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Abstract: Time series anomaly detection through unsupervised methods has been an active research
area in recent years due to its enormous potential for networks management. The representation and
reconstruction of time series have made extraordinary progress in existing works. However, time
series is known to be complex in terms of their temporal dependency and stochasticity, which makes
anomaly detection difficult. To this end, we propose a novel approach based on a decomposition
auto-transformer networks(DATN) for time series anomaly detection. The time series is decomposed
into seasonal and trend components, and renovated as a basic inner block deep model. With this
design, transformers can decompose complex time series in a progressive manner. We also design an
auto-transfomer block that determines dependencies and representation aggregation at the sub-series
level based on series seasonal and trend components. Moreover, the complex transformer decoder is
replaced by a simple linear decoder, which makes the model more efficient. Extensive experiments on
various public benchmarks demonstrate that our method has achieved state-of-the-art performance.

Keywords: networks management; time series; anomaly detection; series decompose; transformer

1. Introduction

Time series anomaly detection, which is a widely used technology [1,2], plays an
increasingly important role in academia and industry, such as network management.
Anomaly detection refers to identifying rare items, events, or observations in data that
are significantly different from expectation. Network management focuses on the optimal
operation of resources to ensure the rational use of performance indicators and resources.
Anomaly detection is an important part of network management. the effectiveness and
function of anomaly detection is directly related to the effectiveness of network manage-
ment. In order to improve the availability and reliability of the network, when the network
is abnormal, the network manager can find the anomaly as soon as possible and take mea-
sures in advance to avoid the impact on the service. Therefore, efficient anomaly detection
technology can improve the network intelligent operation.

Time series anomaly detection has become increasingly difficult in practice due to the
explosion of raw data that can be captured. In recent decades, numerous efforts have been
made to detect time series anomalies. Statistical methods, supervised learning methods,
and unsupervised learning methods can be roughly divided into three categories. In the
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first class of methods, systems produce normal data based on a family of models, and the
model parameters are learned using the normal data.

A time series anomaly detection problem is typically treated as a classification problem
in supervised learning methods. Through shallow or deep models, they extract various
features and perform two-class or multiclass classification. Although the above two kinds
of methods provide impressive and promising results, unsupervised time-series anomaly
detection methods have drawn much attention in recent years due to two main reasons.
Despite the availability of large numbers of time series, obtaining the corresponding label
information is difficult. It is a time-consuming and expensive process to manually annotate
labels by domain experts. The anomalies are sparse even with labels, and they cannot
cover every type of anomaly. Both normal and anomalous samples are highly imbalanced,
which makes supervised methods inefficient. The core idea of unsupervised detection meth-
ods is to learn the normal pattern of data using a large amount of available
normal data.

There may be a few serious abnormal samples in the training data, which adversely
affect the learning of normal patterns, although many of the training data are normal
samples. Therefore, unsupervised learning methods are usually employed to handle
this task due to anomaly diversities, the lack of positive samples, and the high cost
of annotations.

In practice, time-series anomaly detection has become increasingly challenging because
of the explosion of raw data that can be captured. The solution to this problem has been
addressed extensively over the past several years. In the early stage, anomalies were
detected using classical machine learning techniques such as Gaussian models. Handcrafted
features at the low level, however, cannot represent data in high dimensions. As deep
neural networks have developed rapidly over the past few years, they have made significant
progress. It is now possible to learn highly sophisticated representations using advanced
machine learning techniques.

When modeling time series, it is essential to consider their temporal characteris-
tics. Time-series data modeling provides natural advantages for improving recurrent
neural network (RNN)-based methods [3]. However, the inherent limitations of recurrent
models prevent them from running simultaneously. As an alternative, models based on
convolutional neural networks were proposed. For sequential data modeling, temporal con-
volutional networks (TCNs) are a typical representative. This is a characteristic of parallel
computing that gives it an advantage. To capture long-term dependence, attention mecha-
nisms are used in another type of temporal context modeling. With the use of self-attention,
the transformer successfully illustrates sequential representations.

