
Citation: Dong, L.; He, W.; Yao, H.

Task Offloading and Resource

Allocation for Tasks with Varied

Requirements in Mobile Edge

Computing Networks. Electronics

2023, 12, 366. https://doi.org/

electronics12020366

Academic Editor: Juan-Carlos Cano

Received: 6 December 2022

Revised: 5 January 2023

Accepted: 7 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Task Offloading and Resource Allocation for Tasks with Varied
Requirements in Mobile Edge Computing Networks
Li Dong * , Wenji He and Haipeng Yao *

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100101, China
* Correspondence: donglisci@gmail.com (L.D.); yaohaipeng@bupt.edu.cn (H.Y.)

Abstract: Edge computing enables devices with insufficient computing resources to offload their
tasks to the edge for computing, to improve the service experience. Some existing work has noticed
that the data size of offloaded tasks played a role in resource allocation shares but has not delved
further into how the data size of an offloaded task affects resource allocation. Among offloaded
tasks, those with larger data sizes often consume a larger share of system resources, potentially
even monopolizing system resources if the data size is large enough. As a result, tasks with small
or regular sizes lose the opportunity to be offloaded to the edge due to their limited data size. To
address this issue, we introduce the concept of an emergency factor to penalize tasks with immense
sizes for monopolizing system resources, while supporting tasks with small sizes to contend for
system resources. The joint offloading decision and resource allocation problem is formulated as a
mixed-integer nonlinear programming (MINLP) problem and further decomposed into an offloading
decision subproblem and a resource allocation subproblem. Using the KKT conditions, we design a
bisection search-based algorithm to find the optimal resource allocation scheme. Additionally, we
propose a linear-search-based coordinate descent (CD) algorithm to identify the optimal offloading
decision. Numerical results show that our proposed algorithm converges to the optimal scheme (for
the minimal delay) when tasks are of regular size. Moreover, when tasks of immense, small and
regular sizes coexist in the system, our scheme can exclude tasks of immense size from edge resource
allocation, while still enabling tasks of small size to be offloaded.

Keywords: task offloading; edge computing; offloading decision; KKT; coordinate descent

1. Introduction

Mobile edge computing (MEC) has been prevailing in recent years for deploying
computing resources at the network edge in proximity to end-user devices [1,2]. End
users request a task offloading to improve service experiences [3]. However, the limited
resources deployed at the edge can be overwhelmed by the ever-increasing number of user
devices (UDs). Furthermore, the data size of different tasks ranges from tens of kilobytes to
hundreds of megabytes, and the satisfactory completion time of these tasks can range from
tens of milliseconds to several seconds. Therefore, an important research topic is how to
effectively utilize the limited resources at the edge to provide satisfactory service quality
for tasks with varied requirements.

Task offloading combined with resource allocation has garnered significant research at-
tention in recent years [4]. Ensuring that critical tasks can be processed in a timely manner in
delay-sensitive scenarios [5,6], such as automated driving [7], industrial manufacturing [8],
smart cities [9], is of paramount importance. As such, the allocation of bandwidth and
computing resources should be biased towards tasks with higher requirements and/or im-
portance. While previous research has focused on minimizing task execution time [10–13]
and energy consumption [14], there have been relatively few studies that focus on re-
source allocation among tasks with significant differences in data size. Naouri et al. [15]

Electronics 2023, 12, 366. https://doi.org/10.3390/electronics12020366 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020366
https://doi.org/10.3390/electronics12020366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7808-4668
https://orcid.org/0000-0003-1391-7363
https://doi.org/10.3390/electronics12020366
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020366?type=check_update&version=4

Electronics 2023, 12, 366 2 of 18

differentiated tasks into high-computation and high-communication tasks and proposed
processing high-communication tasks at the edge or nearby peer devices, while offloading
high-computation tasks to the cloud. Some prior work [10,11,16] formulated the closed-
form solution for bandwidth and computing resource allocation in time-division multiple
access (TDMA) MEC systems, indicating that the share of bandwidth allocated to the of-
floaded task was proportional to its data size. However, these studies have not thoroughly
examined the impact of significant differences in data size on resource allocation, or how to
address this issue if necessary.

While some articles [10,11] have attempted to differentiate the weights of mobile
devices (tasks) to emphasize the differences in task requirements, to our knowledge, they,
like other existing works, have overlooked the fact that tasks with small data sizes may
be crowded out of resource allocation by tasks with immense sizes, thereby losing the
opportunity to be offloaded. In this paper, we investigate the offloading decision and
resource allocation mechanism among tasks with significant differences in data size, and we
propose a scheme to prevent tasks with immense sizes from monopolizing system resources,
while still allowing tasks with small sizes to contend for system resources. The main
contributions of this paper are as follows:

• To address the issue of tasks with immense sizes monopolizing system resources,
we introduce the concept of an emergency factor to support tasks with small sizes
in contending for system resources. The joint optimization of offloading decisions
and edge resource allocation among tasks with significant differences in data size is
formulated as a mixed-integer nonlinear programming problem.

• We decompose the MINLP problem into two subproblems and propose a linear-search-
based coordinate descent method and a bisection-search-based resource allocation
algorithm to address the offloading decision and resource allocation subproblems,
respectively.

• Simulation results demonstrate the effectiveness of our proposed scheme in regulating
offloading decisions and resource allocation when there is a significant difference in
the data size of the offloaded tasks. When the tasks are of regular size, our scheme
obtains the minimum delay as the compared baseline scheme.

The remainder of this paper is organized as follows. Section 2 discusses the related
work. Section 3 shows the details of the proposed system model. Section 4 introduces
the optimal solution based on the KKT conditions and CD. Finally, Section 5 presents the
simulation results and analyses, and we conclude our work in Section 6.

