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Abstract: In recent years, location-based social media has become popular, and a large number of
spatiotemporal trajectory data have been generated. Although these data have significant mining
value, they also pose a great threat to the privacy of users. At present, many studies have realized
the privacy-preserving mechanism of location data in social media in terms of data utility and
privacy preservation, but rarely have any of them considered the correlation between timestamps
and geographical location. To solve this problem, in this paper, we first propose a k-anonymity-
based mechanism to hide the user’s specific time segment during a single day, and then propose
an optimized truncated Laplacian mechanism to add noise to each data grid (the frequency of time
data) of the anonymized time distribution. The time data after secondary processing are fuzzy and
uncertain, which not only protects the privacy of the user’s geographical location from the time
dimension but also retains a certain value of data mining. Experiments on real datasets show that the
TDP privacy-preserving model has good utility.

Keywords: data publishing; trajectory data; privacy preserving; differential privacy

1. Introduction

With the rapid development of mobile communication technology and intelligent
terminal equipment, as well as the increased popularity of the Internet, various Internet
applications have been fully integrated into people’s daily lives [1]. These include Weibo,
WeChat, Zhihu, Instagram, Facebook, Twitter, and other social media platforms. Users
from different regions provide channels for sharing experiences and opinions, accelerate
and expand the dissemination of information, soften public opinion, etc. However, in social
networks, it takes a long time to meet the personalized needs of users and deliver accurate
advertisements, during which personal information and behavioral records are collected
on a regular basis, resulting in issues such as data access and usage with an increased
risk of leaking sensitive user information. In recent years, privacy on social media has
experienced an increased risk of data breaches. In 2018, Facebook held information on
more than 50 million users. Instagram has millions of users, many of whose personal data
such as email addresses and phone numbers were leaked, and the Zynga social gaming
platform had 218 million players in 2019. Therefore, regulating the collection of information
on personal data and user behavior in social networks is crucial to better protect personal
information, which involves the industry. The issue of user privacy security in social
media has garnered extensive attention around the world, among the general public and
academic circles alike. On social media platforms, one can respond to users’ requests to
help solve some of their problems. Although some measures have been taken to protect the
confidentiality of user information, the problem of user privacy disclosure may also occur.
Sanctions and restrictions lack relevance and flexibility, leading to a lack of information
privacy security and exacerbating user concerns. The cumulative effect of concerns over
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information privacy will further influence users’ perceptions of social media, thus affecting
the future use of social media and user intent and behavior in social networks [2]. The
number of physical users is increasing day by day, and user information on social media
is hidden. Confidentiality issues are also a concern of the academic community. As a
fundamental concept in information privacy research, data privacy is considered a hot
topic, and it also has an essential impact on companies that are encouraged to share personal
information as their original intention. Social network owners should be aware of user
information privacy issues that may arise. It is especially important to address the root
causes of user privacy concerns. Therefore, to review the current status of the privacy of
social media user information, protect the status quo, and protect the privacy of social
media user information, the key factors are researched and analyzed to establish a social
media information security system. Implementing such a system will also help increase
user information privacy and security awareness.

From a user perspective, our research shows that, while most Facebook users under-
stand the nature of privacy settings [3], they do not use the available privacy settings. In
social networking, what factors influence user behavior and readiness to adopt privacy
settings? Relevant studies have shown that demographic characteristics represent the
main factor influencing the privacy of social media users. A set of factors, mainly gender
and cultural factors, influence the perceptions of social network users. Privacy intent is
important, and women are more likely than men to log in and perform basic tasks such as
deleting photo tags, uploading photos, and requesting friends, while more frequently using
privacy settings. Currently, compared with social media users who promote a culture of
collectivism, in individualistic cultures, users are more willing to establish confidentiality.
In addition, the external environment is also a factor that influences the privacy settings
of social media users. The ability to obtain and read privacy-related news, information,
and anecdotal stories about privacy breaches can boost the awareness of social media
users regarding user-defined privacy settings. In addition, the user privacy settings also
involve other areas such as self-efficacy, perceived privacy literacy, privacy management,
and perception control.

The differential privacy problem involves statistical problems in databases. Currently,
differential privacy has been applied in the data analysis of social networks, and a large
number of network analysis techniques have been developed [4–8]. However, social
networks face many challenges in privacy protection. Social network data are very large
and can be modeled as a graph. Social relationships in social networks are highly connected
and do not represent a single individual. The dependence among users in statistical
databases may seriously weaken the privacy guarantee brought about by the differential
privacy mechanism.

Although various prioritization solutions toward mitigating differentially private
release for trajectory data in social media have been proposed, current schemes are still
afflicted by the following challenges:

• Weak privacy preservation: Perturbing trajectory data can protect individual’s accurate
location, but trajectory has a time property. The adversary can still know the habit of
people just by observing the time of an individual’s trajectory, e.g., we can know the
home location of people by observing their location in the morning or evening, even if
the trajectory is perturbed.

• Low-level utility: State-of-the-art methods try to add noise into the latitude and
longitude of the trajectory to perturb the real value. However, a noisy trajectory
means the loss of accuracy, which has a negative effect on trajectory mining tasks. In
real-world applications, we do not want this scene to happen.

