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Abstract: In order to deal with the problem space-time adaptive processing (STAP) performance
degradation of an airborne phased array system caused by the serious shortage of independent and
identical distributed (IID) training samples in the nonhomogeneous clutter environment, an improved
direct data domain method based on sparse Bayesian learning is proposed in this paper, which
only uses a single snapshot data of a cell under test (CUT) to suppress the clutter and has fast
computational speed. Firstly, three hyper-parameters required to obtain the sparse solution are
derived. Secondly, the comparative analysis of their iterative formulas is made, and the piecewise
iteration of hyper-parameter that has an obvious influence on the computational complexity of
obtaining sparse solution is presented. Lastly, with the approximate prior information of the target,
the clutter sparse solution is given and its covariance matrix is effectively estimated to calculate the
adaptive filter weight and realize the clutter suppression. Simulation results verify that the proposal
can dramatically decrease the computational burden while keeping the superior heterogeneous
clutter suppression performance.

Keywords: clutter suppression; sparse Bayesian learning; piecewise iteration; space-time
adaptive processing

1. Introduction

Strong ground clutter needs to be effectively suppressed when an airborne radar de-
tects a low-altitude moving target. Due to the motion of the aircraft platform, the Doppler
bandwidth of clutter is rapidly broadened and the clutter spatial-temporal coupling prop-
erty is generated. As a result, the target is often submerged in the strong background clutter.
To this problem, typical space-time adaptive processing (STAP) [1] is introduced, which
estimates the clutter covariance matrix (CCM) of cells under test (CUT) mainly by using
a lot of independent and identical distributed (IID) training samples to realize the clutter
suppression [2,3]. However, in an actual clutter environment, the remarkable heterogeneity
is one of the important characteristics of clutter because some external factors exist such
as the variation of topography, strong scattering point, and electromagnetic interference.
Furthermore, the number of IID samples decreases and it is hard to satisfy the require-
ment. This phenomenon may be aggravated with the complications of the electromagnetic
environment. At last, the clutter suppression performance of STAP is worsened.

In recent years, for the sake of solving this problem, many improved methods have
been put forward such as reduced-rank STAP, reduced-dimension STAP, parametric STAP,
knowledge-aided STAP, and direct data domain STAP [4–9]. Even though the required IID
samples available are reduced, the existing IID sample size used to achieve the favorable
CCM estimation is not still enough, or they are at the cost of sacrificing system processing
capacity. Especially with the inhomogeneity of ground clutter further aggravated, the IID
sample size is rapidly shortened and the performance of mainly current clutter suppression
methods will be severely deteriorated. In addition, the new system radar is concerned,
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for example, about the multiple-input multiple-output (MIMO) system [10,11]. Combined
with MIMO and STAP techniques, though the virtual synthetic aperture is achieved by
transmitting waveform diversity, the heavy computational burden is also difficult to realize
the effective response.

At the same time, sparse recovery (SR) technique appears, which is widely applied
to many fields, for example, radar imaging [12] and clutter suppression [13,14]. On the
basis of this approach, Bayesian learning algorithms are particularly concerned, and sparse
Bayesian learning (SBL) is one of the important sparse solution methods that have been
generally utilized to realize the reconstruction of sparse signals [15,16]. They can use a few
training samples, even only one sample to accomplish CCM estimation, which greatly
reduce the requirement for IID training samples; however, due to sparse discretization, the
large computational load is also increased. For this case, many improved SR algorithms are
researched, for example, reduced-dimension sparse recovery (RD-SR) [17,18] and temporal
SBL [19,20]. Even though the computational burden can be effectively decreased, the
dependence of them for training samples is still difficult to eliminate.