2. Related Work

Existing research on task offloading and resource allocation has focused on various
objectives. Some studies aim to minimize task completion time in the system. Ren et al. [11]
designed a subgradient-based algorithm to reduce latency for mobile devices with divis-
ible compression tasks. Xing et al. [17] minimized task execution time with the help of
helpers in a TDMA system, using relaxation-based and decoupling-based approaches to
obtain a suboptimal solution. Zhao et al. [18] jointly optimized beamforming and resource
allocation to minimize the maximal delay encountered by users in the mmWave MEC
system. Ning et al. [19] incorporated cloud and mobile edge computing and formulated a
computation delay minimization problem with limited bandwidth resources. Li et al. [20]
minimized service delay with a user-mobility prediction model in heterogeneous networks.
Chen and Hao [21] minimized total task duration in software-defined ultradense networks.
Tang and Wong [22] proposed a deep reinforcement learning (DRL) method to decide on
the task offloading issue and introduced computation and transmission queues to model
delays encountered in the MEC system. Edge computing resources were equally allocated
for tasks at edge nodes, which implied that the computing resources allotted to current
tasks would be reduced with the arrival of new tasks.

Electronics 2023, 12, 366 3 of 18

In addition, part of the current literature focuses on designs that minimize energy
consumption in MEC systems. You et al. [23] studied an energy-efficient wireless resource
allocation policy for computation offloading in both TDMA and orthogonal frequency-
division multiple access (OFDMA) systems. Chen et al. [24] jointly optimized bandwidth
and computation resource allocation to minimize UDs’ expected energy consumption,
considering caching. The initial problem was formulated as an MINLP, and the caching
decision subproblem was decoupled and solved by a learning-based deep neural net-
work. Dai et al. [25] designed a DRL method to learn a joint offloading decision and edge-
computing resource allocation policy to minimize energy consumption. Chen et al. [26]
incorporated the Monte Carlo tree search (MCTS) algorithm with a deep neural network
to learn the optimal bandwidth and computing resource allocation policy. Yan et al. [27]
investigated the offloading and resource allocation problem for tasks under the general
dependency model. An actor–critic-based DRL method was proposed to generate the
offloading actions.

Furthermore, there have been several efforts to design the task offloading and re-
source allocation schemes based on other optimization goals. Chen et al. [28] established a
Stackelberg game based incentive mechanism to motivate BS to allocate resources more
reasonably. Bi and Zhang [16] modeled the computation rate maximization problem in
wireless-powered TDMA edge networks as an MINLP problem, which was further de-
coupled and solved with the ADMM-based method and coordinate descent (CD) method.
Huang et al. [29] decoupled the computation rate maximization problem into a computa-
tion offloading decision subproblem and a wireless resource allocation subproblem. They
solved the offloading decision subproblem with a DNN method and the wireless resource
allocation subproblem with a one-dimensional bisection search method. Furthermore,
Bi et al. [30] adopted the Lyapunov optimization theory to decompose the maximization
problem of the long-term weighted sum of the computation rate of all devices into a single-
step optimization problem solved with an actor–critic-based deep reinforcement learning
method. While some existing research has considered caching [2,24,31] in edge networks
and user mobility issues [13,20,32], it falls outside the scope of this paper.

The characteristics of part of the discussed works are summarized in Table 1. However,
they all ignore that in resource allocation, the allocation share for small-data-volume
tasks can be crowded out by large-data-volume tasks. Therefore, this paper reveals how
this happens and present our solutions to eliminate this effect.Since this paper focuses
on tasks with significant differences in data size, its explosive state space would pose a
substantial challenge to model training for deep reinforcement learning methods using
neural networks. Therefore, the deep reinforcement learning algorithm is not considered in
this paper.

Table 1. Summary of part of the discussed works.

Work Offloading Mode Optimization Variables Objective Methodology

[10] Partial λ, x, b, α D Decomposition and Karush–Kuhn–Tucker conditions

[11] Partial λ 8, b, α D Lagrange multiplier method

[12] Partial λ, α, p 9 D Successive convex approximation

[14] Binary y, p, b, α E Branch-and-bound

[16] Binary x, b, α R 6 The alternating direction method of multipliers and CD

[25] Binary x, y 7, α E Deep deterministic policy gradient (DDPG)

[26] Binary x 1, b 2, α 3 D 4, E 5 Monte Carlo tree search, DNN and replay memory

[27] Binary x, α D+E Actor–critic-based DRL

Electronics 2023, 12, 366 4 of 18

Table 1. Cont.

Work Offloading Mode Optimization Variables Objective Methodology

[30] Binary x, b, α R 6 Lyapunov optimization and DRL

Our work Binary x, b, α, p Revenue maximization CD and Lagrange multiplier method
1: x denotes the offloading decision vector; 2: b denotes the communication resource allocation vector; 3: α denotes
the edge-computing resource allocation vector; 4: D stands for latency/delay minimization; 5: E stands for energy
consumption minimization; 6: R stands for computation rate maximization; 7: denotes the computation node
selection vector; 8: λ denotes the splitting ratio; 9: p denotes the transmission power.

3. System Model

As shown in Figure 1, the system works in an OFDMA manner and consists of a
base station serving M UDs from a setM = {1, 2, 3, · · · , M}. The BS is endowed with
a bandwidth B (in hertz) and connected with an edge server whose computing capacity
is denoted as Fe (in CPU cycles). AP, BS and the edge are used interchangeably in the
remainder of this article. Multiple UDs undertaking F types of computation tasks contend
for resources to shorten task completion time. In this paper, we classified computation
tasks into four categories (i.e., F = 4) based on their data size, i.e., tasks of small size, tasks
of regular size, tasks of large size and tasks of immense size.

Smart phone Vehicle SensorMonitor VR

BS MEC Server

Figure 1. System model.