However, the time-series anomaly detection task is extremely challenging under long-
term settings. First, using long-term time series directly requires the extraction of temporal
dependencies, which is difficult due to their entangled temporal patterns. We examine
the intricate temporal patterns using decomposition, a standard method for time series
analysis. Second, since the length of sequences for canonical transformers is quadratic,
long-term forecasting cannot be done with them because of their computational complexity.

The model cannot identify reliable relationships due to long-term temporal patterns [4].
Due to the entangled temporal patterns, it is difficult to extract the temporal dependencies
directly from the long-term time series. Using decomposition, a standard method for time
series analysis, we try to sort out the intricate temporal patterns.

Based on the above information, we propose a decomposition auto-transformer net-
work (DATN) for time-series anomaly detection. DATN still follows residual and encoder-
decoder structures. In the encoder layer, we decompose the time series into seasonal and
trend components. DATN embeds decomposition blocks as the inner operators. DATN is
able to progressively separate long-term trend information by embedding our proposed
decomposition blocks as the inner operators. DATN introduces an autoattention module
to isolate and represent the periodicity of time series. The frequency-domain dominating
periodic patterns are extracted using Fast Fourier Transforms (FFTs) and inverse FFTs.
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The contributions of our paper are as follows:

(1) To empower the deep anomaly detection model with imminent decomposition capabil-
ity, we propose a decomposition auto-attention network as a decomposition architecture;

(2) To extract the dominating periodic patterns in the frequency domain, we propose an
auto-attention module to discover the period-based dependencies of time series;

(3) Extensive experimental results on multiple public datasets show that the proposed
method achieves state-of-the-art performance.

The remainder of the paper is structured as follows. Section 2 reviews related works.
Section 3 examines the problem formulation and Transformer. Section 4 illustrates the
proposed decomposition auto-transformer network (DATN). Section 5 describes the experi-
mental process and results analysis of the method. Finally, we summarize the paper.

2. Related Work

Anomaly detection in time series has gained an ever-increasing interest in academia
and industry [5–7]. There are three categories of existing methods: traditional statistical
models, supervised learning methods, and unsupervised learning methods. Statistical
models [8,9] such as MA, ARIMA, and Holter Winter are usually used to develop algo-
rithms, and usually make strong assumptions regarding the time series being studied.
Different types of time series require different algorithms and fine tuning parameters. As a
result, they are not inappropriate for detecting anomalies in complex time series, which are
typically found in real applications.

Anomaly detection is considered as a classification problem by supervised learning
methods [8,10,11]. A classification model is trained using random forest and detection
results are outputted by the aggregation functions. Although the supervised learning
methods are powerful and show good results, they require labeled training data, which
is difficult in time series anomaly detection. Despite the collection of abnormal data,
the data may not include all types of anomalies. Due to this limitation, supervised detection
methods have limited applications.

Because of the absence of label information, unsupervised learning methods have
received a great deal of attention and popularity. We summarize a few recent works
employing RNN, graph, GAN, VAE, and transformer-based methods. RNN-based methods
have the advantage of processing time series. In Ref. [3], a variational autoencoder (VAE)
was combined with the LSTM to enhance temporal feature representation. In Ref. [12],
a stochastic RNN method was proposed to identify anomalies by modeling the data
distribution through stochastic latent variables. Graph-based methods are able to model the
relationships between signals [13]. In Ref. [14], two parallel GAT modules were employed to
capture featurewise and temporal relationships respectively. In Ref. [15], a novel attention-
based GNN approach was proposed to learn a graph of dependence relationships between
signals. Then, they can identify and explain deviations from these relationships. GAN-
based methods [16] train a generator and a discriminator to detect anomalies by the output
of the discriminator or the reconstructed error. However, GAN-based methods are typically
difficult to train and suffer from the mode collapse problem. In Ref. [17], one encoder and
two decoders were designed to reconstruct the input series. Xu et al. [18] proposed an
unsupervised anomaly detection algorithm, called Donut, which adopts a CNN as the basic
unit for the encoder and decoders, and the training and inference times are sharply reduced.
Li et al. [19] proposed a robust and unsupervised anomaly detection algorithm for seasonal
key performance indices (KPIs), called Bagel, that adopts CVAE as the basis of the model.
Transformer-based methods show great power in sequential data owing to the self-attention
mechanism [20]. In Ref. [21], a time series representation learning framework was proposed
based on the transformer encoder architecture. In Ref. [22], a self-attention mechanism was
renovated to anomaly attention. This mechanism was well designed to represent the prior
association and series association of each time stamp. We choose Transformer as the basic
framework considering the advantages offered by its multiheaded self-attention.
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3. Problem Formulation