• These challenges imply that a novel mechanism for differentially private release of
trajectory data in social media is in high demand. With respect to the first challenge, to
lift the weak privacy preservation, we attempt to perturb the time pattern based on the
k-anonymity algorithm. We use k-anonymity to generalize the time range of trajectory.
Then, the attacker cannot infer the habit of people just by observing the pattern of the
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trajectory’s time. For the second challenge, we add noise into the time of trajectory
instead of the latitude and longitude. In this way, we can guarantee high-level utility
because we do not change the value of the trajectory.

On the basis of these considerations, we propose an effective differentially private
release solution for trajectory data, including a novel concept of “time differential privacy”
(TDP) and a truncated Laplacian mechanism to conduct TDP. To the best of our knowledge,
TDP is the first differential privacy technique for trajectory data release that renders the
protection of the time pattern of trajectory. The original contributions of this paper are
as follows:

• To defend against inference attacks launched by adversaries who can observe the
time pattern of trajectory, we first formalize the notion of TDP, and then we show the
possibility of achieving TDP guarantees by augmenting a k-anonymity- and truncated
Laplace-based mechanism. Our TDP solution can protect an individual’s habits and
does not need to perturb the real value of the trajectory.

• A k-anonymity-based algorithm is proposed to hide the real-time pattern of individu-
als, which is different from the original k-anonymity algorithm. Then, the data in the
original single time period are anonymously hidden for a whole day. In this way, we
can hide individual’s accurate time at a specific position even if the adversary knows
their position.

• A truncated Laplacian-based mechanism is proposed to add noise to the frequency of
temporal data, and the added noise is deleted during the recovery process. By this
way, we can guarantee that the noise added in the time domain has no effect on the
trajectory mining utility while preserving the time privacy. It is theoretically proven
that this mechanism satisfies differential privacy.

In this paper, Section 2 introduces the related work of differential privacy in trajectory
protection, Section 3 introduces the preliminary knowledge, Section 4 introduces our
proposed solution, Section 5 gives the utility and privacy analysis, Section 6 describes the
results of the experimental evaluation, and a summary of this study and potential future
research work is provided in Section 7.

2. Related Work

In 2006, Wang et al. [9] first revealed that social networks are somewhat strange;
teenagers know that government agencies collect their data but still share ideas and per-
sonal information on social networks. This phenomenon is known as the “privacy paradox”,
which refers to the relationship between the actual protection of people’s privacy and users’
perceived privacy concerns [10]. The contradiction in privacy risk perceptions is an impor-
tant manifestation of the extent of privacy in social networks. Huo [11] believed that people
often need to give up social media privacy for impression management, while social media
owners agree and even encourage users to share; this paradox essentially stems from the
general behavior of users in transferring privacy, which poses challenges to user privacy
and the natural notion that privacy should be protected. Currently, social media privacy
research mainly focuses on privacy [12] and privacy technologies. Personal behavior occurs
in two dimensions. Privacy technology refers to the technologies used to protect privacy in
social networks and sensitive data, such as personal interests, spatial location, and body
hotspots. The development of encryption algorithms and mathematical models emphasizes
the anonymity of individuals, for example, in access control fields [13]. Anonymity means
the desensitization of private information. Anonymous algorithms such as k-anonymity,
l-diversity, and m-invariance are used to hide user identity and protect privacy [14]. Access
control refers to adding features such as access subjects and permissions to ensure pri-
vacy protection, mainly including independent interview access control, mandatory access
control, risk-based adaptive access control systems, and other model approaches [15].
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Considering the characteristics of the trajectory, Xu et al. [16] proposed a trajectory
data protection method that meets the differential privacy to protect the user’s trajectory
data privacy. First, the weighted multipoint judgment method is introduced to find the
infection point in the track by setting the threshold. Second, the density of each trajectory
point is calculated to determine the initial clustering center point. In addition, the im-
proved differential privacy k-means method is used to deal with the privacy protection of
trajectory data.

Privacy protection of trajectory data is an important issue. In recent years, some mech-
anisms have been proposed for different privacy protection issues at the same time. Mahdi
Abadi [17] proposed PDP-SAG to solve the problem of the sensitive nature of spatiotempo-
ral trajectory, which is a differential private mechanism combining the generalization and
personalization of sensitive attributes. On the basis of the privacy descriptor of the track
data record, the sensitive attribute values in the track data record are summarized and a
new personalized difference dedicated tree structure is defined. Each track is determined
by the generalized sensitive attribute values of the track data record.

Research on privacy technologies is generally biased toward “passive” security [18],
lacking information on privacy behaviors and privacy preferences in the context of social
networking. Analytics can easily lead to privacy bias. Master user privacy behavior from
a perceptual perspective can be used to analyze the user’s views on privacy risks and
privacy values, as well as awareness and cognitive attributes such as privacy threats [19].
Wu et al. [20] studied leveraging attribution, organizational justice, and rebuilding trust
from a privacy perspective. A complex theory was used to build a privacy-aware computa-
tional model. Bi et al. [21] analyzed the gap between users’ perceptions of privacy value and
privacy behavior. The authors provided personalized services by formulating differentiated
privacy protection mechanisms. Ma et al. [22] discussed the “privacy paradox” from a
theoretical level with an in-depth analysis of phenomena and their causes. Hua et al. [23]
used mollusks, an Asian game that analyzes the benefits, costs, and losses of different types
of privacy behaviors.

