
Citation: Li, X.; Li, Z.; Zheng, X.;

Yang, X.; Yu, X. The Study of

Crash-Tolerant, Multi-Agent

Offensive and Defensive Games

Using Deep Reinforcement Learning.

Electronics 2023, 12, 327. https://

doi.org/10.3390/electronics12020327

Academic Editor: Dah-Jye Lee

Received: 28 November 2022

Revised: 23 December 2022

Accepted: 6 January 2023

Published: 8 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

The Study of Crash-Tolerant, Multi-Agent Offensive and
Defensive Games Using Deep Reinforcement Learning
Xilun Li 1 , Zhan Li 2,3* , Xiaolong Zheng 3 , Xuebo Yang 3 and Xinghu Yu 4

1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
2 Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen 518000, China
3 Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China
4 Ningbo Institute of Intelligent Equipment Technology Co., Ltd., Ningbo 315201, China
* Correspondence: zhanli@hit.edu.cn

Abstract: In the multi-agent offensive and defensive game (ODG), each agent achieves its goal by
cooperating or competing with other agents. The multi-agent deep reinforcement learning (MADRL)
method is applied in similar scenarios to help agents make decisions. In various situations, the agents
of both sides may crash due to collisions. However, the existing algorithms cannot deal with the
situation where the number of agents reduces. Based on the multi-agent deep deterministic policy
gradient (MADDPG) algorithm, we study a method to deal with a reduction in the number of agents
in the training process without changing the structure of the neural network (NN), which is called
the frozen agent method for the MADDPG (FA-MADDPG) algorithm. In addition, we design a
distance–collision reward function to help agents learn strategies better. Through the experiments in
four scenarios with different numbers of agents, it is verified that the algorithm we proposed can
not only successfully deal with the problem of agent number reduction in the training stage but also
show better performance and higher efficiency than the MADDPG algorithm in simulation.

Keywords: multi-agent deep reinforcement learning; offensive and defensive game; frozen agent method

1. Introduction

Cooperation and competition as well as pursuit and evasion are common elements
and behaviors in nature. The competitive or cooperative game evolved from them and has
been a hot topic for many scholars to study for a while [1–4]. Some scholars have studied
the ODG strategies in different confrontation scenarios. In the attack and escort scenarios
of UAV swarms, Zou et al. [5] designed the application of bilateral cooperation strategies
between the escort swarms and the high-value target to form different confrontation and
avoidance strategies. In the coastal defense system, Zhang et al. [6] proposed a system
design scheme based on layered distributed multi-agents, which effectively improved the
decision-making efficiency and interception success rate of the system. There are also some
scholars who applied deep reinforcement learning (DRL) algorithms to battlefield decision
making. Yang et al. [7] proposed a PPO algorithm-based UAV air combat maneuver decision
method and conducted close-range air combat simulation to verify the effectiveness of
the algorithm. Zhao et al. [8] applied the deep reinforcement learning algorithm to the
military field and proposed an end-to-end collaborative planning method for intelligent
reconnaissance missions of dual UAVs.

As the multi-agent scenarios become more and more complex, some advanced ma-
chine learning algorithms are applied to solve such problems. However, the traditional
DRL algorithms have many disadvantages, such as instability in the multi-agent environ-
ment [9]. Therefore, some MADRL algorithms came into being, and they have been widely
used in various fields [10]. Qi et al. [11] applied MADRL algorithms to Wireless Local Area
Networks (WLANs) and proposed an On-Demand Channel Bonding (O-DCB) algorithm
for heterogeneous WLANs to reduce transmission delay. Jung et al. [12] proposed a novel

Electronics 2023, 12, 327. https://doi.org/10.3390/electronics12020327 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020327
https://doi.org/10.3390/electronics12020327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5794-0074
https://orcid.org/0000-0002-7601-4332
https://orcid.org/0000-0003-0369-7221
https://orcid.org/0000-0002-9867-0488
https://orcid.org/0000-0001-8181-6199
https://doi.org/10.3390/electronics12020327
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020327?type=check_update&version=2


Electronics 2023, 12, 327 2 of 13

coordinated MADRL algorithm for energy sharing among multiple UAVs in order to con-
duct big data processing in a distributed manner. In the field of smart ships, Chen et al. [13]
proposed a cooperative collision avoidance approach for multiple ships using an MADRL
algorithm based on the DQN method.