A time series is generally considered as a collection of observations indexed in time
order [6]. It can be defined as X = {x0, ..., xT−1}, where T is the length of the time series,
xt is an observation at timestamp t, and 0 ≤ t < T. Define the number of signals as m,
xt ∈ Rm and X ∈ RT×m.

Given a training series X ∈ RT×m and a test series X̂ ∈ RT̂×m with length T̂,
the task of unsupervised anomaly detection is to predict an output Y = {y0, ..., yT̂−1}
where yt ∈ {0, 1}, 0 ≤ t < T̂ to denote whether X̂t is an anomaly.

Time series can exhibit a variety of patterns. It is helpful to decompose time series
into several components, each representing an underlying pattern. Generally, we consider
a time series as the superposition of two different components: a seasonal component,
a trend component. The seasonal component at timestamp t, defined as st, represents the
periodic features of the series. The trend component at timestamp t, defined as pt, reflects
the long-term progression. The remaining component rt contains anything else in the series.
We employ an additive decomposition, then the observation xt can be written as:

xt = st + pt (1)

The transformer [23] is an encoder-decoder structure composed of multiple identical
blocks. The multi-headed self-attention module (MHSA) and a feed forward network (FFN)
are two essential modules in each block. For a time series X ∈ Rw×m within look-back
window w, its embedding is defined as E ∈ Rw×d , where d are the dimensions of the
embedding features. The attention function firstly projects E into query Q ∈ Rw×d(q), key
K ∈ Rw×d(k), and value V ∈ Rw×d(v) with different learned linear projections to d(q), d(k)
and d(v) dimensions. Then, we compute their scaled dotproduct attention as follows:

Attention(Q, K, V) = So f tmax(
QKT√

d(k)
)V (2)

Multi-headed self-attention employs a few different sets of learned projections instead
of a single attention. The position-wise feed-forward module is a fully connected network
defined as:

FFN(A) = LN((ReLU(AW1 + b1)W2 + b2) + A) (3)

where A is the output of the previous layer, W1, W2, b1, and b2 are the trainable parameters,
and LN is the Layer normalization operator.

4. Decompose Auto-Transformer

The proposed Decompose Auto-Transformer network (DATN) framework is shown
in Figure 1. It is constructed by series decompose, auto-attention, multi-head attention,
feed forward, and linear decoder. Series decompose block is designed to decompose the
time series into seasonal component(Xs) and trend component(Xt). ’+’represent feature
additive fusion. With Xs and Xt as input, auto-attention module responsible for embedding
multi-scale correlation. Next, the features are fed into the following MHSA. Then, seasonal
component embedding and trend component embedding are carried out feature fusion.
After linear decoder, reconstruction modules are employed.
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Figure 1. Decompose Auto-Transformer network (DATN), framework.

Series decomposition block. Time series can exhibit a variety of patterns. It is helpful
to decompose time series into several components, each representing an underlying pattern.
Generally, we consider of a time series as the superposition of two different components:
a seasonal component and a trend component. The seasonal component (Xs) represents the
periodic features of the series. The trend component Xt reflects the long-term progression.
We employ an additive decomposition, then the observation X can be written as:

X = Xt + Xs (4)

Moving averages are adapted to smooth out the seasonal component and the trend
component. For length-w input time series X ∈ Rw×m, m denotes the time series dimension,
and the decomposition formula is as follows:

Xt = MA(X)

Xs = X − Xt
(5)

where Xs, Xt denote the seasonal and trend part, respectively. MA(•) denote the moving
average function. We use Xs, Xt = SeriesDecomp(X) to summarize Equations (4).