From the user’s point of view, scholars have studied the willingness of users to
read privacy policies [24], taking into account the factors and characteristics of privacy
policies in terms of the users themselves. Geng et al. [25] used a structural equation
model to analyze survey results and found that users’ motivation to read (motivation)
and their reading ability positively influenced the reading readiness of the users. Using
cognitive load theory, Hay et al. [26] studied the effect of how information on users’
reading abilities is presented and found that graphical privacy policies are more readable
and understandable than text-based policies. Day et al. [27] adopted the eye-tracking
method. By examining how users read the privacy policy, it was found that a privacy
policy automatically presented by default is easier to read. In addition, researchers have
also studied user demographics [28], educational level [29], information privacy, and the
text length of privacy policies. The influences of different factors, such as the scope, typing
style, and location, on users’ readiness to read privacy policies were analyzed. To increase
user intent to read privacy policies, it is hoped that the “informed consent” of a privacy
policy will be achieved; therefore, relevant research on compliance with privacy policies
will become more meaningful and effective.

Although anonymity-based and DP-based schemes are proposed to protect an indi-
vidual’s trajectory privacy, current methods just protect locations of the trajectory, which
face the problem that an attacker can still know the home location of people by observing
their location in the morning or evening, even if the trajectory is perturbed. Moreover, a
noisy trajectory leads to a loss of accuracy, which has a negative effect on trajectory mining
tasks. In this paper, we show the possibility of achieving TDP guarantees by augmenting a
k-anonymity- and truncated Laplace-based mechanism. Our TDP solution can protect an
individual’s habit and does not need to perturb the real value of trajectory.
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3. Preliminaries
3.1. k-Anonymity

The k-anonymity privacy protection is based on generalization and suppression. By
more generally and abstractly describing data or not publishing certain data, each data
record cannot be distinguished, at least from other k − 1 data records; thus, user privacy
is preserved.

The k-anonymous privacy-preserving technology divides the attributes of the user
data tuples into four types:

• Identifier attribute: the identity attribute that can identify an individual;
• Quasi-identifier attribute: an attribute that can identify an individual’s identity when

linked with other data tables;
• Sensitive attributes: attributes that need to be kept confidential when data are published;
• Non-sensitive attributes: attributes that can be disclosed and have no effect on the

privacy of the user, also known as ordinary attributes.

The definition of k-anonymity is provided below.

Definition 1. (k-Anonymous): The original data table is T (A1, A2, . . . , An), the data table
after anonymization is RT (A1, A2, . . . , An), and QID is the corresponding quasi-identifier. If
each sequence value in RT[QID] appears at least k times (k > 1) in RT[QID], the data table RT
satisfies k-anonymity.

3.2. Differential Privacy

Differential privacy is a privacy-preserving technology based on data distortion. By
adding random noise to each data item in the dataset, the data are distorted to achieve
privacy protection. At the same time, the processed data are still required to maintain some
statistical properties of data mining and other operations.

Definition 2. (ε-Differential privacy [28]): Define the sibling datasets D1 and D2, with a difference
in at most one data record. There is a random algorithm M, and range (M) is the value range of the
algorithm. If ∀S ⊆ range (M), there are

Pr[M(D1) ∈ S] ≤ exp(ε)× Pr[M(D2) ∈ S]. (1)

Then, the algorithm satisfies the ε-differential privacy-preserving equation, where ε
represents the privacy budget, and Pr [·] represents the disclosure risk of the event. A larger
ε value represents a smaller degree of privacy protection.

Definition 3. (Sensitivity [29]): Define a query function f: D→ Rd with a sensitivity of

∆ f = max|| f (D1)− f (D2)||1, (2)

where D is the dataset, Rd is the d-dimensional real number space mapped by the query function f,
and ‖f(D1) − f(D2)‖ is the first-order norm distance of the dataset and query result.

Definition 4. (Truncated Laplacian Distribution [30–35]).

Given the privacy parameters 0 < δ < 1
2 , where δ indicates the success rate of attack,

privacy budget ε > 0, and the query sensitivity ∆f > 0, the probability density function of
the truncated Laplacian distribution fTLap is defined as

fTLap(x) =

{
Be−

|x|
λ , x ∈ [−A, A]

0, otherwise
, (3)
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where λ = ∆ f
ε , and λ is the noise scale. A = ∆ f

ε log
(

1 + eε−1

2δ

)
is the range of the noise

value. B is a multiple factor to make fTLap a probability density function, which can be
obtained by

B =
1

2λ
(

1− e−
A
λ

) =
1

2 ∆ f
ε

(
1− 1

1+ eε−1
2δ

) . (4)

Random algorithm M satisfies

M(D) = f (D) + Lap(λ). (5)

Then, the algorithm M satisfies the ε-differential privacy-preserving model.

3.3. Attack Model

Before defining the attack model, we first introduce two concepts: the DBSCAN
algorithm and histogram.

Concept 1 (DBSCAN algorithm). The DBSCAN algorithm is a typical density cluster-
ing algorithm that regards clusters as high-density areas separated by low-density areas
and can find clusters of arbitrary shapes and sizes in noisy spatial data.

Concept 2 (histogram). A histogram is an accurate graphical representation of digital
data distribution, which is widely used in data publishing, data mining, and analysis. In
response to this problem, in this paper, we define a histogram query attack mode.