Based on the above analysis, a comprehensive consideration of the computational
complexity and extreme shortage of training samples in severely nonhomogeneous clutter
environment, a fast heterogeneous clutter suppression method with improved direct data
domain (DDD) based on sparse Bayesian learning (SBL) is proposed in this paper. The
proposal has many advantages in severely heterogeneous clutter suppression. Firstly,
only a single frame of CUT data needs to be used for realizing the nonhomogeneous
clutter suppression, which solves the problem that many current methods rely heavily on
training samples. At the same time, the influence of the quality of training samples and
the number of IID samples on STAP performance can be completely eliminated by the
approach. Secondly, the rough prior knowledge of target under test is effectively utilized to
realize the elimination of target components in the proposal, which can avoid its influence
on CCM estimation. Meanwhile, the sacrifice of system degrees of freedom caused by
the DDD method can also be overcome. Thirdly, the influence of SBL hyper-parameter
iterations on the computational complexity will be analyzed in this paper. By the piecewise
processing of the proposed method, the phenomenon of high dimension and slow iteration
in the initial iteration stage is avoided. Meanwhile, the speed is moderately slowed down
in the later iteration stage to maintain and ensure the sparse recovery accuracy. Therefore,
this method has the superior ability of relieving the contradiction between computation
and performance. The main processing of the approach can be divided into three stages.

1. Obtaining the single CUT data. Since only CUT is directly analyzed and utilized in
the proposed method, the initial step is to realize the sparse representation of data to
be used in the subsequent handling of SR-STAP.

2. Calculating the sparse solution. In view of the space-time relevance of the inner
structure on clutter data, a fast SBL method attempts to be applied to sparse solution
calculation. This stage can also be regarded as the iteration of hyper-parameters. In
order to alleviate the conflict between computational complexity and sparse solution
accuracy, three hyper-parameters are compared and analyzed. By finding the main
hyper-parameter affecting the calculating burden, a kind of piecewise processing is
put forward in the approach. Overall, different iteration formulas are reasonably
utilized in the initial stage with a higher parameter dimension and the late stage with
a lower parameter dimension.

3. Estimating CCM based on rough prior knowledge. With the aid of approximate prior
information of CUT, the target component is removed and CCM is estimated.

The remaining content of this paper is arranged as follows: the signal model with
SR-STAP is given in Section 2; the improved DDD method based on SBL is particularly
described and analyzed in Section 3; some simulation experiments are shown to verify
the effectiveness of the proposal in Section 4; and the relevant conclusions are drawn in
Section 5.
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2. Signal Model with SR-STAP

Suppose the airborne side-looking uniform linear array (ULA) has N receiving ele-
ments, dr is the receiving element interval and λ is the radar wavelength. T and K represent
the pulse repetition interval (PRI) and the number of pulses in a coherent processing inter-
val (CPI), respectively. The flight velocity and height of airborne plane are vp and H. The
echo data of CUT can be denoted as

Xcut =
Nc

∑
p=1

αcpΘc

(
fcdp, fcsp

)
+ βtΘt( ftd, fts) + Nnoise (1)

where Nc is the number of clutter patches, αcp and βt are separately the clutter scattering

intensity and interested target scattering intensity, Θc

(
fcdp, fcsp

)
and Θt( ftd, fts) represent

the clutter and target spatial-temporal steering vectors, fcdp, ftd are the normalized temporal
frequencies of clutter and target, fcsp, fts are the normalized spatial frequencies of clutter
and target, Nnoise is the noise signal.

Considering the sparsity of echo data in space-time plane, Equation (1) can be further
expressed as

XNK×1
cut = ΩNK×Nd Ns γNd Ns×1 + NNK×1

noise (2)

where Nd and Ns are respectively, the number of quantified discrete grid points in temporal
domain and spatial domain, ΩNK×Nd Ns , γNd Ns×1 are separately the sparse dictionary and
sparse solution, which can be defined as Ω =

[
ω1,1( ft,1, fs,1), · · · , ωi,j( ft,i, fs,j), · · · , ωNd ,Ns( ft,Nd , fs,Ns)

]NK×Nd Ns

γ =
[
r1,1, r1,2, · · · , r1,Ns , · · · , ri,j, · · · , rNd ,Ns

]Nd Ns×1
(3)

where ωi,j( ft,i, fs,j), ri,j are the spatial-temporal steering vector and sparse value of grid
point (i, j), ft,i, fs,j represent the normalized Doppler frequency and spatial frequency of
grid point (i, j), i = 1, · · · , Nd, j = 1, · · · , Ns.

