were identified. For users with PCPs, the charging peak appears at night
from 20:00 to 21:00. While for the users without PCPs, on the weekday, there are two
charging peaks in public charging piles; one is at 10:00–11:00 and the other is at 17:00–18:00.
However, at the weekend, the peak appears at 19:00–20:00. In addition to comparing the
charging differences in different user groups, we superimposed the charging load curve
of the BEVs with the base load curve and found a very obvious peak addition situation.
This will lead to potential high negative influence on the power load to grid. Therefore, the
orderly charging based on peak–valley price differences will be the key factor to change
the user’s charging behavior.

The charging behaviors of Beijing BEV users are influenced by many factors; however,
range anxiety plays the most important role among them for users without PCPs. Due to the
presence of PCPs, users with PCPs have lower mileage anxiety, more diverse charging time
options, and a wider charging time duration. With 40% or lower start SOC, the proportion
of users without PCPs (weekday: 55.9%; weekend: 59.9%) is larger than users with PCPs
(weekday: 45.5%; weekend: 42.6%). The lack of available charging piles nearby is the main
reason for the low charging start SOC level. Meanwhile, users without PCPs have a certain
decrease in the range of 60–80% start charging SOC. The median charging time duration
of users with PCPs is 51.44 h (2–3 days). In addition, the median charging time duration
is 17.25 h (0–1 day) for users without PCPs. Obviously, the overall charging interval of
users without PCPs are shorter than that of users with PCPs, indicating that PCPs greatly
decreases the charging frequency of users.

The rules of charging behaviors are very important to obtain an optimal infrastructure
deployment scheme and draft more feasible incentive policies. However, in the next step,
still some important factors should be included in our research. Future research will
consider the driving behavior of users and establish the usage patterns of BEVs for different
users, taking the influence of the performance evolution of BEV into consideration, as well
to complete the model, so as to better evaluate the impact of BEV charging load on the
electricity grid, optimize the layout of charging facilities, and realize the construction of a
PCP sharing platform.
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Nomenclature

PCP Private charging pile
EV Electric vehicle
BEV Battery electric vehicle
MC Monte Carlo
ABTCM Agent-based trip chain model
MLR Multinomial logistic regression
MLA Machine learning algorithm
RF Random forest
DNN Deep neural network
SVM Support vector machine
SOC State of charge
POI Point of interest
CART Classification and regression tree
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