Histogram query attack: The DBSCAN algorithm is used to cluster a preprocessed
dataset, and the locations users often visit, such as for working and living, likely belong to
the cluster. As shown in Figure 1, four clusters are identified in the GPS track of user001
of the Geolife GPS trajectory dataset of Microsoft Research Asia. Figure 2 shows the time
distribution of the GPS sample points in each cluster. From 9 a.m. to 6 p.m., it is clear that
users stay in cluster 1, while, from 12 a.m. to 8 a.m., users tend to stay in cluster 2 and
cluster 4. Therefore, it can be inferred that the working point of user001 is cluster 1, while
the living point is cluster 2, and cluster 4 may be considered a secondary living point. The
real working point and living point of user001 can be obtained by displaying the working
and living points on the map. Using more complex heuristics can more accurately infer the
user’s working and living points, such as the user’s location on weekends and workdays.
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From the above example, we can know that, by observing the clusters of time, the
attacker can infer individual’s habits, e.g., the working place and hours. Current methods
attempt to add noise into the location to protect individual’s privacy, but they ignore
the disclosure of time pattern. The motive of the attack model is to obtain important
information about users, provide favorable research data for attackers, and achieve a better
attack effect.

4. Methodology
4.1. Problem Definition

In this paper, we want to hide the time pattern of timestamps of locations generated
by individuals. If we use T = {t1, t2, · · · , tn} to denote the set of timestamps, Ti and Ti′ are
arbitrary two subsets of T. They correspond to the high frequency part of T if we transform
T to the frequency domain using Fourier transformation. According to the definition of
differential privacy, the leakage risk of time pattern is

TDP(A) = sup
ti ,Ti ,Ti′

ln
Pr[A(ti ∈ Ti)]

Pr[A(ti ∈ Ti′)]
, (6)

where A is the random algorithm, TDP is the abbreviation of timestamps differential privacy.
If the leakage is bounded by ε,

TDP(A) ≤ ε,
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i.e.,

sup
ti ,Ti ,Ti′

ln
Pr[A(ti ∈ Ti)]

Pr[A(ti ∈ Ti′)]
≤ ε. (7)

If the above condition is satisfied, TDP is considered to have achieved the privacy
level of ε, i.e., ε-differential privacy. The challenge in differentially private publication for
timestamps is to design mechanisms to satisfy the above definition while guaranteeing
high-level utility.

4.2. Sketch of TDP

Before fleshing out the details of TDP, which is our solution for differentially private
timestamps publishing, a sketch is presented. TDP consists of two stages for differential
privacy preservation. The first stage is time anonymization to create several same high-
frequency parts of timestamps, which can hide the pattern of timestamps. Following this, a
truncated Laplace time perturbation mechanism is proposed to perturb the timestamps
for each copy of the high-frequency part. In this way, we can hide the repeated high-
frequency parts.

4.2.1. Time Anonymization

If we transform the timestamps of original data to the frequency domain, there are a
few clusters of the timestamps. These clusters are the accurate clustering timestamps, which
disclose the time pattern. From the perspective of original data, these timestamps mean
that the person always stays at these positions. To protect these timestamps, we propose a
k-anonymity-based mechanism to perturb the timestamps. In this way, the centralized data
segments in the first half of the day are anonymously distributed throughout the day, and
the frequency in the histogram covers almost all time periods.

4.2.2. Truncated Laplace Time Perturbation

Since the frequency of the timestamps is regular after the using of our time anonymiza-
tion mechanism, the attacker can use this characteristic to sanitize the redundant times-
tamps which are generated by our k-anonymity-based mechanism. To overcome this flaw,
we utilize DP to randomize the frequency. By this means, the attacker cannot know the
real timestamps.

We discuss time anonymization and truncated Laplace time perturbation in detail in
the next two subsections.

4.3. Time Anonymization

In this section, we demonstrate the time anonymous mechanism. Time anonymization
uses the k-anonymity-based algorithm to copy several timestamps, which are clustered
to hide the timestamp pattern. If we add noise into the timestamps directly, the clus-
tering results do not change much. Next, we first give some definitions related to the
time anonymization.

Definition 4. (k-Anonymous timestamps): Suppose the original trajectory dataset is
Tra = {(t1, p1, s1), (t2, p2, s2), · · · , (tn, pn, sn)}, where ti,pi, and si are the timestamp, posi-
tion, and speed generated by the GPS device respectively. Among them, we can know that ti is the
identifier, while pi and si are quasi-identifiers (QIs). If there are k subsets of Tra, whose elements
only include the timestamps, e.g.,{T1, T2, . . . , Tk}, and if ti is an element of {T1, T2, . . . , Tk}, these
are k-anonymous timestamps.

From Definition 4, we can know that, if we design a mechanism to satisfy Definition 4,
the adversary cannot be sure where the specific timestamp ti is. That is to say, we hide
the timestamp ti in the k-timestamp cluster. Next, we present the mechanism to realize
k-anonymous timestamps.
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Consider the time dataset ti = {ti|ti ∈ [tmin, tmax], tmin < tmax} and a subset T0 ∈ T,
T0 = {ti|ti ∈ [t1, t2], tmin ≤ t1 ≤ t2 ≤ tmax}, tmax−tmin

t2−t1
≥ 2. There may be a case where the

data interval length of the subset T0 is much shorter than T. This means that the data are
concentrated in the interval [t1, t2]. Under this circumstance, k-anonymity can be adopted.
The idea is to anonymize the data and hide the anonymization of a specific time of the day
to achieve the effect of privacy protection.