A computation task is denoted as a quadruplet om = (ρ
f
m, l f

m, e f
m, T f

m). ρ
f
m denotes the

number of CPU cycles required to process one bit of task t f
m (f ∈ {1, 2, · · · , f , · · · , F}) on

UD m. l f
m (in bits) represents the data size of task t f

m. e f
m is the emergency factor of task t f

m,
which can be utilized to regulate resource allocation and offloading decisions. T f

m indicates
the maximum acceptable processing delay of t f

m. It is worth mentioning that although the
emergency factor is described as an inherent part of the task, it can also be defined as a
configurable parameter managed by the BS. o = {om}M contains all the task information
from UDs requesting a task offloading. Instead of the arbitrary divisible task processing
model, the binary task processing model was considered in this paper. It was assumed
that a task was either completed locally (xm = 0) or at the AP (xm = 1), where xm is the
task offloading decision of UD m. Once xm = 1, the AP has to allocate αm ∈ (0, 1] of its

Electronics 2023, 12, 366 5 of 18

wireless bandwidth and βm ∈ (0, 1] of its computing resources to task t f
m. All the resources

allocated to UDs should not exceed the AP’s capacity,

M

∑
m=1

xmαm ≤ 1, (1)

M

∑
m=1

xmβm ≤ 1. (2)

In this study, we focused on the offloading decision and resource allocation within
a scheduling slot. It was assumed that each user device (UD) had at most one task to
process and the channel status between each UD and the base station was assumed to
be quasi-static.

3.1. Local Computing

Once t f
m has to be processed locally, i.e., xm = 0, UD m exploits the fm of the computing

resources to process the task. fm should not violate the capacity constraint,

fm ≤ Fcm , ∀m ∈ M, (3)

where Fcm is the maximum computing speed in CPU cycles and Fc = (Fc1, Fc2, · · · , FcM)
denotes the computing capacity of UDs in the system. Then, the local processing delay can
be written as

tloc
m =

ρ
f
ml f

m
fm

,∀m ∈ M. (4)

3.2. Edge Computing

UD m utilizes the allocated bandwidth αmB to upload task data for edge computing.
Hence, the maximum achievable transmission rate can be calculated by [10]

rup
m = αmBlog2(1 +

pmh2
m

σ2) = αmRm, (5)

where pm represents m’s transmit power, and hm denotes the channel gain between m
and the AP. σ2 indicates the background noise power. Accordingly, the corresponding
transmission delay can be expressed as

tup
m =

l f
m

rup
m

=
l f
m

αmBnlog2(1 +
pmh2

m
σ2)

. (6)

The BS allocates βmFe of its computing resources to process t f
m after the transmission.

In this case, the corresponding computation delay can be denoted as

tcom
m =

ρ
f
ml f

m
βmFe

. (7)

3.3. Problem Formulation

We aim to maximize the processing time gain harvested from the task offloading. Here-
after, the term revenue and reward are used interchangeably to denote this objective. The joint
task offloading and resource allocation problem at the edge with constrained bandwidth and
computing resources is formulated as a mixed-integer nonlinear-programming (MINLP)
problem, which is denoted as

Electronics 2023, 12, 366 6 of 18

Maximize
x, f ,p,α,β

:
M

∑
m=1

xme f
m(T

f
m − tup

m − tcom
m) + (1− xm)e

f
m(T f

m − tloc
m) (8)

s.t. C1 :
M

∑
m=1

xmαm ≤ 1

C2 :
M

∑
m=1

xmβm ≤ 1

C3 : fm ≤ Fcm ,∀m ∈ M
C4 : pm ≤ Pmax

m ,∀m ∈ M
C5 : xm ∈ {0, 1} (P0)

C1 is the bandwidth allocation constraint, and C2 is the computing resource allocation
constraint. C3 reveals the maximum local computing speed, while C4 shows a UD’s
maximal transmit power.

The formulated problem (P0) is intractable due to the coupling of variables
x = (x1, x2, · · · , xm, · · · , xM), α = (α1, α2, · · · , αm, · · · , αM) and β = (β1, β2, · · · , βm, · · · , βM).
However, once x = {xm}M is determined, (P0) is reduced to a convex optimization problem.

4. Decoupled Computation Offloading and Resource Allocation with Coordinate
Descent (CD)

Inspired by [17], we adopted the CD method [16] to obtain the offloading scheme
x = (x1, x2, · · · , xm, · · · , xM), where xm ∈ {0, 1} indicates whether UD m offloads or
not. The core idea of the CD-based scheme is to fix xi

−m = (xi
1, · · · , xi

m−1, xi
m+1, · · · , xi

M)
iteratively (that is, to use the value in the ith iteration) and find the local optimum on
xi+1

m . With the generated offloading scheme, the initial problem (P0) can be divided into
two parts, i.e., a local processing part forM0 = {n|xn = 0, ∀n ∈ M} (P1) and an edge
resource allocation part M1 = {m|xm = 1, ∀m ∈ M}(P2). The whole procedure is
summarized in Algorithm 1.

Algorithm 1 : Linear CD-Aided Optimal Resource Allocation
Input: ϑ = (ϑ1, ϑ2, · · · , ϑM) in ascending order
Output: offloading decision x∗ and corresponding resource allocation scheme osch;

x0 ← (0, 0, · · · , 0);
for i in {1, 2, · · · , M} do:

xi ← xi−1
−m and xi

m = 1;
get (αi, βi, pi) with xi as the input of Algorithm 2 and calculate ri with (8);
record ri, xi and (αi, βi, pi);

find the max ri and corresponding offloading scheme xi and resource allocation scheme
(αi, βi, pi), which is recorded as maxR, x∗ and osch, respectively;

while True do:
for i ∈ {1, 2, 3, · · · , M} do:

x← osch, and xi ← xi ⊕ 1 (⊕ is the XOR operator);
obtain (α, β, p) and r with Algorithm 2 (x as the input) and calculate r with (8);
record r,x and (α, β, p);

if the maximum of recorded r > maxR then
maxR← rmax , x∗ ← xmax and osch← oschmax;

else
break;

return scheme x∗, osch;

Electronics 2023, 12, 366 7 of 18

For each x, we solve the corresponding (P1) and (P2) and obtain a feasible solution
to (P0). The computation complexity of our proposed bisection-search-based resource
allocation scheme in Algorithm 2 is O(M) [16]. For the worst case, the CD method solves
(P1) and (P2) M2 times with Algorithm 2 to search for the best offloading decision scheme
with maximized system gain. Therefore, the overall complexity of our proposed scheme
to solve (P0) is O(M3). For simplicity, we used the brute-force search method to compare
with our CD-based algorithm. The brute-force method enumerates all the 2M offloading
schemes and solves the corresponding (P1) and (P2), resulting in a complexity ofO(M22M).
But it is never a time-friendly solution because the computation time grows exponentially
with M (e.g., ≥ 8 UDs).

