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Abstract: Deep learning models and computer vision are commonly integrated for e-health self-help
diagnosis. The abnormal colors and traits of feces can reveal the risks of cancer and digestive diseases.
As such, this paper develops a self-help diagnostic system to conveniently analyze users’ health
conditions from feces images at home, which can reduce dependence on professional skills and
examinations equipment. Unfortunately, real scenes at home suffer from several severe challenges,
including the lack of labeled data, complex backgrounds, varying illumination, etc. A semi-supervised
learning strategy is employed to solve the scarcity of labeled data and reduce the burden of manual
labeling. The unlabeled data are classified by an initial model that is pretrained on a small number
of training data. Then, the labels with high confidence are allocated to the unlabeled samples in
order to extend the training data accordingly. With regard to the small feces areas in certain samples,
an adaptive upsampling method is proposed to enlarge the suitable local area according to the
proportion of the foreground. Synthesized feces images in real scenes are tested to confirm the
effectiveness and efficiency of the proposed method. In terms of accuracy, our proposed model can
achieve 100% and 99.2% on color and trait recognition in medical scenes, respectively, and 99.1% and
100% on color and trait recognition in real scenes, respectively. The related datasets and codes will be
released on Github.

Keywords: feces macroscopic medical image; adaptive upsampling; semi-supervised learning;
dataset synthesis; e-health self-help diagnosis

1. Introduction

Deep learning models and computer vision are commonly integrated for e-health
self-help diagnosis [1]. As a routine physical examination, abnormal colors and traits of
feces typically can help with predicting and evaluating the potential and possible risks of
digestive diseases [2] as well as other diseases such as the assessment and prediction of
COVID-19 [3], chronic diarrhea [4], and colorectal cancer [5]. Therefore, accurate, quan-
titative, automatic, fast and efficient medically assisted examination and diagnosis can
definitely help patients to seek medical treatment in a timely manner and reduce the risk of
disease deterioration and infection.

Computer-assisted methods for feces diagnosis have three remarkable advantages.
First, the examiners do not have to touch feces samples, meaning that the risks of infection
and workload are reduced. Second, they can provide reliable results, efficient classification,
quantitative analysis, and rapid feedback. Third, computers can work continuously with
high intensity.

Feces examination includes macroscopic examination and microscopic examination.
While microscopic examination is accurate, it is time-consuming and expensive due to
the requirement for professional inspectors and sophisticated instruments. In contrast,
macroscopic examination, as a preliminary diagnosis manner in clinical practice, has the
advantages of rapid examination and fewer requirements. Therefore, efficient and reliable
automatic macroscopic inspection is indispensable [6].
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However, there is currently a lack of e-health self-help diagnosis based on feces
medical images. Therefore, this paper develops an accurate, quantitative, automatic, fast,
and efficient e-health self-help diagnosis system for feces macroscopic images based on
computer vision and pattern recognition. Two attributes of feces, namely, color and trait,
are recognized and analyzed by a Convolution Neural Network (CNN) [7–9].

Considering the requirements of different application scenarios and different tasks,
this paper defines three task types, as shown in Table 1. There are two different classification
criteria for the color classification task. Yellow and brown can be considered as healthy
feces colors, and as such are merged into one color category.

Table 1. Examination tasks.

Categories

Scenarios Unhealthy Healthy

Task (4 Colors) Red Black Yellow Brown
Task (3 Colors) Red Black Other
Task (3 Traits) Liquid Watery Soft

In clinical assessment, red and black are regarded as abnormal feces colors. The classi-
fication task with four color categories is designed for carrying out pathological analysis in
cases where more detailed analysis is a requirement. However, the classification task with
three color categories is sufficient for ordinary self-help users, who pay more attention to
whether their feces color is healthy or abnormal. For trait classification, liquid and watery
samples are regarded as abnormal samples. Samples with different colors and traits are
shown in Figure 1.

Figure 1. Categories of feces images: (a–d) for color classification and (e–g) for trait classification.

In medical scenes, feces samples are collected with special instruments, and the
acquisition conditions, including the background and illumination, are fixed. However,
in real scenes users capture macroscopic images of the feces by themselves, meaning that
the acquisition conditions are not strictly controllable and that the related challenges may
degrade the accuracy of diagnosis.
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The traditional methods for feces diagnosis are unable to meet the growing demand
for rapid automatic diagnosis and for effective epidemic prevention and control. Due to
the lack of samples, it is difficult to directly use the existing classification models for feces
diagnosis. Therefore, the main contributions and novelty of this paper are summarized
as follows. 1. Semi-supervised training is employed, which is suitable and efficient for a
small number of samples. 2. As the feces area is too small in certain samples, an adaptive
upsampling method is proposed to enlarge the effective area of feces. 3. A real-scene
dataset is synthesized to alleviate problems related to the small amount of data, then a
diagnosis framework is proposed for real scenes.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3
specifies the methodology. Section 4 describes our experiments and discusses the results.
Finally, our conclusions and the possibilities for future work are provided in Section 5.