3. Improved DDD Method Based on SBL

In view of the spatial-temporal correlation of clutter inner structure, sparse Bayesian
learning framework [21–24] can be applied to calculate the sparse solution of CUT.

Since XNK×1
cut belongs to the complex domain and Bayesian criterion is mainly applica-

ble to real domain, Equation (2) should be further transformed as

X̂cut =

[
f (Ω) −g(Ω)
g(Ω) f (Ω)

]
×
[

f (γ)
g(γ)

]
+

[
f (Nnoise)
g(Nnoise)

]
= Ω̂γ̂ + N̂noise (4)

where f (•), g(•) are the operations of obtaining the real part and the imaginary part.
By Equation (4), the dimensions of X̂cut, Ω̂, γ̂, N̂noise are 2NK × 1, 2NK × 2NdNs,

2NdNs × 1, and 2NK × 1. If N̂p
noise (N̂p

noise ∈ N̂noise) submits to Gauss distribution and its
mean is zero, the likelihood function of Equation (4) can be defined as

p
(
X̂cut|γ̂; ε

)
= Nx̂|γ̂

(
Ω̂γ̂, εI

)
(5)

where ε is the variance of Np
noise (p = 1, · · · , NK), I is the identity matrix.

Meanwhile, suppose that γ̂l (γ̂l ∈ γ̂) is independent and obeys Gauss distribution, its
probability distribution satisfies

p(γ̂l ; δl , ϑl) ∼ N(0, δlϑl) 1 ≤ l ≤ 2NdNs (6)

where δl and ϑl are non-negative hyper-parameters. δl reflects the signal sparsity, and ϑl
presents time correlation within sparse solution. The relative position of sparse solution
has no significant value when δl equals to zero [25].
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Then, according to Equation (6), the prior distribution of sparse vector γ̂ can be
denoted as

p(γ̂; δl , ϑl , ∀l) ∼ Nγ̂(0, Λ0) (7)

where Λ0 = δ ◦ J = diag(δ1, δ2, · · · δl , · · · , δ2Nd Ns) ◦ diag(ϑ1, ϑ2, · · · ϑl , · · · , ϑ2Nd Ns), diag(•)
is the diagonal matrix, ◦ is the Hadamard product.

Furthermore, ϑl(∀l) needs to be replaced by a same hyper-parameter τ for eliminating
the overfitting phenomenon, and Λ0 ≈ diag(δ1τ, · · · δlτ, · · · , δ2Nd Ns τ).

Hence, Equation (7) is also described as

p(γ̂; δl , ϑl , ∀l) ∼ Nγ̂(0, δ⊗ τ) (8)

where ⊗ is the Kronecker product.
Combined with Equations (5)–(8), the posteriori Gauss distribution of γ̂ is expressed

as [26]
p
(
γ̂|X̂cut; δl , ϑl , ε

)
= Nγ̂

(
χγ̂, Λγ̂

)
(9)

where χγ̂ and Λγ̂ are separately presented as χγ̂ = Λγ̂Ω̂TX̂cutε
−1, Λγ̂ =

(
Ω̂TΩ̂ε−1 +Λ−1

0

)−1
.

