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Abstract: This paper presents a unique geometry of a chipless radio frequency identification (RFID)
tag for encoding a large number of bits in a very small form factor. The tag geometry consists of
semi-octagonal copper strips, sequentially laid on a single side of an ultra-thin substrate. A unique
and robust encoding mechanism for the tag identification (ID) is proposed. The operating frequency
spectrum of the tag ranges from 3.1 to 10.5 GHz. The tag is compact, having an overall size of
14.5 × 28 mm2. The proposed tag exhibits very high code density of 9.85 bits/cm2 and spectral
efficiency of 5.4 bits/GHz. The unique geometric configuration of the proposed tag allows it to
encode up to 40 bits of data as an RCS signature. This chipless RFID tag seems to be a potential
candidate for a wide range of modern RFID applications.

Keywords: barcode; chipless RFID; frequency domain; future systems miniaturization; product
identification; RCS; tag

1. Introduction

For many years, optical barcode technology has been utilized in many different situa-
tions for reading, tracking, identification, and monitoring of objects because of its low cost
and reliability [1]. Recent advancements in computing, communications, and automated
systems have raised concerns regarding the constraints of the barcode technology. This
includes tight human machine interface (HMI), lack of security, line-of-sight (LoS), and
the reading range of barcode systems. To overcome these constraints, the radio frequency
identification (RFID) technique is now being utilized [2]. An RFID system consists of a
transceiver, an electronic tag, and a reader. These new RFID systems offer automated opera-
tion, higher security, longer range, and larger data capacities compared to previous barcode
systems. They are thus superior in their working and can be applied to scenarios such as
vehicle identification, shopping products, employee card readings, and cargo inventory
management. It had been estimated that RFID tags would be used by billions of products
in future [3].

There are two types of tags employed in RFID systems: (1) with on-board electronics
and (2) without any electronics. The latter type, without electronics, is called a chipless
RFID tag, as has a significantly reduced cost compared to the chipped tag. Chipless
RFID (CRFID) tags are therefore of great importance to the research community. Data
encoding methodologies and capacity enhancement of a CRFID tag are ongoing research
challenges. Many different encoding techniques have been presented in the literature. Four
primary encoding techniques are used [4]: (1) time-domain (TD); (2) frequency-domain
(FD); (3) spatial-domain; and (4) hybrid encoding techniques [5–10]. The FD-based CRFID

Electronics 2023, 12, 349. https://doi.org/10.3390/electronics12020349 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020349
https://doi.org/10.3390/electronics12020349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2482-6731
https://orcid.org/0000-0001-7824-891X
https://doi.org/10.3390/electronics12020349
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020349?type=check_update&version=1


Electronics 2023, 12, 349 2 of 14

tags are further divided into (1) backscattering and (2) retransmission-based tags. In the
former case, an electromagnetic (EM) wave impinging on the tag is reflected by the tag and
its radar cross-section (RCS) is computed. The RCS contains an electromagnetic signature
that corresponds to the information stored on that particular tag [11–14]. FD-based CRFID
tags are being designed to address different challenges of the market, such as cost, bit
capacity, code density, spectral efficiency, compactness, and robustness [15–27].

For this purpose, different state-of-the-art CRFID tags based on the FD technique are
reported in the literature. In [18], a closed loop elliptical shaped tag operating from 3.5 to
15.5 GHz with a code density of 2.74 bits/cm2 and a spectral efficiency of 0.83 bits/GHz
is reported. A novel trefoil-shaped tag [19] having an overall size of 13.55 × 13.55 mm2

and a high code density of 5.44 bits/cm2, operating from 5.4 to 10.4 GHz with spectral bit
efficiency of 2 bit/GHz, was investigated. Similarly, some closed-loop resonators [20,21]
with butterfly- and kite-shaped tags operating in 4.7–10 GHz with a spectral efficiency of
2 bits/GHz, having a high code density of 5.1 and 5.44 bits/cm2, respectively, have been
presented. All the above discussed closed-loop tags [18–21] bear an overall compact size
and high code densities but low spectral efficiency.