2. Literature Review

Medical images [10,11] are commonly used in computer-aided diagnosis (CAD), i.e., the
integrated application of digital image processing, pattern recognition, and medical profes-
sional knowledge. Combined with computer analysis, CAD can improve the automation and
accuracy of e-health diagnosis.

2.1. Medical Image Diagnosis

Computer technologies are widely used in medical diagnosis, and have achieved re-
markable performance [12]. Feces examination is a very important clinical examination;
however, its development has been slow due to a lack of samples and other severe challenges.

Nkamgang et al. [13] proposed an expert system using feces images to check for
intestinal parasites. A Fuzzy Neuron classifier was trained to diagnose the feces images
taken by microscope. Deep learning has been widely used in medical diagnosis on account
of its powerful learning ability. Yang et al. [14] proposed StoolNet to analyze colors in
macroscopic feces images in order to judge patients’ intestinal health. Choy et al. [15]
were able to improve the accuracy of StoolNet for fecal traits. Inspired by StoolNet,
Leng et al. [16] developed a lightweight classification network to identify feces traits,
achieving satisfactory performance.

However, the feces images in the above methods were all collected with special
professional medical instruments under strictly controllable conditions, such as fixed
background and illumination. Self-help diagnosis requires that images collected with a
self-help handheld device be recognized, and needs to overcome the interference caused by
complex backgrounds and various illuminations. To the best of our knowledge, there are
no public feces image datasets consisting of images collected in real scenes, which greatly
inhibits the development of self-help feces diagnosis. Thus, it is necessary to synthetise
real-scene data in order to train a self-help feces diagnosis model.

2.2. Data Augmentation and Semi-Supervised Learning

Augmentation and synthesis can enlarge the training dataset; however, the model
depends heavily on the labeled data. Semi-supervised learning is a feasible way to solve
this problem. The existing semi-supervised methods, namely, direct and indirect, rely on
the assumption of low density separation and smoothing [17]. Low density separation
assumes that there are great differences among different categories. In the feature space,
the samples of the same category are close and lead to high density, while the region with
low density is more likely to be a decision boundary. The state-of-the-art semi-supervised
methods can be briefly divided into maximizing decision boundary and self-training.

Maximizing decision boundary attempts to maximize the distance between a given
datapoint and the decision boundary. When all samples are far from the decision boundary,
the decision boundary should be within the low-density region [18]. In soft boundary-
based support vector machine (SVM), the misclassified samples and the samples near the
boundary are mapped to high dimension and separated; alternatively, the misclassified
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samples are used to accumulate loss. Then, these distances are reduced by optimizing the
model parameters in order to maximize the decision boundary [19]. Bie and Cristianini [20]
proposed the convex relaxation problem of the objective function, which can be solved by
semi-definite programming. This approach was later extended to multi-classification tasks
by Xu et al. [21]. To reduce computational complexity, Li and Zhou [22] proposed S4VMs.

Self-training, known as pseudo-labeling, refers to the generation of new labels us-
ing a pre-trained model, which are the new labels from training on a small number of
samples. Sohn et al. [23] proposed a semi-supervised learning framework for object
detection. A pre-trained model was used to generate pseudo-labels for unlabeled data.
Sohn et al. [24] proposed FixMatch to classify the same image with weak and strong aug-
mentation. Xie et al. [25] found that noisy students could improve the generalization ability
of the trained model. However, the network requires improvements to its structure in order
to adapt larger datasets.

Smoothing hypothesis requires that the prediction model should be robust to local
perturbations in its input. The potential representation of the network can be guided by
inputting the disturbances from unlabeled data into the network and by the reconstruction
of losses [26–28]. Bachman et al. [29] improved the robustness by applying an additional
loss term to the difference between the activation of the disturbed network and the activa-
tion of the original network. Laine and Aila [30] disturbed the network through dropout,
and the unsupervised term in the loss function was initially set to zero, which is expected
to improve robustness.

The theory basis of self-training comes from the clustering hypothesis [31]. On the
one hand, the high-confidence samples labeled with pseudo-labels are usually more likely
to be correctly classified. On the other hand, high-confidence samples are usually in the
high-density area in the feature space, while the samples with interference are usually in
the low-density area. If the model is affected by severe interference, the decision boundary
moves to the high density area, degrading the classification accuracy. Therefore, the pseudo-
labeled samples have an advantage over the fully-labeled samples in that it is not as easy
for the parameter updating of the model to be misled if the samples with high confidences
are correctly classified.