Encoder: As shown in Figure 1, suppose we have N encoder layers. The overall
equations for l-th encoder layer are summarized as Xl = Encoder(Xl−1). Details are shown
as follows:

Xl
s, Xl

t = SeriesDecomp(Xl−1)
Sl

s = Auto_attention(Xl
s)

Sl
t = Auto_attention(Xl

t)
Ol

s= FFN(Attention(Sl
s, Sl

s, Sl
s))

Ol
t= FFN(Attention(Sl

t, Sl
t, Sl

t))
Xl = Ol

s + Ol
t

(6)

where Xl , l ∈ {1, · · · , N} denotes the output of l-th encoder layer. Xl
s and Xl

t denote the
seasonal and trend component. Sl

s and Sl
t denote the output of l-th Auto_attention(•). Ol

s
and Ol

t denote the output of Attention(•). Attention is a Multi-Headed Self-Attention
module. We will give a detailed description of Auto_Attention in the following paragraph.

Decode. Our model reconstructs the time series using the embeddings XN (N is the
number of encoder layers), i.e.,

X̂ = Decoder(XN) (7)

where X̂ is the restructure time series, Decoder(•) is a simple linear model.
Anomaly Criterion. With the reconstructed time series, we define a score function st

to flag anomalous behaviors by summing up the prediction errors in time t, i.e.,

st =
m

∑
i=1

∥x̂t − xt∥2 (8)
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where x̂t is the reconstructed value in time t, xt is input value in time t. When the score
exceeds a certain threshold, the corresponding data point is identified as an anomaly.

Auto-Attention. To extract the period-based feature, we propose an auto-attention
module as shown in Figure 2. The input of the l-th encoder layer is processed by FFTs
(Fast Fourier Transforms). The frequency domain is converted from the time domain.
Multi-head attention involves scaled dot-product attention. To discover the dominating
periodic patterns, we select top K amplitudes and convert them back to time domain Dl

s.
Then, multi-head attention is employed to enhance the feature extraction of Dl

s. For l-layer
series Xl is decomposed into seasonal component Xl

s and trend component Xl
t. FFT F and

the inverse FFT F−1 are formalized as:

Γk = F (xn) =
w−1
∑

n=0
xne−

j2π
w knk = 0, ..., w − 1

xn = F−1(Γk) =
1
w

w−1
∑

n=0
Γke

j2π
w knk = 0, ..., w − 1

(9)

K Q V

FFT FFT FFT

Conjugate

Inverse FFT

Top K

Linear Linear Linear

Scaled Dot-Product Attention

Linear

Figure 2. The proposed auto-attention module.

For the seasonal component, auto_attention can be expressed as:

Dl
s = F−1(Topk(Concat(F (Xl

s),F (Xl
s),F (Xl

s))))
Ml

s = Attention(Dl
s, Dl

s, Dl
s)

Auto_attention(Xl
s) = LN(Ml

s)

(10)

where Topk(•) obtains arguments of the Topk autocorrelations and let k = ⌊c × log w⌋,
where c is a hyperparameter, Attention(•) is a Multi-Headed self-Attention module,
and LN(•) is a linear module. The Auto_attention of the trend component is the same as
the above formula.
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5. Experiments
5.1. Datasets and Model Details

The purpose of this study is to verify the effectiveness of the proposed method,
we choose five public datasets:

(1) SMD (Server Machine Dataset) [12] collected from a large Internet company, where
each observation is equally spaced by 1 min;

(2) SMAP (Soil Moisture Active Passive satellite) [24] has 562,798 time points, of which the
training set size is 135,182 and the testing set size is 427,616;

(3) MSL (Mars Science Laboratory rover) [24] has 132,046 time points, of which the training
set size is 58,317 and the testing set size is 73,729;

(4) SWaT (Secure Water Treatment) [25] collected from a real-world water treatment plant
with 51 dimensions;

(5) PSM (Pooled Server Metrics) [26] collected from multiple application server nodes at
eBay with 26 dimensions.