Moreover, recently reported open-loop resonating CRFID tags [22–27] are also avail-
able. A novel L-shaped design [23] operating within 3–6 GHz with a high code density
and spectral efficiency of 4 bits/cm2 and 5.33 bit/GHz, respectively, has been reported.
However, it has a low bit capacity of only 8 bits. A semi-elliptical shaped tag with a slightly
higher code density of 4.7 bits/cm2 was presented in [24]. This tag operates in a wide
band of 4.1–16 GHz, exhibiting a very low spectral efficiency of 1.68 bits/GHz. In [25], a
capacitive loaded dipole-based tag with a very high spectral efficiency of 12.5 bits/GHz op-
erating at 2–3.6 GHz was proposed. The tag possesses a very large size of 16.7 × 67.8 mm2,
resulting in a low code density of 1.77 bits/cm2. A 21-bit coupled-line micro strip-based
tag having a high spectral efficiency of 7 bits/GHz and a very large size of 60.3 × 11 mm2

with code density of 1.1 bit/cm2 is discussed in [26]. A very simple rectangular slot-based
tag [27] has a spectral efficiency of 1.9 bits/GHz and an overall tag size of 35 × 35 mm2.
This results in a very low code density of only 0.98 bits/cm2. In [28], high-capacity comb-
shaped tags are presented. Frequency-domain-based high-capacity tags were recently
presented [29] having a closed-loop structure and [30] a 32-bit single quadrant angle-
controlled tag. In [31,32], a novel design methodology to design CRFID tags via systematic
loading of a square split ring with circular and square slots are presented.

In this work, a unique 40-bit semi-octagon shaped chipless RFID tag is presented.
The proposed tag is compact in size, therefore leading to a very high code density. The
operating band of the tag is set to between 3.1 and 10.5 GHz, which results in a spectrally
efficient design.

2. The Tag
2.1. Theoretical Design and Coding Scheme

The proposed single layer CRFID tag is designed on a thin Rogers RT Duroid 5880 substrate
having a thickness of 0.127 mm. The substrate has permittivity εr = 2.2 and loss tangent
tanδ = 0.0009 mm. The geometrical configuration of the tag is shown in Figure 1 with an
overall size (Lsub × Wsub) of 14.5 × 28 mm2.

The tag consists of ‘N’ copper strips organized in a nested fashion and separated
with gap ‘g’ between them. Each copper strip consists of a pair of two bent segments
symmetrically placed around the y-axis. In the right half of the Nth pair, the first segment
has length LaN, whereas the length of its second segment is LbN. The bending angles for
first and second segments w.r.t. the x-axis are θa and θb respectively. The left half of the
Nth copper strip pair is an exact replica of its right half. This particular construction of the
proposed tag allows two degrees of freedom in controlling the resonant points of its RCS
i.e., by choosing different values for (LaN, θa) and (LbN, θb). The back side of the tag has no
copper and hence remains empty.
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Figure 1. Geometrical configuration of the proposed tag.

The coding scheme used for the proposed tag is frequency-domain based, for which a
target band of 3.1–10.5 GHz has been chosen. The spectral allocation for coding of the tag
is shown in Figure 2. The RCS operating band is divided into ‘M’ bit-slots, each having
140 MHz of bandwidth. All bit-slots are separated by a guard band of 45 MHz. A bit-slot
starts at the frequency ‘faM’ and ends at ‘fbM’, such that fbM = faM + 140 MHz. For the
particular bands chosen here, there are M = 40 bit-slots and hence 40 bits can be encoded.
The lowest frequency bit-slot i.e., ‘Bit Slot 1’, is designated as the least significant bit of the
tag ID. Therefore, the highest frequency bit slot i.e., ‘Bit Slot M’, corresponds to the most
significant bit. At this point, it is worth mentioning that the total number of copper strips
‘N’ present on the tag (Figure 1) is not equal to the total number of allocated bit-slots ‘M’
(Figure 2).
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Figure 2. The spectral allocation for the proposed tag.

Furthermore, the RCS magnitude is divided into three regions as shown in Figure 3.
The levels of these three regions have been labeled as: (1) valid logic bit 0, (2) invalid logic
bit, and (3) valid logic bit 1. The bounding values for these levels are set as 0 to −38.5,
−38.5 to −41.5, and −41.5 to −∞ dBsm. The mechanism to encode a valid bit, therefore, is
that the RCS must exist between the bounds specified in Figures 2 and 3. These bounds are
summarized in Table 1, for correct decoding of a tag’s ID from its RCS response.
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Table 1. Summary of bit decoding process.