3. Proposed Method

A CAD self-help feces diagnosis approach is proposed in this paper, which consists of
three main works, including self-supervised learning (SSL), adaptive up-sampling (AUS),
and synthesis of feces image in real scenes. These three main contributions are specified in
this section. A three-layer lightweight CNN is utilized as the benchmark structure [18].

3.1. Semi-Supervised Learning (SSL)

It is hard to collect enough labeled data; therefore, SSL is leveraged, as shown in
Figure 2. High-confidence samples refer to those samples with high logical regression
values. There are two relevant parameters, namely, the degree of deviation from expectation
∆d and standard deviation σ:

σ =
√

σ2 =

√
∑ (x− µ)2

N
(1)

where σ is the standard deviation of logits without the corresponding max value and N is
the number of samples, which is the average logits of the samples:

∆d = arg max(X)− µ (2)

where X = {x1, x2, . . . , xn}, which is a set, and Xϕ refers to the probability that x is classified
to the ‘-th’ class where ϕ-th is the number of classes.

If ∆d > σ, then the classification result of this sample can be adopted as a pseudo-
label because the model can clearly distinguish this sample; otherwise, the classification
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result is discarded because the model is not confident about the category to which the
sample belongs.

Figure 2. Procedure of semi-supervised learning.

3.2. Adaptive Up-Sampling (AUS)

In the image collection of feces samples, the sizes of the region of interest (ROI), i.e.,
the feces region, are different. Sometimes the ROI is too small, as shown in Figure 3, which
leads to insufficient information and degraded accuracy.

Figure 3. Small-ROI samples.

AUS is proposed to adaptively enlarge small ROIs. The three steps are to localize the
small ROI, appropriately scale it according to the result of image segmentation, and zoom
in the small ROI. The procedure of AUS is shown in Figure 4.

Step 1: OTSU segmentation is conducted on the saturation channel to segment the
ROI [14]. In each image, the number of foreground pixels is denoted by S, while in a sliding
window the proportion of foreground pixels is denoted by P.

Step 2: The percentage of foreground pixels is calculated in all size-adaptive windows,
where the sizes are w× w

(
w =

√
s
)
, and the maximum proportion among them is selected.
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Step 3: T is used as a threshold to adaptively crop the sample. If Pmax ≥ T, the cor-
responding sliding windows are upsampled. If Pmax < T, then replace Pmax with P and
repeat Step 2 until Pmax ≥ T is satisfied.

Figure 4. Adaptive upsampling of ROI.

AUS ensures that all the images have large ROI. To determine the optimal ratio,
the accuracies of samples with different foreground ratios are compared in Table 2. The color
and trait networks reach their best results on the training data at foreground ratios of
70–80% and 60–70%, respectively.Therefore, in this paper the threshold for the experiments
to determine colors and traits was set as 70–80%.

Table 2. Results on medical scenes with three color categories.

Foreground Ratio Accuracy (Color) Accuracy (Trait)

90% 0.833 0.925
80–90% 0.860 0.866
70–80% 0.890 0.880
60–70% 0.850 0.956
≤60% 0.803 0.838

It can be seen that a very small ROI carries insufficient information, while too large an ROI
does not lead to the best effect. For color classification, the color in the ROI may be disturbed
by multiple colors. For trait classification, boundary information and texture information are
both important, and too large an ROI may contain useless boundary information.

3.3. Synthesized Dataset

A real-scene dataset was synthesized to confirm that the proposed method is effective
for use in daily life. Compared with the medical scenes, the backgrounds, illuminations,
and morphology are much more complex in a real scene, which can pose severe challenges.

Splicing synthesis was used to generate the synthesized real-scene feces images. This
approach preserves the color and texture features of the ROI. The synthesized dataset can
be rotated at different angles in order to further expand it. The synthesized real-scene feces
images should meet the following requirements: 1. diversity, such as different backgrounds,
illuminations, etc; 2. the feces regions should be large enough; and 3. naturalness, that is,
the synthesized images should be similar to those collected from real scenes.

The synthesis procedure is shown in Figure 5. The binary mask labels the locations
of the feces pixels (foreground pixels) that are stitched with a real-scene toilet image.
The synthesized real-scene feces images have good naturalness. Because OTSU commonly
produces a larger feces region, which leads to dark boundaries in the synthesized images,
morphological corrosion is used to suppress the dark boundaries.
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Figure 5. Process for synthesizing real-scene feces images.