Algorithm 2 : Bisection-Search-Based Resource Allocation

Input: x0 = (x1, x2, · · · , xm, · · · , xM);
Output: the optimal (α∗, β∗, p∗);

M1 = {m|xm = 1, ∀xm ∈ x0} for offloading UDs;
δ = 1× 10−6, Lowerλ1 = 0, Lowerλ2 = 0, Uperλ1 and Uperλ2 are big enough;
while |Uperλ1 − Lowerλ1 | ≥ δ do

if U1(λ1) > 0 then
Uperλ1 = λ1;

else
Lowerλ1 = λ1;

while |Uperλ2 − Lowerλ2 | ≥ δ do

λ2 =
Lowerλ2

+Uperλ2
2 ;

if U2(λ2) > 0 then
Uperλ2 = λ2;

else
Lowerλ2 = λ2;

for m ∈ M1 do
pm = Pmax

m ;
return (αm, βm, pm);

4.1. Local Processing Part

Once the offloading decision is determined, tasks processed locally can be extracted
and further expressed as:

Maximize
fn

: ∑
n∈M0

e f
n(T

f
n −

ρ
f
nl f

n
fn

)

s.t. C1 : fn ≤ Fcn ,∀n ∈ M0. (P1)

C1 represents the local processing capacity constraint. It is quite intuitive to infer from
(P1) that a UD will greedily utilize all its computing resources to process the task locally.
The best local computing resource allocation for UD n (n ∈ M0) is fn = Fcn. M0 andM1
represent the local processing UD set and offloading UD set, respectively. Thus, given
decision x, (P1) can be solved and calculated with fn = Fcn, n ∈ M0. The remaining
problem is how to solve (P2), which is described in the next section.

4.2. Edge Processing Part

For tasks offloaded to the edge, the BS allocates its available resources to accommodate
these requests. The optimal resource allocation problem between offloading UDs can be
denoted as:

Electronics 2023, 12, 366 8 of 18

Maximize
pm ,αm ,βm

: H = ∑
m∈M1

e f
m(T

f
m −

l f
m

αmBnlog2(1 +
pmh2

m
σ2)

− ρ
f
ml f

m
βmFe

) (9)

s.t. C1 : ∑
m∈M1

αm ≤ 1

C2 : ∑
m∈M1

βm ≤ 1

C3 : pm < Pmax
m ,∀m ∈ M1. (P2)

Corollary 1. (P2) is a convex optimization problem on pm, αm, βm ∀m ∈ M1 with a givenM1.

Proof. Please see the detailed proof in Appendix A.

To get the optimal allocation scheme for (P2), Lagrange multipliers λ1 and λ2 and
ω = {ωm}|M1|

m=1 are introduced, and the Lagrangian function is formulated as:

L(pm, α, β, λ1, λ2, ω) = ∑
m∈M1

e f
m(T

f
m −

l f
m

αmBnlog2(1 +
pup

m h2
m

σ2)
− ρ

f
ml f

m
βmFe

) + λ1(1− ∑
m∈M1

αm)

+ λ2(1− ∑
m∈M1

βm) + ∑
m∈M1

ωm(Pmax
m − pm);

the Karush–Kuhn–Tucker (KKT) conditions are denoted as:

∂L
∂αm

=
e f

ml f
m

α2
mBnlog2(1 +

pmh2
m

σ2)
− λ1 = 0 (10)

∂L
∂βm

=
e f

mρ
f
ml f

m

β2
mFe

− λ2 = 0 (11)

∂L
∂pm

=
e f

ml f
mh2

m

αmBn(1 +
pmh2

m
σ2)[log2(1 +

pmh2
m

σ2)]
2
σ2 ln 2

−ωm = 0 (12)

λ1(1− ∑
m∈M1

αm) = 0 (13)

λ2(1− ∑
m∈M1

βm) = 0 (14)

ωm(Pmax
m − pm) = 0 (15)

1− ∑
m∈M1

αm ≥ 0 (16)

1− ∑
m∈M1

βm ≥ 0 (17)

Pmax
m − pm ≥ 0 ,∀m ∈ M1 (18)

1− ∑
m∈M1

βm ≥ 0 (19)

λ1 ≥ 0 , λ2 ≥ 0 , ωm ≥ 0 ∀m ∈ M1. (20)

Corollary 2. The optimal allocation scheme is exhausted because all vacant resources are always
allocated to all UDs inM1. The optimal allocation scheme forM1 under the optimal λ∗1 and λ∗2 is:

(α∗m, β∗m, p∗m) = (
ϑm√

λ∗1
,

ζm√
λ∗2

, Pmax
m), (21)

Electronics 2023, 12, 366 9 of 18

where ϑm =

√
e f

m l f
m

Blog2(1+
Pmax

m h2
m

σ2)
and ζm =

√
e f

mρ
f
m l f

m
Fe

.

Proof. Please see the detailed proof in Appendix B.

For the sake of illustration, auxiliary functions U1(λ1) and U2(λ2) used to get λ∗1 and
λ∗2 are introduced and denoted as

U1(λ1) = 1− ∑
m∈M1

αm, (22)

U2(λ2) = 1− ∑
m∈M1

βm. (23)

U1(λ1) and U2(λ2) are monotonically decreasing with respect to λ1 and λ2, respectively.
Thus, the optimal λ∗1 and λ∗2 can be obtained by a bisection search on auxiliary functions
U1(λ1) and U2(λ2). Accordingly, the proposed resource allocation scheme is summarized
in Algorithm 2.