Case Frequency Range, f (GHz) RCS Magnitude Range (dBsm) Decoded Logic

1 FaM < f < FbM |RCS| > −38.5 0
2 FaM < f < FbM |RCS| < −41.5 1
3 FaM < f < FbN −38.5 > |RCS| > −41.5 invalid
4 FaM-1 < f < FaM |RCS| > 0 invalid

There is a two-step process to encode a logic bit 0 at a particular bit-slot. First, a
length corresponding to the central frequency of the bit-slot is roughly calculated using the
following standard formulation:

LN =
c

2 f

√
2

εr + 1
(1)

where ‘c’ is the speed of light, ‘f ’ is the central frequency of the desired bit slot, and ‘εr’ is
the permittivity of the substrate used. In the second step, lengths LaN and LbN are chosen
iteratively, such that the following relationship remains true:

LN = 2(LaN + LbN) (2)

where LaN and LbN are the segment lengths at angles θa and θb, respectively. It must be
mentioned here that for the proposed tag design, a constant value of 22.5◦ has been chosen
for θa whereas, θb = 2θa for all the ‘N’ copper strips.

2.2. Single Bit Resonator

A single bit resonator (i.e., N = 1) based on the theoretical tag design scheme was
simulated to show the effect of LN on RCS. This effect is shown as a parametric analysis
graph in Figure 4. It can clearly be noticed that by controlling the length LN, the peak value
of RCS can be varied over a large spectrum. It is also noticed that the RCS response of
the single bit resonator has a significant bandwidth and will therefore occupy more than
a single bit-slot. This phenomenon will result in lessor number of copper strips ‘N’ than
ideally required.
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2.3. Tag Configurations

Several tag configurations of the above discussed tag were designed and simulated to
verify the proposed concept. Four of the configurations, namely, Tag 1, Tag 2, Tag 3, and
Tag 4 bearing different 40-bit IDs are outlined in Table 2.

Table 2. List of Tags and their ID’s.

S. No Tag Name Tag 40-Bit ID

1 Tag 1 01101101 00101101 10101010 11010100 10000100
2 Tag 2 10010010 01000100 10010010 00100010 00001000
3 Tag 3 01101000 00101101 00101001 01001010 10001000
4 Tag 4 10100001 10010100 10100001 00000010 00010100

All the above listed tags were designed with the same overall dimension of 14.5 × 28 mm2.
The element width ‘w’ and the spacing g = 0.2 mm between them was also kept the same.
The distance ‘d’ of first element from point ‘o’ was kept at 3.2 mm throughout all the designs.
The RCS responses of all the tags (Tag 1–4) are shown in Figure 5. The geometries of the
resulting tags generated for their respective IDs are shown alongside their RCS graphs.

The RCS thresholds and bit-slot’s frequency bands are represented by grey-colored
rectangular blocks, as shown in Figure 5. Each tag has a different number of copper strips
‘N’, to encode a 40-bit ID. For example, Tag 1 has N = 25, for Tag 2 N = 13, for Tag 3 N = 20,
and for Tag 4 N = 19. Using the grey threshold bounds in Figure 5, a tag ID can be found
easily. For example, for tag 1, it can be seen that the ID can be decoded by comparing the
RCS magnitudes to the threshold levels provided in Table 1. Looking into bit-slot 1, the RCS
resonance is in logic bit ‘0’ region (0 to −38.5 dBsm), so it is encoded as ‘0’. For bit-slot 2,
the RCS resonance crosses the logic bit ‘1’ region, so it is encoded as ‘1’. For bit-slot 35, the
RCS magnitude lies between the invalid region (−38.5 to −41.5 dBsm) and the transition
region, so it is encoded as ‘0’. All other bit-slots have been encoded in the same manner, and
therefore can be decoded accordingly. Alternatively, using the limits provided in Table 1,
a tag’s ID can be computed through digital signal processing. Optimized parameters of
Tag 1 are provided in Table 3. The parameters for the rest of three tags are not shown here
for brevity.
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Table 3. List of optimized parameters for Tag 1.

Parameter Value (mm) Parameter Value (mm) Parameter

La1 3.52 La18 8.72 Lb10
La2 3.82 La19 9.03 Lb11
La3 4.13 La20 9.33 Lb12
La4 4.43 La21 9.64 Lb13
La5 4.74 La22 9.94 Lb114
La6 5.05 La23 10.25 Lb15
La7 5.35 La24 10.56 Lb16
La8 5.66 La25 10.87 Lb17
La9 5.97 Lb1 2.87 La18
La10 6.27 Lb2 2.74 Lb19
La11 6.68 Lb3 2.61 Lb20
La12 6.89 Lb4 2.49 Lb21
La13 7.19 Lb5 2.51 Lb22
La114 7.5 Lb6 2.45 Lb23
La114 7.5 Lb6 2.45 Lb23
La15 7.8 Lb7 2.43 Lb24
La16 8.11 Lb8 2.52 Lb25
La17 8.41 Lb9 2.5 -

The least significant bit for Tag 1 exists at 3.2 GHz, while its most significant bit
occurs at 10.1 GHz. The code density of the proposed tag is calculated to be 9.85 bits/cm2

and its spectral efficiency is 5.4 bits/GHz. These values are much higher than those of
various recently published state-of-the-art CRFID tags. The comparison in Table 4 shows
that the proposed tag exhibits better performance when considering code density and
spectral efficiency.