4. Experiments

The proposed method is tested in two predefined application scenarios and three tasks.
For disease diagnosis, better classifiers can obtain more pathological information from the
fine-grained classification results. Therefore, the accurate classification of feces colors and
traits is significantly important to academic studies. On the other hand, common users look
forward to self-diagnosis and expect a high recall rate of abnormal samples, which can help
to avoid missing out on timely treatment.

4.1. Medical Scenes
4.1.1. Four Color Categories

The overall accuracy refers to the accuracy on the dataset containing all the categories.
In the following text, “accuracy” refers to overall accuracy. The results for four color
categories on medical scenes are shown in Table 3. The single-task network is pre-trained
for only one task, that is, either color or trait classification. The multi task network is
pre-trained for the two tasks of color and trait classification simultaneously. AUS improves
the accuracy of both the single-task and multi-task methods. The accuracy is improved
by 3.9% (from 91.1% to 95%) on the multi-task AUS+SSL. SSL does not provide the same
influence on every model; however, it saves the labeling of 10% of the training data.

Table 3. Results for four color categories in medical scenes.

Model Accuracy
Recall

Black Red Yellow Brown

StoolNet [14] 97.0% 97.6% 96.8% 96.8% 96.8%

Single task

- 94.8% 94.4% 95.2% 94.4% 95.2%
AUS 98.0% 96.8% 97.6% 99.2% 98.4%
SSL 96.0% 94.4% 93.7% 97.6% 98.4%

AUS+SSL 97.0% 95.2% 96.0% 97.6% 99.2%

Multi-task

- 92.1% 92.9% 94.4% 90.5% 90.5%
AUS 95.0% 93.7% 93.7% 96.0% 96.8%
SSL 91.1% 92.9% 92.1% 90.5% 88.8%

AUS+SSL 95.0% 94.4% 96.0% 94.4% 95.2%

Overall, the single-task methods outperform the multi-task methods. Additionally,
the best accuracy and best yellow recall are achieved with the combination of a single-task
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network and AUS, which outperforms StoolNet, the state-of-the-art recognition method for
feces color.

4.1.2. Three Color Categories

The results for three color categories in medical scenes are shown in Table 4. AUS
improves the accuracy of most groups for single-task methods, while the results for SSL
are nearly the same even with AUS.

Table 4. Results for three color categories in medical scenes.

Model Accuracy
Recall

Black Red Others

StoolNet [14] 98.0% 94.3% 92.6% 93.8%

Single task

- 95.8% 94.9% 96.6% 96.0%
AUS 97.5% 96.0% 98.3% 98.3%
SSL 97.0% 95.5% 97.2% 98.3%

AUS+SSL 97.0% 97.7% 98.9% 94.3%

Multi-task

- 97.0% 97.2% 98.3% 95.5%
AUS 100.0% 100.0% 100.0% 100.0%
SSL 98.9% 98.9% 98.9% 98.9%

AUS+SSL 99.1% 99.4% 98.9% 98.9%

Unlike the previous experiments with four color categories, here the multi-task meth-
ods are better than the single-task methods. The accuracy of the combination of multi
task+AUS even achieves 100%.

4.1.3. Three Trait Categories

The results for three trait categories in medical scenes are shown in Table 5. All the
proposed methods in this paper yield better accuracy than the start-of-the-art classification
method for feces traits. Benefiting from the complementarity between the classification of
colors and traits, the multi-task methods achieve better performance here than the single
task methods. Meanwhile, AUS and SSL are both able to effectively improve performance.

Table 5. Results for three trait categories in medical scenes.

Model Accuracy
Recall

Liquid Soft Watery

Feces trait [15] 95.1% 93.8% 94.3% 97.2%

Single task

- 97.0% 98.9% 97.2% 94.9%
AUS 97.5% 97.2% 97.7% 97.7%
SSL 97.0% 98.9% 96.6% 95.5%

AUS+SSL 97.5% 98.9% 97.2% 96.6%

Multi-task

- 98.1% 99.4% 98.3% 96.6%
AUS 99.1% 100.0% 98.3% 98.9%
SSL 98.3% 98.3% 98.3% 98.3%

AUS+SSL 99.2% 100% 98.9% 98.9%

4.2. Real Scenes

The experiments using real scenes were conducted similarly to those using medical
scenes. The main difference between them is that the experiments are tested in different
scenarios, i.e., on different samples. As the main purpose of this paper is developing a
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self-help feces examination approach, it is necessary to test our method on real scenes. All
of the models were trained and tested on the synthesized real-scene dataset.