5. Simulation and Results

In this section, we compare the performance of our proposed linear CD-based algo-
rithm (LCD) with existing schemes and demonstrate the role of the emergency factor in
offloading decisions and resource allocation. Additionally, we compare our approach to a
DRL-based scheme [29] where the data size of a task was drawn from a distribution with
the probability p on regular size ([8, 10] megabits) and 1− p on small size ([2, 4] megabits),
large size ([16, 25] megabits) and immense size ([70, 80] megabits). Our scheme penalized
tasks of immense size by setting their emergency factor to Lre

εp Lim , where Lre is the average

of regular size, εp is the penalty coefficient and Lim is the data volume of the task with
immense data size. Conversely, we supported tasks of small size by setting their emergency
factor to εe Lre

Lsm , where εe is the enhancement coefficient and Lsm is the data volume of the
task with small data size. The baseline schemes used in this paper included:

• All offload (AO): all tasks are processed at the edge server.
• All local (AL): all tasks are processed locally.
• Random offload (RO): the offloading decision is randomly generated and the resource

allocation decisions are obtained with Algorithm 2.
• Brute-force search method (BF): searches all the 2M offloading schemes and selects the

one with the highest reward as the final solution.
• Naive coordinate descent (NCD): directly goes into the “while loop” [16] with the

randomly initialized x0 in Algorithm 1.
• Deep-reinforcement-learning-based scheme (DRL): uses channel conditions and task

data size to make offloading decisions and utilizes the critic module to get the resource
allocation scheme with minimum delay, which is slightly different from [29].

5.1. Simulation Setting

By default, there were M = 10 UDs in our system. The channel gain of the large-scale
fading model in this paper was Ad(

3×108

4π f0dm
)d0 χ [30], where Ad denotes the antenna gain

of a UD, f0 represents the carrier frequency, dm is the distance between UD m and BS
in meters, the path loss exponent was d0 = 2.6 and χ followed a Rayleigh distribution
with unit variance. The BS had a bandwidth of B = 2 MHz and a computing capacity of
Fe = 1× 1010 cycles/second by default. The maximal transmission power was Pmax

m = 0.2
(in watts). UD’s local computing capacity Fc took the value Fcm = 1× 108 ∀m ∈ M
cycles/second to 1× 109 cycles/second. The value of e f was set to 1, and T f = 1 as the
maximal acceptable service delay. We considered tasks of F = 4 categories, and ρ f was
randomly taken from {100, 1000} (in cycles/bit).

Electronics 2023, 12, 366 10 of 18

5.2. Result Discussion

In Figure 2, we varied Fc from Fcm = 1× 108 ∀m ∈ M to Fcm = 5× 107 ∀m ∈ M.
This caused tasks processed locally, as shown in Figure 2b, to time out. The results in
Figure 2a demonstrate that our proposed LCD algorithm could effectively converge to the
optimal scheme (results from BF) and the NCD method deviated slightly from the optimal
solution. Furthermore, the resources deployed at the edge could support the simultane-
ous task offloading for six to eight UDs (with a data size of one megabit). When UDs
exceeded that threshold, the overall revenue of the system significantly declined. However,
in Figure 2a, the overall rewards remained unchanged and even slightly increased as the
number of UDs increased. This was because the local computing resources were sufficient
to process the tasks locally without incurring negative rewards. The system could even en-
hance revenue by offloading tasks from UDs with more competitive conditions (e.g., better
channel conditions). This was no longer the case in Figure 2b for Fcm = 5× 107 ∀m ∈ M,
where the revenue declined as the number of UDs increased. In this scenario, processing
tasks locally resulted in negative rewards due to the timeout caused by an inadequate local
processing capacity.

� � 	 �� �� �� ��
��

���

���

��

�

��
�
��
��

�� �� ��
����
����

��
��
��
��

�

(a)

� � � �� �� �� ��
���

���

���

��

�

��
�
��
��

�
�
	�

�
��
��

(b)

Figure 2. Rewards versus UDs in the system. (a) Default setup where the maximal local com-
puting frequency Fc = 1 × 108 cycles/s. (b) The others are the same as the default, except for
Fc = 5× 107 cycles/s.

Electronics 2023, 12, 366 11 of 18

Figures 3–7 show how the offloading decision and resource allocation for all tasks
varied with the emergency factor e f

1 . We tested the emergency factor of a randomly se-

lected task (task t f
1 was selected) with a group of values ({2−4, 2−3, 2−2, 2−1, 1, 21, 22, 24, 28})

while keeping the other factors constant. We can see that for tasks that failed in the task
offloading competition, setting a higher e f value could not only improve the likelihood of
task offloading but also increased their share in the resource allocation phase (if they were
offloaded to the edge).

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10

�	���

���	��

�
��
�	
�

e1 =0.0625

e1 =0.125

e1 =0.25

e1 =0.5

e1 =1

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10

�	���

���	��

�
��
�	
�

e1 =1

e1 =2

e1 =4

e1 =16

e1 =256

Figure 3. Offloading decisions of UDs versus e f
1 .

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10
����

����

����

����

α

e1 =0.0625

e1 =0.125

e1 =0.25

e1 =0.5

e1 =1

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10
����

����

����

����

����

α

e1 =1

e1 =2

e1 =4

e1 =16

e1 =256

Figure 4. Bandwidth allocation of UDs versus e f
1 .

Electronics 2023, 12, 366 12 of 18

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10
����

����

����

β
e1 =0.0625

e1 =0.125

e1 =0.25

e1 =0.5

e1 =1

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10
����

����

����

����

����

β

e1 =1

e1 =2

e1 =4

e1 =16

e1 =256

Figure 5. Computing resource allocation of UDs versus e f
1 .

UD1 UD2 UD3 UD4 UD5 UD6 UD7 UD8 UD9 UD10
�

�

��

��

��

�
��
�
�
��
��
��
�
��
��
��ϑ

���� ���� ��	� ���� ���� ���� ���� ���� ���

ϑ1����	�

e1 =0.0625

e1 =0.125

e1 =0.25

e1 =0.5

e1 =1

e1 =2

e1 =4

e1 =16

e1 =256

Figure 6. ϑ of UDs versus e f
1 .