The specific processing method is as follows:
Take k ∈

[
1, tmax−tmin

t2−t1

]
and k is an integer and assume there are n time data in T0.

If k = 1, the time data are more evenly distributed at this time, so no anonymous
processing is performed.

If k ∈ (1, tmax−tmin
t2−t1

], then the following data ti = t0 are calculated for each group in T0
as follows: 

ti = t0 + S× tmax−tmin
k−1

S = (i− 1)%k
i = 1, 2, 3 · · · n

, (8)

where t0 represents the starting time, S is the remainder of (i− 1) and k, and n represents a
period when nodes are divided into n segments.

Indeed, k-anonymity in our solution indicates that we want to make “k” copies of
the user’s time intervals to hide the real-time pattern of the individual, which is different
from the original k-anonymity algorithm. Thus, we do not apply the k-anonymity directly;
instead, we first judge whether the value of “k” set by the user is suitable for the timestamp
protect. Because the timestamps of a day are fixed, we should guarantee that the perturbed
timestamps fall into the timestamp range. For example, if k /∈ (1, tmax−tmin

t2−t1
], then we cannot

use k-anonymity. If the value of “k” is determined by the user and it is suitable, then
we perform the steps of the algorithm in Equation (8). Next, we summarize the detailed
process of time anonymization; Algorithm 1 is its pseudo-code in practice.

Time Anonymization Process
Input: GPS data T{ti|t0≤ti≤tmax}, t0 and tmax as the initialized and biggest times-

tamps, respectively, k, and ε.
Output: confidence, perturbed GPS data.
Determine whether the expected k value of the initial input is reasonable on the basis

of the input time dataset; if it is not reasonable, change it to a reasonable k;
After the value of k is determined, perform anonymous processing on the dataset T

according to the k-anonymity implementation method in Section 4.2.
Determine the corresponding Laplacian noise distribution and acceptability according

to the input privacy protection budget ε and the individual’s acceptable error interval.
Add Laplacian noise to the histogram frequency of the time data.
Apply the truncated Laplacian mechanism to optimize the out-of-bound frequency.
Observe the corresponding data changes.
The pseudo-code of the algorithm is shown in Algorithm 1.

4.4. Truncated Laplace Time Perturbation

In Section 4.2, we proposed the time anonymization mechanism to hide the timestamps.
However, from the perspective of an adversary, if the time anonymization makes k copies
of the timestamps clusters, then it is easy to distinguish whether k copies are the same.
Thus, in this section, we propose another truncated Laplace time perturbation mechanism
to perturb each of the k timestamps clusters to further hide an individual’s information.

In this section, we first propose the definition of truncated Laplace time perturbation,
which satisfies DP with a constrained bound. Then, we demonstrate our implement
mechanism based on truncated Laplace distribution, which can guarantee DP while limiting
the perturbed error into a fixed bound.
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Algorithm 1: Time anonymization

Input: GPS data T{ti |t0≤ ti≤ tmax}, k, ε.
Output: confidence, perturbed GPS data.
1: while k > tmax−tmin

t2−t1
or k < 1 then

2: input k
3: end while
4: for t0∈T{ti |t0≤ ti≤ tmax}do
5: k− ano(t0)
6: end for
7: for t1∈T{ti |t0≤ ti≤ tmax} do
8: Laplace(t1)
9: end for
10: for t2∈T{ti |t0≤ ti≤ tmax} do
11: Truncated− Laplace(t2)
12: end for

4.4.1. Definition of Truncated Laplace Time Perturbation

As discussed in Section 1, the SP may always feature a noisy error. In this case,
the definition of DP is not appropriate. In this section, we propose the notion of trun-
cated Laplace time perturbation with constraints. First of all, we give the definition of a
constrained bound.

Definition 5. (Constrained bound): Denote z as a random noise generated by the privacy preserva-
tion method; z is limited by the bound α, and α is the length of the day, for example, the seconds or
minutes, i.e., |z| ≤ α, where z is generated with ε-DP. Then, we can say that the absolute error of z
is α.

Unlike the definition of DP, truncated Laplace time perturbation considers the con-
strained noise. Truncated Laplace time perturbation must limit the noise to a fixed bound
meanwhile satisfying ε-DP. We give its definition below.

Consider two arbitrary timestamps datasets, Ti and Ti′ , which have the same admea-
surement, but differ in terms of the record to be protected. Then, the random perturbation
mechanism A satisfies ε-DP if A makes all results Ti on two arbitrary timestamps datasets
Ti and Ti′ satisfy

sup
ti ,Ti ,Ti′

ln
Pr[A(ti ∈ Ti)||z| ≤ α]

Pr[A(ti ∈ Ti′)|z| ≤ α]
≤ ε, (9)

where Ti ⊆ Range(A), Range(A) is the value range of random algorithm A. Pr[·] indicates
the probability density function (PDF), and ε represents the privacy budget parameter.