4.2.1. Four Color Categories

Here, we compare the overall recall and the recall for each category. Overall recall is
the recall for the dataset containing all the categories. In the following text, “recall” refers to
overall recall. The results are shown in Table 6. It can be seen that AUS effectively improves
the accuracy and recalls of abnormal samples, while the combination of AUS+SSL greatly
improves the performance.

Table 6. Results for four color categories in real scenes.

Model Accuracy
Recall

Black Red Yellow Brown

StoolNet [14] 92.1% 93.7% 92.9% 90.5% 91.3%

Single task

- 94.1% 92.9% 93.7% 95.2% 94.4%
AUS 95.0% 93.7% 95.2% 95.2% 95.2%
SSL 94.0% 92.9% 94.4% 95.2% 95.2%

AUS+SSL 96.0% 96.0% 94.4% 99.2% 94.4%

Multi-task

- 93.9% 95.2% 93.7% 94.4% 92.9%
AUS 96.0% 99.2% 95.2% 95.2% 94.4%
SSL 94.0% 95.2% 93.7% 94.4% 92.9%

AUS+SSL 96.0% 97.6% 96.8% 95.2% 94.4%

Meanwhile, the single task and multi-task approaches have similar overall accuracies.
The main reason for this is that the classification performance of the multi-task methods
is not good at distinguishing “yellow” and “brown”. However, considering this is a self-
help diagnosis method, it is unimportant to distinguish the differences between these
two healthy feces colors. Compared with single-task methods, the multi-task methods
yield higher recall values for abnormal colors, which is more important for users than
fine-grained classification of the two healthy feces colors.

4.2.2. Three Color Categories

As discussed above, it is necessary to diagnose abnormal colors in real scenes. The re-
sults for three color categories are shown in Table 7. It can be seen that the multi-task
methods yield better performance than the single-task methods on each index, which
reveals that there is a potential relationship between the color and trait information. In
addition, this explains that why multi-task methods do not yield better performance with
four color categories. The main reason is that the traits corresponding to yellow and brown
are similar, which are both healthy feces colors; the multi-task methods are confused by the
diagnosis of the two colors in combination and by their related traits.
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Table 7. Results for three color categories in real scenes.

Model Accuracy
Recall

Black Red Others

StoolNet [14] 95.0% 94.3% 94.9% 96.6%

Single task

- 95.6% 94.9% 94.9% 97.2%
AUS 95.8% 95.5% 95.5% 97.2%
SSL 95.0% 94.9% 94.9% 94.9%

AUS+SSL 95.0% 94.9% 94.9% 94.9%

Multi-task

- 98.3% 97.2% 98.9% 99.4%
AUS 99.1% 99.4% 99.4% 98.3%
SSL 97.9% 97.7% 98.3% 97.2%

AUS+SSL 98.0% 98.3% 98.9% 96.6%

4.2.3. Three Trait Categories

The results for three trait categories are shown in Table 8. As discussed above, the multi-
task methods have improved performance, as they can learn potentially complementary
information from the color and trait classification tasks.

Table 8. Results for three trait categories in real scenes.

Model Accuracy
Recall

Liquid Soft Watery

Feces trait [15] 95.0% 100.0% 99.4% 97.7%

Single task

- 95.1% 95.5% 94.3% 96.0%
AUS 97.5% 95.5% 94.3% 96.0%
SSL 95.8% 97.2% 97.7% 97.7%

AUS+SSL 97.5% 97.2% 95.5% 94.9%

Multi-task

- 99.2% 96.6% 97.2% 98.9%
AUS 100.0% 100.0% 100.0% 100.0%
SSL 98.9% 99.4% 98.9% 98.3%

AUS+SSL 99.0% 99.4% 98.9% 98.3%

5. Conclusions and Future Work

Self-help diagnosis systems represent an urgent e-health direction for epidemic preven-
tion and control. Feces medical image diagnosis can help to minimize both the difficulties
of disease diagnosis and the risk of infection. Meanwhile, the whole procedure is conducted
completely on the user’s device, overcoming the problem of data leakage and protecting
user privacy. Two frameworks are proposed in this paper, for clinical examination at the
hospital and for self-help examination at home. SSL and AUS are proposed to alleviate the
problems of data scarcity and tiny sample regions, respectively. In addition, a multi-task
structure is proposed to achieve diagnosis based simultaneous assessment of color and trait.
A real-scene dataset is synthesized to assess the performance of the proposed methods.
Our experiments confirm that the proposed self-help method can achieve satisfactory per-
formance on both clinical scenes and real scenes. In our future work, we intend to combine
macrocosmic and microcosmic images to develop a more accurate feces diagnosis system.
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