According to Figure 3, the optimal offloading decision under the default settings was
to process tasks t f

1 , t f
4 and t f

9 locally and to offload tasks of the other seven UDs to the

edge for processing. When the emergency factor (e f
1) of a locally processed task took on a

small value, nothing happened except that ϑ changed correspondingly. We can see that,
when e f

1 took on the values {2−4, 2−3, 2−2, 2−1} successively, UD 1 still processed task t f
1

locally, and the bandwidth allocation (shown in Figure 4) and edge computing resource
allocation (shown in Figure 5) for UD 2, UD 3, UD 5, UD 6, UD 7, UD 8 and UD 10 remained
unchanged. However, as e f

1 became large enough (e f
1 = 2), UD 1 started to offload task

t f
1 and was allocated some bandwidth and computing resources. Meanwhile, UD 3 and

UD 10 were crowded out of resources and processed their tasks locally. As e f
1 continued

to increase, more and more devices started to process their tasks locally. When e f
1 became

extremely large, UD 1 monopolized all resources in the system.

Electronics 2023, 12, 366 13 of 18

������ ����� ���� ��� � � � �� ���

�������������������UD1

�

�

�

�

�

	
��

��

�

��

���

���

���

��
�

��
�

UD1

UD2

UD3

UD4

UD5

UD6

UD7

UD8

UD9

UD10

�����������

Figure 7. Delay and rewards versus e f
1 .

It is noteworthy that when e f
1 shifted from one to two, not all the released bandwidth

from UD 3 and UD 10 was allocated to UD 1. This can be explained by Figure 6. We know
from Equation (21) that the bandwidth allocation share (αm) is proportional to e f

m. When
e f

1 took the value two, the corresponding ϑ1 was 1.180 (normalized), and ϑ1 < ϑ3 + ϑ10.
Therefore, the released bandwidth from UD 3 and UD 10 was reallocated to UD 1 and the
remaining offloading UDs (UD 2, UD 5, UD 6, UD 7 and UD 8). It is worth noting that as e f

1
became larger, existing offloading UDs with larger ϑ1 began to process tasks locally at first.
However, UD 9, with the largest ϑ9, could only process tasks locally all the time, while UD
1, with the smallest ϑ1, could only process tasks locally at first. Fortunately, when UD 1
obtained a larger ϑ1 (ϑ1 > ϑ9) due to a larger e f

1 , UD 1 could not only offload task t f
1 to the

edge for processing but also obtain a large share of resources. This indicated that f
m could

effectively regulate resource allocation and offloading decisions among UDs.
Figure 7 shows the processing delay of each task in the system and the total revenue

when e f
1 takes different values. When UD 1 began to offload its task for edge processing (the

emergency factor of UD 1 took the value two), both the total delay of each task in the system
and the system revenue increased. This was because a larger e f

1 indicated that the system
favored UD1 in the resource allocation and received a larger reward for prioritizing UD 1.
As a result, other UDs lost the opportunity to offload their tasks to the edge for processing.
When e f

m = 256, the completion time of all other UDs reached the maximum because
their tasks were processed locally. Although the reward increased significantly when e f

1
varied from 16 to 256, the total delay of all UDs increased because the edge resources were
exclusively occupied by UD 1.

Results in Figures 7 and 8 share the same offloading decision, bandwidth allocation
and edge computing resource allocation schemes. The distinction is that e f

m ∀m ∈ M
was set to the default value for all tasks, which meant e f

1 remained unchanged in this

situation. System rewards and processing delays of tasks were obtained when l f
1 shifted

from 2−4 to 256 times the default data size (1 megabit). With equal emergency factors,
i.e., e f

m = 1∀m ∈ M, those tasks of large data size were offloaded in preference to tasks of
small data size, even monopolizing the edge resources (l f

1 = 256 Mb). Tasks of large data
size were more advantageous for offloading decisions. When tasks were of the same data
size, task t f

1 could only be processed locally. As l f
1 got larger, the system preferred to process

Electronics 2023, 12, 366 14 of 18

task t f
1 (tasks with large quantities of data). This is what took place in existing research

works. From Figure 8, we can conclude that tasks of extremely large size will be offloaded
to the edge if no restrictions are taken. This is not what we want to see because it stops
UDs with limited computing resources from offloading their tasks to the edge. Luckily, we
can prevent a task of extremely large size from monopolizing edge resources by setting a
sufficiently small e f

m for the data-intensive computing task t f
m.

Figure 9 illustrates how the emergency factor impacts data-intensive tasks. We ran-
domly sampled from [80, 90, 10, 110, 120] megabits and set it as the data size of a randomly
selected task (t f

2 was selected and l f
2 = 100 Mb in this experiment). The data size of the

other tasks remained at the default value. Setting a sufficiently small emergency factor for
the task with a large data size prevented the task from monopolizing system resources.
When e f

2 took the default value, as the others (e f
m = 1∀m ∈ M), only t f

2 was offloaded to

the edge, and the processing delay of t f
2 was less than 10 s. As we set a smaller value of e f

2 ,
more and more UDs could offload their tasks to the edge for processing (UD 9 and UD 10
for e f

2 = 0.5, UD 3, UD 9 and UD 10 for e f
2 = 0.25). When e f

2 took the value 0.008, task t f
2

started to be processed locally. We can conclude that when the emergency factor of a task
with a large data volume is small enough, it loses its advantage in task offloading.

�����
 ����
 ���
 ��
 � � 	 �� �
�
�������������UD1�������

�

��

�

��

�

��

�

�
��
��

��

���

��

���

�

�

��
�
��
�

UD1

UD2

UD3

UD4

UD5

UD6

UD7

UD8

UD9

UD10

������������

Figure 8. Delay and rewards versus l f
1 .

2−7 2−6 2−5 2−4 2−3 ���� ��� � �
��������������������UD2

�

��

��

��

	�

���

��
��

��

��

��

�

�

�
�
��
�

UD1

UD2

UD3

UD4

UD5

UD6

UD7

UD8

UD9

UD10

�����������

Figure 9. Delay and rewards versus e f
2 .