4.4.2. Truncated Laplace Time Perturbation Mechanism

Definition 5 gives the formal definition of a constrained bound. Then, we propose a
truncated Laplace mechanism to realize constrained bound timestamps DP in practice. The
truncated Laplace mechanism is shown in Definition 6.

Definition 6. (Truncated Laplace perturbation mechanism): A Laplace noise z that conforms to the
following distribution satisfies constrained bound timestamps DP:

f (z) =
1

2λ(1− e−α/λ)
e−
|z|
λ , z ∈ [−α, α], (10)

where λ = ∆ f
ε , α is the length of the day (it is also the noise bound), and z is a random noise

generated by the truncated Laplace perturbation mechanism.
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Definition 6 gives the form of noise that can provide a bounded noisy constraint. Com-
pared to the standard Laplace distribution, the PDF of the truncated Laplace distribution

has an extra factor (1− e−α/λ)
−1

. The function of this factor is to make the cumulative
distribution function of truncated Laplace be 1. Furthermore, the sample of noise is limited
by the bound. We can implement this noise form in a post hoc way by discarding the
out-of-range cleaned results of the conventional Laplace mechanism until the inbound
value is obtained.

Algorithm 2 shows the working flow of the truncated Laplace time perturbation
mechanism. In Algorithm 2, we take advantage of our proposed truncated Laplace time
perturbation mechanism to perturb the timestamps and limit the noise to the bound (the
length of the day). Finally, we publish the perturbed timestamps to protect the real ones.

Algorithm 2: Truncated Laplace time perturbation mechanism

Input: Privacy budget ε, timestamps T = {t1, t2, · · · , tn}, query function ∆ f .
Output: Noise variables Z = {z1, z2, · · · , zn}, perturbed query results T′.
for each round k← 1, · · · , n

1. Select a timestamp tk;
2. Compute noise scale parameter λ = ∆ f /ε;
3: Generate truncated Laplace noise zk according to the PDF in Definition 6 with bound α;
4: Compute the noisy response t′k = tk + zk;

end for
return T′.

5. Security and Utility Analysis

In Section 4, we proposed the anonymity- and truncation-based mechanisms to limit
the noisy to a fixed bound. In this section, we analyze the security and utility of our
mechanisms. Specifically, in terms of security, we prove that TDP also meets the privacy
definition of baseline DP. For utility analysis, we deduce the change in noisy variance,
which is a base index to measure the performance of utility.

5.1. Security Analysis

In this section, we prove that TDP satisfies the requirement of DP. Indeed, the definition
of TDP is a hard version of DP, i.e., it can also satisfy the definition of DP. We first prove
that TDP also meets DP, as shown in Theorem 1.

The use of the k-anonymity algorithm and Laplacian mechanism adds Laplacian noise
to the data, improves their security, and greatly affects their validity. We define the privacy
protection indicators according to the characteristics of the algorithm.

The privacy protection budget ε is used to control the probability ratio of the algorithm
to obtain the same output in adjacent datasets, reflecting the level of the privacy protection
of the algorithm and the security of the data. A smaller ε denotes a higher level of privacy
protection and more secure data. Then, data acceptance is defined by the Laplacian noise
probability distribution function.

According to the Laplacian mechanism, the noise we added obeys the Laplacian
distribution; if the acceptable error range for the data is [−α,α], we can calculate data
acceptance (Accept) as follows:

Accept =
∫ a

−a

1
2b

e−
|x|
b . (11)

Confidence: First, after using the k-anonymity algorithm, the data in the original single
time period are anonymously hidden for a whole day, which means that the original period
is divided into k periods. Evidently, the accuracy of the data is only 1/k of the original.
The Laplacian mechanism is used to achieve differential privacy to further improve data
security. Here, data acceptance can be used to express this mechanism. We analyzed the
k-anonymity and the correlation of the Laplacian mechanism. The two parameters ∆f and ε
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in the Laplacian distribution in the TDP algorithm have no relationship with k; thus, the
value of k does not affect the noise generation. Similarly, k is not affected by the parameters
∆f and ε, and we can obtain that cov(k, Accept) = 0. The final data credibility can be
calculated as follows:

Con f idence =
Accept

k
. (12)

Theorem 1. The truncated Laplace time perturbation mechanism can also preserve ε/k-DP.

Proof. The proof is similar to that of DP.

pT(z)
pT′ (z)

=
n
∏
i=1

(
exp(− ε|qi(T)−zi |

4 f )

exp(− ε|qi(T
′)−zi |
4 f )

)
/k

=
n
∏
i=1

exp
(

ε(|qi(T′)−zi |−|qi(T)−zi |)
4 f

)
/k

≤
n
∏
i=1

exp
(

ε|qi(T′)−qi(T)|
4 f

)
/k

= exp
(

ε||Q(T)−Q(T′)||1
4 f

)
/k

≤ exp(ε/k).

pT(z)
pT′ (z)

≥ exp(−ε/k) follows by symmetry. �

5.2. Utility Analysis

In this section, we analyze the foundational statistical properties mean and variance
to measure the utility loss of our mechanisms.

The standard Laplacian mechanism is a symmetrical distribution with mean 0, and the
methods we used are also symmetrical. Thus, our mechanism does not change the mean of
noise, as shown in Theorem 2.

Theorem 2. The mean of the random variables generated by our truncated Laplacian mechanism
is 0.