Furthermore, the maximum posteriori estimation of sparse solution γ̂ about CUT is
defined as

γ̂ , χγ̂ = Λγ̂Ω̂TX̂cutε
−1 =

(
Ω̂TΩ̂ε−1 + Λ−1

0

)−1
Ω̂TX̂cutε

−1

= Λ0
(
Ω̂TΩ̂Λ0ε−1 + I

)−1
Ω̂TX̂cutε

−1

= Λ0Ω̂T(Ω̂Λ0ε−1Ω̂T + I
)−1X̂cutε

−1

= (δ⊗ τ)Ω̂T(εI + Ω̂(δ⊗ τ)Ω̂T)−1X̂cut

≈ (δ⊗ τ)Ω̂T
[(

εI + Ω̂δΩ̂T)−1 ⊗ τ−1
]
X̂cut

= δΩ̂T(εI + Ω̂δΩ̂T)−1X̂cut

(10)

Combined with Equations (9) and (10), it can be seen that calculating χγ̂ and Λγ̂ is
transformed into obtaining the iterative formulas of these hyper-parameters ε, δl , τ. Namely,
these hyper-parameters need to be gradually iterated in the acquisition process of sparse
solution γ̂. To this point, a kind of cost function is introduced as [27]

Floss = log
∣∣∣εI + Ω̂Λ0Ω̂T

∣∣∣+ X̂T
cut

(
εI + Ω̂Λ0Ω̂T

)−1
X̂cut (11)

By solving the minimization of cost function in Equation (11), the suitable hyper-
parameter values are effectively acquired. In reference [19], the expectation-maximization
method [28,29] is applied to estimating the hyper-parameters ε, δl , τ. The iterative formulas
of three hyper-parameters can be described, respectively, as

δ
(h+1)
l = γ̂l(τ

(h))
−1

γ̂T
l + Πll ∀l

τ(h+1) =

(
Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

)/∣∣∣∣∣∣∣∣Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

∣∣∣∣∣∣∣∣
F

ε(h+1) =

{∣∣∣∣∣∣∣∣X̂cut − Ω̂γ̂

∣∣∣∣∣∣∣∣2
F
+ ε(h)Tr[U]

}/
NK

(12)

where U = Ω̂δΩ̂T
(

ε(h)I + Ω̂δΩ̂T
)−1

, Πll is the diagonal element of Π =
(
δ−1 + ε−1Ω̂TΩ̂

)−1.
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Moreover, in reference [30], for the sake of promoting the operating speed of sparse
Bayesian, the fixed-point (FP) method [31] is adopted to obtain the hyper-parameter δl . The
iterative formulas of three hyper-parameters can be denoted, respectively, as

δ
(h+1)
l =

γ̂l(τ
(h))
−1

γ̂T
l(

1−Πll

/
δ
(h)
l

) ∀l

τ(h+1) =

(
Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

)/∣∣∣∣∣∣∣∣Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

∣∣∣∣∣∣∣∣
F

ε(h+1) =
{∣∣∣∣X̂cut − Ω̂γ̂

∣∣∣∣2
F + ε(h)Tr[U]

}/
NK

(13)

Compared with Equation (12), it can be seen that the iteration of hyper-parameters
ε and τ are similar in Equation (13). However, the iteration of δl is obviously changed.
Therefore, the iterative process of δl is the main reason of affecting the computational
complexity of sparse solution estimation.

Based on the above analysis, a new iteration of hyper-parameter δl is given to reduce
the computational burden in this paper. It can be expressed as

δ
(h+1)
l =

ηlδ
(h)
l(

δ
(h)
l −Πll

) + ηl , 1 ≤ numel(δ(h) > ξ ) < NdNs

δ
(h+1)
l =

ηl δ
(h)
l(

ηlδ
(h)
l −Πll

) + ηl , NdNs ≤ numel(δ(h) > ξ ) ≤ 2NdNs

(14)

Then, combined with Equations (12) and (13), the faster method of calculating hyper-
parameters is proposed, which can be denoted as

δ
(h+1)
l =

ηlδ
(h)
l(

δ
(h)
l −Πll

) + ηl , 1 ≤ numel(δ(h) > ξ) < NdNs

δ
(h+1)
l =

ηl δ
(h)
l(

ηl δ
(h)
l −Πll

) + ηl , NdNs ≤ numel(δ(h) > ξ) ≤ 2NdNs

τ(h+1) =

(
Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

)/∣∣∣∣∣∣∣∣Nd Ns

∑
l=1

1
δ
(h)
l

γ̂T
l γ̂l + ζ

∣∣∣∣∣∣∣∣
F

ε(h+1) =

{∣∣∣∣∣∣X̂cut − Ω̂γ̂
∣∣∣∣∣∣2

F
+ ε(h)Tr[U]

}/
NK

(15)

where ηl = γ̂l(τ
(h))
−1

γ̂T
l , numel(δ(h) > ξ) is the number of element δ

(h)
l that satisfies

δ
(h)
l > ξ, ξ is the threshold of pruning the small hyper-parameter δ

(h)
l .