Table 4. Comparison with state-of-the-art CRFID tags.

Ref. No. Tag Structure
Operating
Frequency

(GHz)
Size (mm2) No. of Bits Code Density

(Bits/cm2)

Spectral
Efficiency
(Bits/GHz)

[18] Elliptical Slot 3.5–15.5 22.8 × 16 10 2.74 0.83
[19] Trefoil-Shaped Slot 5.4–10.4 13.55 × 13.55 10 5.44 2
[20] Butterfly Slot 4.7–9.7 14 × 14 10 5.1 2

[21] kite-shaped
resonators 4.7–10 13.55 × 13.55 10 5.44 2

[22] Circularly
Arranged Scatters 1.8–3.6 55 × 55 20 0.7 12.5

[23] L-Shaped Slots 3–6 20 × 20 8 4 5.33

[24] Semi-Elliptical
Shaped Slots 4.1–16 25 × 17 20 4.70 1.68

[25] Spiral C-loaded
Scatters 2–3.6 16.7 × 67.8 20 1.77 12.5

[26]
Coupled Line

Micro Strip
Resonator

5–8 60.3 × 11 21 1.1 7

[27] Rectangular Slot
Ring 2–9 35 × 35 12 0.98 1.9

Proposed Tag
Semi-Regular

Octagon Shaped
Strips

3.1–10.5 14.5 × 28 40 9.85 5.40

The surface current distribution of the proposed tag (Tag 1) at four different frequencies
when the y-polarized plane wave is incident upon them is shown in Figure 6a–d. It can
clearly be observed that the outer copper strips are sensitive to lower frequencies, whereas
the inner copper strips become active at higher frequencies. It can also be observed that
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there exists mutual coupling between the nearby tag strips, which is believed to result in
a wider RCS response. This mutual coupling effect can be minimized by increasing the
separation between the strips.
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3. Fabrication and Measurement Results

To verify the RCS response, all four tags were fabricated as shown in Figure 7. The fabri-
cation was carried out by a standard PCB process on a thin 0.127 mm Rogers 5880 substrate.
The fabricated tags were measured through a vector network analyzer (VNA) in an anechoic
chamber. The photograph of the measurement setup is shown in Figure 8.
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The fabricated tag was placed at far-field distance from the feed horns and S parameter
S21 was measured. To filter out the static noise from the measured results, the reference
measurements without the tag were also made. To plot the RCS of all the fabricated tags,
the following mathematical expression [33] was used:

δtag =

[
stag

21 − sisolation
21

sre f
21 − sisolation

21

]2

.δre f (3)

where δre f is a predetermined RCS response of a rectangular metal plate, sisolation
21 is the

transmission response of the anechoic chamber setup without the tag, sre f
21 is the transmis-

sion coefficient of a large metal sheet, and stag
21 is the transmission coefficient in presence of

the tag. The RCS measurement was performed using three different standard gain horn
antennas (SGHA): (1) 2–3.95 GHz; (2) 3.95–5.85 GHz; and (3) 5.85–8.20 GHz as transmitters.

The reception was achieved via a wide band horn antenna operating at 2–18 GHz. The
tags were attached to foam. To filter out the effects of the foam and the surroundings, a
separate measurement was taken without the tag, and only with the foam. The S21 of this
measurement was then subtracted from the tag response. The measured and simulated RCS
responses of Tags 1–4 are shown in Figure 9. The measured results are in good correlation
with those simulated.
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4. Conclusions

A unique geometrical configuration for a chipless RFID tag was presented. The
proposed tag was modeled on an ultra-thin Rogers substrate. The tag is extremely compact,
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bearing a footprint of 14.5 × 28 mm2 and having a very high code density of 9.85 bit/cm2.
The operating frequency range of the tag is from 3.1 to 10.5 GHz. The tag was found to
be spectrally very efficient with efficiency equal to 5.4 bits/GHz. The proposed tag could
easily store up to 40 bits, even with a lesser amount of on-board copper resonators. This
specially designed compact and ultra-thin chipless RFID tag can be used by RFID system
designers for various identification applications.
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