Proof. Assume z is a random variable that conforms to the truncated Laplacian distribution.
Then, the mean of z is

E(z) =
∫ α

−α
z f (z)dz =

∫ α

−α

z
2λ(1− e−α/λ)

e−
|z|
λ dz.

Let z
λ = y; then, we have

E(z) =
∫ α

−α

λ

2(1− e−α/λ)
ye−|y|dy = 0.

�
Theorem 2 demonstrates that the mean of our proposed truncated Laplacian mecha-

nism is the same as that of the standard Laplacian mechanism. In addition, we know that
the variance of the standard Laplacian distribution is 2λ2. Theorem 3 demonstrates the
variety of variance using our proposed mechanism.

Theorem 3. Given a random variable z that conforms to the truncated Laplacian distribution, the
variance of z is

σ2
z =

λ2

1− e−α/λ
[2− e−α/λ((

α

λ
)

2
+ 2

α

λ
+ 2)]. (13)
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Proof. The calculation equation of variance of random variable z is

σ2
z =

∫ α

−α
z2 f (z)dz =

∫ α

−α

z2

2λ(1− e−α/λ)
e−
|z|
λ dz.

Let z
λ = y; then, we have

σ2
z =

∫ α/λ
−α/λ

λ2

2(1−e−α/λ)
y2e−|y|dy

=
∫ α/λ

0
λ2

1−e−α/λ y2e−ydy

= λ2

1−e−α/λ e−y(−y2 − 2y− 2)|α/λ
0

= λ2

1−e−α/λ [2− e−α/λ(( α
λ )

2 + 2 α
λ + 2)]

= 2λ2

1−e−α/λ

[
1− e−α/λ

(
1
2
(

α
λ

)2
+ α

λ + 1
)]

< 2λ2.

�
Theorem 3 indicates that the variance of the truncated Laplace random variable is

smaller than that of the traditional Laplace mechanism, which may affect the quantity
of applications.

6. Experimental Evaluation
6.1. Experiment Datasets and Setup

Geolife: The trajectory dataset of the Geolife project collected trajectory data from 182
volunteers for 5 years (from April 2007 to August 2012), provided by Microsoft Research
Asia. Each GPS track is composed of a sequence of time stamps, including latitude and
longitude, altitude, time, and other information. This dataset contains 17,621 trajectory
data, with a total length of 1,292,951 km and a total duration of 50,176 h.

T-Drive Taxi: This dataset describes the GPS trajectory data of 8602 taxis in Beijing,
China in May 2009. The track area covers a rectangular area between latitude and longitude
(39.788 N, 116.148 W) and (40.093 N, 116.612 W), with an area close to 34 km × 40 km. The
sampling frequency of the trajectories in the dataset ranges from 30 s to 5 min, containing
about 4.3 million passenger records, each of which is composed of interpolated sequences
with intervals of about 30 s.

The TDP algorithm was implemented in Python programming language and run on a
Windows 10 platform with a 3.15 GHz CPU and 8.00 GB RAM. The datasets used in this
paper were the Geolife Trajectories 1.3 dataset and the T-drive Taxi Trajectories dataset.

Experimental Results and Analysis

To test the effectiveness of the algorithm, we evaluated the algorithm using real
spatiotemporal data, compared the TDP algorithm with traditional k-anonymity, DP-
AVG [17], and CIM [21], and used the mean square error and data credibility analyses to
evaluate the effectiveness and security of the algorithm from two perspectives.

(1) Intuitive Diagram after TDP Algorithm Encryption

Figure 3 presents an analysis diagram of the Geolife Trajectories 1.3 dataset, and
Figure 4 provides an analysis diagram of the T-drive Taxi Trajectories dataset. From the
visual effects of the TDP algorithm in Figures 3 and 4, it can be seen that, after running
the k-anonymity algorithm of the original data, the centralized data segments in the first
half of the day were anonymously distributed throughout the day, and the frequency in
the histogram covered almost all time periods. After further using the TDP algorithm, the
frequency distribution of the histogram was more randomized, and it became difficult to
obtain regular data.
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Figure 3. TDP for Geolife Trajectories dataset.

From Figures 3 and 4, we can know that, if we transform the timestamps of original
data to the frequency domain, there are a few clusters of timestamps. These clusters are the
accurate clustering timestamps, which disclose the time pattern. From the perspective of
original data, these timestamps mean that the person always stays at these positions. To
protect these timestamps, we propose the k-anonymity-based mechanism to perturb the
timestamps, as shown in the second panel “after k-anonymity”. In this way, the centralized
data segments in the first half of the day are anonymously distributed throughout the day,
and the frequency in the histogram covers almost all time periods. Furthermore, since the
frequency of the timestamps is regular, the attacker can use this characteristic to sanitize
the redundant timestamps which are generated by our k-anonymity-based mechanism. To
overcome this flaw, we utilize DP to randomize the frequency, as shown in the third panel
“after KD”. By this means, the attacker cannot know the real timestamps.

(2) Data Security Results and Analysis

We adopted multiple k-values to calculate the confidence level. To compare the
confidence level of the two datasets, we used [−0.5, 0.5] for the confidence interval and k
values 2, 3, 4, and 5, as shown below.
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Figure 4. TDP for T-drive Taxi Trajectories dataset.