The ultimate purpose of piecewise calculation in Equation (15) is that the total iterative
speed of hyper-parameter δ

(h)
l is further quickened while guaranteeing the accuracy of

δ
(h)
l . Considering that numel(δ(h) > ξ) is bigger in the initial phase of iteration, the latter

iteration formula needs to be selected so that numel(δ(h) > ξ) can be rapidly declined
and the iterative time is shortened. However, when numel(δ(h) > ξ) is smaller in the late
stage, the former iteration formula needs to be chosen so as to be gradually reduction
inthe iterative speed and ensure the precision of δ

(h)
l . Hence, based on Equation (15), the

proposed iterative algorithm can not only reduce the computational complexity in the
initial stage, but also keep accuracy in the late stage. It is beneficial to obtain the sparse
solution in the heterogeneous clutter environment.

With the help of the iterative formulas of ε, δl , τ in Equation (15), the mean vector χγ̂

and covariance matrix Λγ̂ in Equation (9) are obtained. Then, by using Equation (10), the
sparse solution γ̂ can be estimated. In view of the fact that the target component is contained
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in the sparse solution, the rough prior information of target under test can be used to remove
the target component and estimate CCM. Suppose that the spatial prior area and temporal
prior area are separately Atd = ( ft,i|| ft,i − ftd| ≤ ξtd), Bts =

(
fs,j|
∣∣ fs,j − fts

∣∣ ≤ ξts
)
, CCM

is expressed as

Rcut
c =

Nd
∑

i=1

Ns
∑

j=1

∣∣ri,j
∣∣2ωi,j( ft,i, fs,j)ωi,j( ft,i, fs,j)

H + µINK

=
Nd
∑

i=1

Ns
∑

j=1

∣∣∣{γ̂[(1 : NdNs), :] + κγ̂[(NdNs + 1 : 2NdNs), :]}i,j

∣∣∣2ωi,j( ft,i, fs,j)ωi,j( ft,i, fs,j)
H + µINK

(16)

where ri,j is the clutter sparse solution, which is equal to zero when ft,i ∈ Atd and fs,j ∈ Bts,
ξtd and ξts are the scope factors of approximate temporal and spatial prior information
about the target under test, µ is the noise power, κ is the imaginary unit.

According to Equation (16), the adaptive weight can be estimated to realize the hetero-
geneous clutter suppression.

Based on processing steps of the proposed method, the theoretical analysis is provided.
From part two, it can be seen that the dimension of CUT data Xcut, sparse dictionary Ω,
and sparse solution γ are NK× 1, NK× NdNs, and NdNs × 1, respectively. Considering
the actual application of SBL, these three vectors are transformed into X̂cut, Ω̂, and γ̂. Their
dimensions are 2NK × 1, 2NK × 2NdNs, and 2NdNs × 1, separately. When SBL is used
to obtain the sparse solution γ̂, the iteration of hyper parameters is crucial. The hyper
parameter δl reflects the signal sparsity, which denotes the arbitrary element of γ̂. The
hyper parameter τ presents time correlation within sparse solution. The hyper parameter
ε is the variance of noise. In terms of these three hyper parameters, only parameter δl
(1 ≤ l ≤ 2NdNs) needs to be iteratively calculated on the whole discrete points. Its solving
process plays a decisive role in computational burden of SBL. Therefore, the iterative
calculation of δl is one of the important factors affecting the computational efficiency of SBL
algorithms. For the above reasons, the original number of sparse discrete points is NdNs,
which is applied to dividing point of the hyper parameter segmentation processing. When
δl is in the initial iteration stage, the calculation is more about parameter initialization. This
stage has little effect on the sparse recovery performance of the algorithm, but has great
influence on the computational complexity of the algorithm. Meanwhile, the dimension of
large parameter values is generally higher in the initial iteration stage. Thus, the second
iterative formula of Equation (14) is adopted when the dimension of δl is bigger than NdNs,
which can rapidly decrease the dimension of δl and avoid the phenomenon of slow iteration.
However, when the dimension of δl is smaller than NdNs, the first iterative formula of
Equation (14) is utilized, which can ensure the sparse recovery accuracy. As a result, the
contradiction between computation and performance of SBL can be effectively relieved by
this segmented iteration scheme.