Dataset statistics are shown in Table 1.
Experimental environment: The operating system is Ubuntu 18.04 LTS, the GPU is

a NVIDIA GEFORCE RTX 2080, and the implemented is program is PyTorch 3.6. All
experiments are repeated three times.

Table 1. Dataset statistics.

Dataset Train Test Dimensions Anomalies (%)

SMD 708,405 708,420 38 4.16
SMAP 135,183 427,617 25 13.13
MSL 58,317 73,729 55 10.72
SWaT 475,200 449,919 51 12.14
PSM 132,481 87,841 25 27.76

Data normalization and cleaning are first performed on all datasets. We follow the
threshold selection method proposed in Ref. [22]. Anomaly scores on the validation subset
are clustered to find the threshold. We also employ the point-adjust strategy, which assumes
that anomalies are correctly detected in a segment if any anomaly in this segment is detected
correctly [12]. Hyperparameter c (in Equation (10)) is set as 4. We use a fixed look-back
series w = 192 for training and testing. We stack 4 encoder layers in the model. The Adam
optimizer is employed with an initial learning rate of 10−4.

5.2. Baselines

We compare our model with seven state-of-the-art baselines:

(1) LSTM-VAE [3]: The model utilizes both VAE and LSTM for anomaly detection;
(2) OmniAnomaly [12]: The model is a stochastic recurrent neural network model that

glues Gated Recurrent Unit (GRU) and VAE;
(3) MTAD-GAT [14]: The model considers each univariate time-series as an individual

feature and includes two graph attention layers in parallel;
(4) USAD [17]: The model use adversarial training and its architecture allows it to isolate

anomalies;
(5) TransFram [21]: The model uses the transformer as the base architecture;
(6) AnomalyTran [22]: The model combines the transformer and the Gaussian prior associ-

ation makes it easier to distinguish rare anomalies;
(7) TranAD [27]: The model uses an adversarial training program to amplify the reconstruc-

tion error, because the simple transformer based networks often miss small abnormal
deviations.

These comparison baseline methods are the most representative at present.
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5.3. Performance Comparison

Precision (P), Recall (R), and F1 score are employed to evaluate the detection perfor-
mance of all methods. To comprehensively evaluate the five datasets mentioned above,
we reproduce part of the results for the baselines. The quantitative evaluation is reported
in Table 2, where the best results of the F1 score are in red and the second-best results are
blue. From Table 2, we can make the following observations. We achieve the best F1 scores
on the SMAP, MSL, SWaT, and PSM datasets and achieve the second-best F1 score on the
SMD dataset. Our method achieves high accuracy, which indicates that the false-positive
rate is low. Our method performs well in terms of accuracy and recall, with F1 scoring
higher than most other methods. Both methods bring significant improvements and new
directions. In contrast, we decompose the time series into seasonal components and trend
components. Long-term robustness can be retained by auto-attention. We argue that it can
improve temporal pattern representation. This hypothesis is confirmed by the results.

Table 2. Performance comparison of the baseline methods (as %, red: best, blue: second best).

Method SMD SMAP MSL SWaT PSM
P R F1 P R F1 P R F1 P R F1 P R F1

LSTM-VAE [3] 77.63 89.12 82.98 88.65 72.18 79.57 92.32 78.61 84.92 81.78 78.55 80.13 90.16 74.48 81.57
Omni Anomaly [12] 83.34 94.49 88.57 74.16 97.76 84.34 88.67 91.17 89.89 86.33 76.94 81.36 91.61 71.36 80.23

MTAD-GAT [14] 88.28 84.92 86.57 89.06 91.23 90.13 87.54 94.40 90.84 92.46 75.12 82.89 95.28 75.65 84.34
USAD [17] 93.14 96.17 93.82 76.97 98.31 81.86 88.10 97.86 91.09 98.70 74.02 84.60 74.42 99.01 84.97