By observing Figure 5a–d, we can see that the data credibility of TDP was close to
the k-anonymous data credibility as ε increased, but the reliability of the data was always
higher than that obtained by the TDP algorithm. Fox example, when k = 2, the confidences
of DP-AVG, CIM, and TDP were 0.19, 0.18, and 0.11; TDP improved by 38.9% compared
with the current optimal method CIM. When k = 5, we can also observe this trend; in this
case, TDP’s confidence was 0.042, compared with CIM’s 0.05, with TDP improving by 16%.
It can be seen that the TDP algorithm had a good effect on the security of the data and
could effectively protect the security of the data.

From the above experimental results, it can be seen that the reliability of the data was
higher than that obtained using the k-anonymity algorithm, which further indicates that
the k-anonymity algorithm has a good protection effect on the data, and it has also high
data security.
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(3) Data Validity Results and Analysis

For effectiveness analysis, since the TDP algorithm itself is a random algorithm, we
performed multiple experiments and calculated the variance of each experiment to avoid
accidents, thus negatively affecting the accuracy of the experimental results.

Figure 6 represents the comparison of the mean squared error of time–frequency after
using the k-anonymity, DP-AVG, CIM, and TDP algorithms for Geolife Trajectories 1.3 data,
while Figure 7 represents the time–frequency after using the k-anonymity, DP-AVG, CIM,
and TDP algorithm for T-drive Taxi Trajectories data, which can be used for a comparison
of the magnitude of the mean square error. In Geolife, we can observe that the MSEs of
k-anonymity, DP-AVG, CIM, and TDP were 112, 160, 150, and 140, respectively. Among
them, TDP had the smallest MSE except for k-anonymity. The same trend can also be
observed in the T-drive Taxi dataset. In the T-drive Taxi dataset, the MSEs of k-anonymity,
DP-AVG, CIM, and TDP were 130, 170, 160, and 150 respectively, as shown in Figure 7. In
both datasets, it can be seen that, after repeated use of the TDP algorithm, the variance of
time–frequency was slightly larger than that in the k-anonymity algorithm, and the validity
of the data was affected to some extent. To improve its effectiveness, we optimized the
algorithm using a truncated Laplacian distribution.
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(4) Optimization Effect of Truncated Laplace

By comparing Figures 8 and 9 with Figures 3 and 4, it can be observed that special
data were processed, which definitely had a positive impact on our data mining. Then,
we compared the mean square error of the two datasets, the results of which are shown in
Figures 10 and 11.
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It can be seen from Figures 10 and 11 that, after several experiments, for the data in
both the Geolife Trajectories 1.3 and the T-drive Taxi Trajectories datasets, the mean square
error after using the truncated Laplacian mechanism was smaller. Thus, the effectiveness
was further improved. In Geolife, we can observe that the MSEs of k-anonymity, DP-AVG,
CIM, and TDP were 130, 170, 160, and 150, respectively. Among them, TDP had the
smallest MSE except for k-anonymity. The same trend can also be observed in the T-drive
Taxi dataset. In the T-drive Taxi dataset, the MSEs of k-anonymity, DP-AVG, CIM, and TDP
were 113, 158, 148, and 138, respectively, as shown in Figure 11.
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6.2. Experimental Results Summary

In this experiment, confidence was used for a security comparison, and the mean
square error was used for effectiveness analysis. Compared with the state-of-the-art
algorithms, our solution TDP had a higher value of confidence and a larger mean square
error. Specifically, TDP improved confidence by 38.9% compared with the current optimal
method CIM when k = 2. Even when k = 5, TDP improved by 16.0% compared with the
current optimal method CIM. Furthermore, in terms of utility evaluation, the MSE of
TDP as 140 in the Geolife dataset, improving by 6.7% compared with CIM. In the other
dataset T-drive Taxi, the MSE of TDP was 138, improving by 6.8% compared with current
optimal CIM method. Evidently, it had a better level of security; however, it also lost
a certain degree of effectiveness and suffered from defects of special data. The use of
the truncated Laplacian mechanism can effectively solve the problem of special data and
achieve differential privacy, compared with the ordinary Laplacian mechanism, and the
truncated Laplacian mechanism that achieves differential privacy has a higher effectiveness.

7. Conclusions

In this paper, we proposed a new TDP model to protect the time pattern data in
spatiotemporal trajectory data. This algorithm combines the idea of k-anonymity and the
protection of time data frequency through differential privacy, making the processed time
data ambiguous. Additionally, it generates uncertainty, meaning that, when the attacker
analyzes the data, they cannot obtain accurate information from the user but can only
access the information obtained from data mining with a certain degree of credibility.
Furthermore, we used the truncated Laplacian mechanism to process the out-of-bounds
data to improve the validity of the data. Since the current spatiotemporal data protection
strategy only provides thorough location data protection with the use of differential privacy,
the protection of time data should be explored further.

In the future, we will continue to study two aspects:

1. The widespread use of k-anonymity should be further considered, since, when the
time data are widely distributed, the parameter k can only take the value of 1, which
imposes limitations on our privacy protection. Therefore, we intend to optimize the
mechanism to further improve it when the data are extensively applied.

2. When adding noise to the time–frequency histogram, although we adopted a trunca-
tion method in this study to improve data availability, it is still worth considering how
to further improve this. In the future, we will consider combining data distribution
characteristics to find more reasonable partition noising schemes.
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