4. Simulation Analyses

In this section, some simulation experiments are made to demonstrate the heteroge-
neous clutter suppression performance of the proposed method. Relevant parameters are
set as follows: the number of receiving elements and pulses are 16, 8; radar wavelength is
0.23, pulse repetition frequency is 2434.8 Hz, receiving element interval is 0.115; velocities
of airborne plane and target are 140 m/s and 28 m/s, flight height is 8000 m; the number of
trials is 30; signal-to-noise ratio and clutter-to-noise ratio are separately 20 dB and 60 dB;
and the normalized temporal frequency and spatial frequency of interested target are
0.4, 0. Moreover, four sparse recovery methods such as SBL [32,33], temporally sparse
Bayesian learning (TSBL) [19,34], temporally sparse Bayesian learning with FP method
(TSBL-FP) [35], the improved TSBL method (IMP-TSBL) [36] and the proposed method in
this paper are applied and compared. The results are shown in Figures 1–3.
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Figure 2. Computational complexity of different methods in the sparse solution calculation: (a) Com-
parison with 250 iterations, (b) Comparison with 30 iterations.

In Figure 1, from the perspective of improved factor (IF), the nonhomogeneous clutter
suppression performance with five different methods is compared and analyzed. The IF is
usually adopted as one of important indicators to measure STAP performance, which is
equal to the ratio of output signal-to-clutter-plus-noise ratio to input signal-to-clutter-plus-
noise ratio. Moreover, when the IF gap near the normalized Doppler frequency 0 becomes
narrower and deeper, it indicates STAP method can better suppress the clutter. If the
gap gets widened and shallower, it denotes that the method has worse nonhomogeneous
clutter suppression performance and more residual clutter is contained at the output of
STAP. Thus, among five different methods, local comparison with the vertical direction
(60–75 dB) is made to present the width of the IF gap in Figure 1a, and local comparison
with the horizontal direction (0–0.3) is made to present the depth of the IF gap in Figure 1b.
According to these two results, it can be seen that the proposed method has a similar clutter
suppression performance with TSBL-FP. Meanwhile, their performances on STAP are better
than IMP-TSBL, SBL and TSBL under the same condition of only using single snapshot
CUT data. As for IMP-TSBL, least square estimation and threshold setting of average
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energy superposition function are mainly applied to reduction in algorithm iterations so
as to decline the computational complexity. It can also be regarded as a kind of reduced-
dimension SBL method. Though the column dimension of sparse dictionary is forced down,
it leads to the loss of partial useful information before the hyper-parameter iteration. As
a result, the performance of this method is decreased.
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Figure 3. Running time comparison of five different methods in the sparse solution calculation:
(a) Comparison with different sparsity, (b) Comparison when sparsity is 60.