TransFram [21] 91.60 86.44 88.94 85.36 87.48 86.41 97.21 90.33 93.64 92.47 75.88 83.36 88.14 86.99 87.56
Anomaly Tran [22] 88.42 96.90 92.47 92.16 89.79 88.96 95.83 92.66 94.22 86.38 92.14 88.17 94.75 88.59 90.56

TranAD [27] 92.62 99.74 96.05 80.43 99.99 89.15 90.38 99.99 94.94 97.60 69.97 81.51 88.15 84.91 89.72
DATN 93.50 94.37 93.92 96.25 86.45 91.15 96.75 93.26 94.97 95.38 85.32 90.12 97.39 87.49 92.25

To evaluate the efficiency of the proposed method, we provide a comparison of the
training time (per epoch) shown in Figure 3. Compared with RNN- and graph-based
methods, we need less time per epoch training, as depicted in Figure 3. RNN-based models
are weak in parallel computing. The graph-based model is time-consuming due to its
complex matrix operations. The graph-based method consumes more time when there are
more signals.

Figure 3. Efficiency comparison of the baseline methods.

5.4. Ablation Study

We analyze the effectiveness of the main components proposed in the work, including
series decompose and auto-attention, as shown in Table 3. For auto-attention, × indicates
that the original transformer framework is used. For series decompose, × means that the
proposed series decompose is replaced by a simple linear layer. From Table 3, we can make
the following observations. Using the proposed series decompose, the average F1 rises
from 84.20% to 91.41%. Replacing multi-head attention by our auto-attention, the average
F1 rises from 91.41% to 92.45%. That is to say, series decompose and auto-attention can
obviously improve the performance by achieving 8.25% (92.45% → 84.20%) and 3.88%
(88.08% → 84.20%) absolute average F1 promotions, respectively. In addition, our method
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yields a 13.52% (84.20% → 92.45%) absolute average F1 promotion compared with the
original Transformer framework.

Table 3. Ablation study of series decompose and auto-attention modules.

Components F1 Measures (as %)

Series
Decompose

Auto-
Attention SMD SMAP MSL SWaT PSM Avg

× × 86.21 85.23 83.13 82.21 84.22 84.20
× ✓ 89.23 88.14 87.19 86.36 89.43 88.08
✓ × 92.38 90.38 92.75 89.17 92.15 91.41
✓ ✓ 93.95 91.13 94.99 90.05 92.15 92.45

5.5. Case Study

We leverage a piece of the SMD dataset for the case study, shown in Figure 4. There
are four sub-figures. Figure 4a describes a selected signal with the reconstruction results.
The signal is selected due to its greater contribution to anomaly scores. The signal values
far from the reconstruction results will generate large anomaly scores (see Figure 4b). Then,
with the anomaly scores and threshold, we can easily find the anomalies depicted in the
Figure 4c. We produce results essentially in agreement with the anomaly labels shown
in the Figure 4d. The differences can be partially avoided by the point-adjust strategy.
Generally, the proposed method is effective.

(a) (b)

(c) (d)

Figure 4. Visualization analysis of anomaly detection. (a) The reconstruction results. (b) Anomaly
scores. (c) Anomaly detection results. (d) Anomaly labels.

6. Conclusions

In this study, we presented a decomposition auto-attention network for time-series
anomaly detection. Different from previous methods, we combined the time-series de-
composition architecture to learn the intricate temporal patterns in a divide-and-conquer
way. Auto-attention based on FFT was carefully designed to isolate and represent the
periodicity of time series. We proved the effectiveness of our detection algorithm on five
real datasets. These experiments demonstrated the efficacy and robustness of DATN and
the key module auto-attention, promising general use for time series reconstruction without
the need for model customization and greedy hyperparameter tuning. The only limitation
is the requirement of a certain amount of training data, as in typical neural networks.
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In future work, we plan to expand our DATN to other intelligent tasks for IoT systems
including forecasting and smart control. We also plan to make use of the feature extrac-
tion ability of auto-attention and explore an alternative usage of auto-attention from the
perspective of representation learning for time series.
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