Electronics 2023, 12, 366 15 of 18

In Figure 10, we compare the performance among “DRL” [29], “LCD”, “RO” and
“AL” (results are organized in this order) under different sampling probabilities. We tested
four types of tasks of different data sizes: regular size, small size, large size and immense
size. We can see that both our LCD scheme and the DRL scheme achieved the minimum
delay when tasks were of regular size (sampling probability p = 1). However, when tasks
of immense size (the task from UD 8) and regular size coexisted (p = 0.9), our scheme
penalized tasks of immense size by setting sufficiently small emergency factors for tasks of
immense size, which in turn disadvantaged our scheme in obtaining the minimum delay.
Similarly, when tasks of small size (tasks from UD 2 and UD 8) emerged (p = 0.8), our
scheme failed to obtain the minimum delay as well. However, our scheme succeeded in
excluding tasks of immense size from a monopoly on edge resources and supporting tasks
of small size to contend for edge resources. For example, tasks from UD 2 and UD 8 with
p = 0.8 and tasks from UD2, UD5 and UD 10 with p = 0.9 obtained shorter delays when
compared with the DRL scheme.

��� ��� �

�����������

�

��

��

��

��

���

���

���

���

	
�
��

UD1

UD2

UD3

UD4

UD5

UD6

UD7

UD8

UD9

UD10

Figure 10. Delay versus the sampling probability.

6. Conclusions

Current task-offloading schemes targeting a minimum delay tend to prioritize tasks
of large data size, which prevents tasks of small data size from being offloaded. When
coexisting with tasks of large data size, tasks of small data size may lose opportunities
to be offloaded to the edge for processing. In this paper, we introduced the emergency
factor to penalize tasks of immense size for monopolizing system resources and support
tasks of small size in contending for system resources. The joint task offloading and
resource allocation issue was formulated as an MINLP problem that aimed to maximize the
processing time reward. A bisection-search-based resource allocation algorithm combined
with a CD-based method was proposed to solve the problem. Simulation results validated
the effectiveness of our proposed scheme in regulating offloading decision and resource
allocation when there was a significant difference in the data size of the offloaded tasks.

In future work, we will study resource allocation based on a more fine-grained task
classification scheme and explore the use of state-of-the-art deep reinforcement learning
methods [29,33] for efficiency. We may also consider schemes for different objectives, such
as profit [28] and QoS, and may also consider deploying caching [24,31] at the edge.

Electronics 2023, 12, 366 16 of 18

Author Contributions: Conceptualization, L.D. and H.Y.; methodology, H.Y.; software, L.D.; valida-
tion, L.D. and W.H.; formal analysis, L.D.; investigation, L.D.; resources, H.Y.; data curation, L.D.
and W.H.; writing—original draft preparation, L.D.; writing—review and editing, L.D. and W.H.;
visualization, L.D.; supervision, H.Y.; project administration, H.Y.; funding acquisition, H.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof. The first terms in stationarity Equations (10)–(12) are positive, which result in
the positiveness of Lagrangian multipliers λ1, λ2, ω. Furthermore, the complementary
slackness Equations (13)–(15) hold only when

1− ∑
m∈M1

αm = 0, (A1)

1− ∑
m∈M1

βm = 0, (A2)

Pmax
m − pm = 0. (A3)

Then, as we go back to (10), with a fixed λ1, αm can be derived as αm = ϑm√
λ1

. Similarly,

βm can be derived as βm = ζm√
λ2

from Equation (11) and pm = Pmax
m from Equation (A3).

Appendix B

Proof. (C1), (C2) and (C3) are affine functions with respect to the corresponding opti-
mization variables in (P2). Most importantly, it has been discovered that the objective
function is a concave function when the second partial derivative with respect to pm, αm, βm
is calculated, and its value is strictly less than zero.

∂2H
∂pm2 = − e f

mh4
ml f

m

Bσ4αmG2
m(log2Gm)2 −

2e f
mh4

ml f
m

B2σ8α2
m(Gm)

4(log2Gm)
3 (A4)

∂2H
∂αm2 = − 2e f

ml f
m

Bα3
mlog2Gm

(A5)

∂2H
∂βm

2 = −2e f
ml f

mρ
f
m

Feβ3
m

, (A6)

where Gm = 1 + pmh2
m/σ2. For m in M1, pm > 0 guarantees Gm > 1. With all the

positive terms pm, αm, βm, e f
m, hm and l f

m, the second derivative functions in (A4)–(A6) are
always less than zero, which proves the concavity of (9). Hence, (P2) is a convex optimiza-
tion problem.

References
1. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
2. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and

communication by federated learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]
3. Chen, Y.; Zhang, N.; Zhang, Y.; Chen, X. Dynamic computation offloading in edge computing for internet of things. IEEE Internet

Things J. 2018, 6, 4242–4251. [CrossRef]

http://doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MNET.2019.1800286
http://dx.doi.org/10.1109/JIOT.2018.2875715

Electronics 2023, 12, 366 17 of 18

4. Wu, Y.; Ni, K.; Zhang, C.; Qian, L.P.; Tsang, D.H. NOMA-assisted multi-access mobile edge computing: A joint optimization of
computation offloading and time allocation. IEEE Trans. Veh. Technol. 2018, 67, 12244–12258. [CrossRef]

5. Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Khan, W.U. Task offloading and resource allocation for IoV using 5G
NR-V2X communication. IEEE Internet Things J. 2021, 9, 10397–10410. [CrossRef]

6. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J.P. On reducing IoT service delay via fog offloading. IEEE Internet Things J. 2018,
5, 998–1010. [CrossRef]

7. Yang, B.; Cao, X.; Xiong, K.; Yuen, C.; Guan, Y.L.; Leng, S.; Qian, L.; Han, Z. Edge intelligence for autonomous driving in 6G
wireless system: Design challenges and solutions. IEEE Wirel. Commun. 2021, 28, 40–47. [CrossRef]

8. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture,
advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

9. Peng, K.; Huang, H.; Liu, P.; Xu, X.; Leung, V.C. Joint Optimization of Energy Conservation and Privacy Preservation for
Intelligent Task Offloading in MEC-Enabled Smart Cities. IEEE Trans. Green Commun. Netw. 2022, 6, 1671–1682. [CrossRef]

10. Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 2019,
68, 5031–5044. [CrossRef]

11. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]

12. Kai, C.; Zhou, H.; Yi, Y.; Huang, W. Collaborative cloud-edge-end task offloading in mobile-edge computing networks with
limited communication capability. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 624–634. [CrossRef]

13. Saleem, U.; Liu, Y.; Jangsher, S.; Li, Y.; Jiang, T. Mobility-aware joint task scheduling and resource allocation for cooperative
mobile edge computing. IEEE Trans. Wirel. Commun. 2020, 20, 360–374. [CrossRef]

14. El Haber, E.; Nguyen, T.M.; Assi, C. Joint optimization of computational cost and devices energy for task offloading in multi-tier
edge-clouds. IEEE Trans. Commun. 2019, 67, 3407–3421. [CrossRef]

15. Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A novel framework for mobile-edge computing by optimizing task
offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

16. Bi, S.; Zhang, Y.J. Computation rate maximization for wireless powered mobile-edge computing with binary computation
offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [CrossRef]

17. Xing, H.; Liu, L.; Xu, J.; Nallanathan, A. Joint task assignment and resource allocation for D2D-enabled mobile-edge computing.
IEEE Trans. Commun. 2019, 67, 4193–4207. [CrossRef]

18. Zhao, C.; Cai, Y.; Liu, A.; Zhao, M.; Hanzo, L. Mobile edge computing meets mmWave communications: Joint beamforming and
resource allocation for system delay minimization. IEEE Trans. Wirel. Commun. 2020, 19, 2382–2396. [CrossRef]

19. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

20. Li, J.; Zhang, X.; Zhang, J.; Wu, J.; Sun, Q.; Xie, Y. Deep reinforcement learning-based mobility-aware robust proactive resource
allocation in heterogeneous networks. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 408–421. [CrossRef]

21. Chen, M.; Hao, Y. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun.
2018, 36, 587–597. [CrossRef]

22. Tang, M.; Wong, V.W. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput. 2020,21, 1985–1997. [CrossRef]

23. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2016, 16, 1397–1411. [CrossRef]

24. Chen, J.; Xing, H.; Lin, X.; Nallanathan, A.; Bi, S. Joint resource allocation and cache placement for location-aware multi-user
mobile edge computing. IEEE Internet Things J. 2022, 9, 25698–25714. [CrossRef]

25. Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Edge intelligence for energy-efficient computation offloading and resource allocation
in 5G beyond. IEEE Trans. Veh. Technol. 2020, 69, 12175–12186. [CrossRef]

26. Chen, J.; Chen, S.; Wang, Q.; Cao, B.; Feng, G.; Hu, J. iRAF: A deep reinforcement learning approach for collaborative mobile
edge computing IoT networks. IEEE Internet Things J. 2019, 6, 7011–7024. [CrossRef]

27. Yan, J.; Bi, S.; Zhang, Y.J.A. Offloading and resource allocation with general task graph in mobile edge computing: A deep
reinforcement learning approach. IEEE Trans. Wirel. Commun. 2020, 19, 5404–5419. [CrossRef]

28. Chen, Y.; Li, Z.; Yang, B.; Nai, K.; Li, K. A Stackelberg game approach to multiple resources allocation and pricing in mobile edge
computing. Future Gener. Comput. Syst. 2020, 108, 273–287. [CrossRef]

29. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge
computing networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [CrossRef]

30. Bi, S.; Huang, L.; Wang, H.; Zhang, Y.J.A. Lyapunov-guided deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks. IEEE Trans. Wirel. Commun. 2021, 20, 7519–7537. [CrossRef]

31. Fang, C.; Liu, C.; Wang, Z.; Sun, Y.; Ni, W.; Li, P.; Guo, S. Cache-assisted content delivery in wireless networks: A new game
theoretic model. IEEE Syst. J. 2020, 15, 2653–2664. [CrossRef]

http://dx.doi.org/10.1109/TVT.2018.2875337
http://dx.doi.org/10.1109/JIOT.2021.3121796
http://dx.doi.org/10.1109/JIOT.2017.2788802
http://dx.doi.org/10.1109/MWC.001.2000292
http://dx.doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.1109/TGCN.2022.3170146
http://dx.doi.org/10.1109/TVT.2019.2904244
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/TCCN.2020.3018159
http://dx.doi.org/10.1109/TWC.2020.3024538
http://dx.doi.org/10.1109/TCOMM.2019.2895040
http://dx.doi.org/10.1109/JIOT.2021.3064225
http://dx.doi.org/10.1109/TWC.2018.2821664
http://dx.doi.org/10.1109/TCOMM.2019.2903088
http://dx.doi.org/10.1109/TWC.2020.2964543
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1109/TCCN.2019.2954396
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/JIOT.2022.3196908
http://dx.doi.org/10.1109/TVT.2020.3013990
http://dx.doi.org/10.1109/JIOT.2019.2913162
http://dx.doi.org/10.1109/TWC.2020.2993071
http://dx.doi.org/10.1016/j.future.2020.02.045
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TWC.2021.3085319
http://dx.doi.org/10.1109/JSYST.2020.3001229

Electronics 2023, 12, 366 18 of 18

32. Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A survey of mobile information-centric networking: Research issues and
challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2353–2371. [CrossRef]

33. Fang, C.; Xu, H.; Yang, Y.; Hu, Z.; Tu, S.; Ota, K.; Yang, Z.; Dong, M.; Han, Z.; Yu, F.R.; et al. Deep-reinforcement-learning-based
resource allocation for content distribution in fog radio access networks. IEEE Internet Things J. 2022, 9, 16874–16883. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/COMST.2018.2809670
http://dx.doi.org/10.1109/JIOT.2022.3146239

	Introduction
	Related Work
	System Model
	Local Computing
	Edge Computing
	Problem Formulation

	Decoupled Computation Offloading and Resource Allocation with Coordinate Descent (CD)
	Local Processing Part
	Edge Processing Part

	Simulation and Results
	Simulation Setting
	Result Discussion

	Conclusions
	Appendix A
	Appendix B
	References