In Figure 2, the computational complexity of five different methods is given, which is
used to verify the STAP efficiency. Since obtaining the sparse solution process is the main
step of improving the SR-STAP speed, the sparse solution complexity with each iteration is
displayed, and the total calculation burden is equal to the sum of them. In descending order,
these methods are arranged one by one such as SBL, TSBL, IMP-TSBL, TSBL-FP, and the
proposed method. Even if TSBL-FP has the similar clutter suppression performance with the
proposed method, the computational load of the latter is significantly less than that of the
former, especially in the initial stage of algorithm iteration. Moreover, the sparse solution
complexity of the initial iteration is critical, which can directly affect the iterative trend of
algorithm. Therefore, the piecewise iteration formula is applied in the proposed method
for settling the problem of large iterative computation in the initial period and keeping
the effectiveness of sparse recovery. Based on the result with 250 iterations in Figure 2a,
the convergence of acquiring the sparse solution is obviously shown. Furthermore, the
convergence speed of the initial iteration is emphatically presented in Figure 2b. As for the
proposal, it can be seen that the sparse solution complexity is sharply decreased between
the first and the second iteration. Meanwhile, before the ninth iteration, the complexity of
the proposed method is evidently smaller than that of TSBL-FP. In terms of IMP-TSBL, the
column dimension of the sparse dictionary is obviously decreased before hyper-parameter
iteration. Correspondingly, the number of δl participating in the iteration is also dropped
rapidly when the parameter starts the first iteration. As a result, the computational burden
of IMP-TSBL is smaller than SBL and TSBL. Whereas, since the iterative speed of this
method slows down, the overall computational complexity of this method is bigger than
the approach in this paper.

In Figure 3, the running time of SBL method in the sparse solution calculation is
adopted to visually analyze its computational complexity. Comparison with different spar-
sity is denoted in Figure 3a. Comparison with a same sparsity is given in Figure 3b when
sparsity is 60. If sparsity of SBL is 60, it means that Nd and Ns are both 60. Correspondingly,
NdNs is equal to 3600. From Figure 3a, it can be seen that the running time of all methods
will become longer with the increasing of sparsity. In descending order of running time
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under the same sparsity, these methods are generally arranged one by one such as SBL,
TSBL, IMP-TSBL, TSBL-FP, and the proposal. When sparsity is 30, the last four methods
have a similar running time. The reason is that since the number of grid points on a sparse
dictionary is smaller, the performance difference of these four methods is not obvious.
Overall, the approach is still better than the others; however, as the sparsity increases, the
difference in running time between the proposed method and other methods is gradually
widened. It is attributed to the benefit of piecewise iteration. From Figure 3b, it can be seen
that when sparsity is equal to 60, the difference in computational speed of sparse solution
is evidently amplified, which is matched with the whole variation in Figure 3a.

Comprehensive consideration of clutter suppression ability and computational com-
plexity in Figures 1–3, the proposed method effectively shortens the computational burden
while maintaining the superior clutter suppression performance.

5. Conclusions

In this paper, based on sparse Bayesian learning framework, a novel heterogeneous
clutter suppression method using improved direct data domain is proposed and verified,
which has the ability to promote the timelessness of STAP in the nonhomogeneous clutter
environment. The proposal can effectively suppress the clutter only using one snapshot
data of the cell under test regardless of the heterogeneity of training samples. By analysis
and piecewise iteration of the hyper-parameter that has influence on calculating sparse
solution, the computational complexity of STAP is dramatically declined and the proposed
method still has superior clutter suppression performance. Some simulations demonstrate
the effectiveness of the proposal. Overall, significant contributions of the approach are
mainly divided into four points. Firstly, aiming at the problem of STAP clutter suppression
in severely nonhomogeneous clutter environment, a novel knowledge-aided scheme is
provided in this paper. It can improve STAP processing performance in case of extreme
shortage of IID training samples. Secondly, the computational complexity is significantly
declined using this proposal, which further promotes the practicability of SBL and STAP in
actual conditions. Thirdly, the iteration of hyper-parameters is one of the important factors
affecting the computational efficiency of SBL algorithms, which is reasonably analyzed
and utilized in this paper. Moreover, the proposal can provide a new idea for the research
and promotion of SBL algorithms. Fourthly, a different perspective for low-altitude target
detection of an airborne radar in a complex electromagnetic environment is given by the
proposed method, which has certain application prospects in the fields of early warning
detection and low-altitude area surveillance.
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