For complex competitive or cooperative games, the analytical Nash equilibrium solu-
tion cannot be solved mathematically [14]. As one of the representatives of the MADRL
algorithms [15], the MADDPG algorithm is widely used to solve similar problems. The
MADDPG algorithm extends the deep deterministic policy gradient (DDPG) algorithm to
multi-agent environments. The MADDPG algorithm assumes that each agent has its inde-
pendent critic network and actor network and that each agent has its independent return
function. In this way, the MADDPG algorithm can simultaneously solve the multi-agent
problem in a collaborative and competitive environment.

In the pursuit–evasion game, Wan et al. [16] proposed a novel adversarial attack trick
and adversarial learning MADDPG algorithm to help agents learn strategies. Experimental
results verified that the proposed approach provided superior performance. Lei et al. [17]
artificially designed a rule-coupled method based on the MADDPG algorithm to improve
the confrontation ability and combat efficiency in a drone swarm attack and defense
confrontation. In [18], based on the MADDPG algorithm, preferential experience replay
was used to achieve good results in multi-robot path planning. In [19], a multi-agent coronal
bidirectionally coordinated with target prediction network (CBC-TP Net) was constructed
in the pursuit game scenario of a UAV swarm. Its performance was better than that of
the MADDPG algorithm. In many practical application scenarios, the number of agents
changes with the training. However, due to the limitations of the fully connected network
in the MADDPG algorithm, the dimensions of the input data cannot be changed. When
the number of agents changes, the dimension of the vector input to the Q network will
change. To solve this problem, the first layers of the policy and Q network were changed to
bidirectional LSTM in [19] to adapt to the change in the number of agents in the training
process. However, its disadvantage is that bidirectional LSTM has a complex structure.
Specifically, when the input vector dimension is large for multiple agents, the operation is
very time-consuming.

An improved MADDPG algorithm called the FA-MADDPG algorithm is proposed in
this paper to solve the agent number reduction problem. The method we propose does
not need to change the structure of the neural network. It can realize training under the
condition that the number of agents changes based on the original fully connected policy
network and fully connected Q network. The FA-MADDPG algorithm can not only handle
the problem well but also show superior performance and effectiveness for the agents, and
all the agents can learn efficient strategies during training.

The outline of this article is as follows. Section 2 introduces the mathematical model
of the ODG scenario. Section 3 provides the FA-MADDPG method and the detailed
implementation process. Section 4 verifies the effectiveness of the FA-MADDPG method in
an agent crash scenario through simulation experiments. Section 5 gives the conclusions
and future work.

2. Scenario Description and Modeling
2.1. Scenario Description

This scenario contains defending agents, attacking agents, and one target. As shown in
Figure 1, each agent is regarded as a circle with the same radius in a two-dimensional plane.
The attacking agents aim to hit the target while evading interception by defending agents.
The goal of the defending agents is to cooperate to intercept the attacking agents and protect
the target. Each agent does not know the actions or policies of the other agents. The above
scenario can be described as an ODG scenario. In order to achieve their respective goals,
the whole game involves interception and anti-interception, and some agents may crash
due to collisions.



Electronics 2023, 12, 327 3 of 13

The ODG scenario studied in this paper is different from the pursue-and-escape game,
and the number of agents on both sides is different. Therefore, the Hungarian assignment
algorithm could not be used to transform the multi-agent ODG scenario into multiple
parallel independent chase-and-escape games with one agent on each side. It is a hard
problem for agents to make decisions by mathematical derivation. That is why we used the
MADRL algorithm to solve this problem.

Figure 1. Scenario diagram.

2.2. Agent Modeling

In this article, we only used the circles in the two-dimensional plane for the models in
this study. The dynamic and kinematic models of each agent were modeled as follows:

ẋ = vx
ẏ = vy
v̇x = Fx

m
v̇y =

Fy
m

(1)

where x and y are the displacements of the agent relative to the target in the x and y
directions, respectively, and vx and vy are the velocity of the agent relative to the target in
the x and y directions, respectively. All the particles have the same mass and are all m. Fx
and Fy are the forces of the agent relative to the target in the x and y directions, respectively.
In Section 4, we will apply the FA-MADDPG algorithm to train Fx and Fy as the actions of
each agent.

3. Frozen Agent Method for MADDPG
3.1. Problem Formulation

In the ODG, we need to control multiple agents on both sides to achieve their goals.
This process can be described as the Stochastic Markov Game (SMG) [20], which is a
multi-agent extended form of Markov Decision Processes (MDPs) [15,21,22]. An SMG

with N agents can be expressed as Γ ∆
=
(
S, A1, . . . , AN , r1, . . . , rN , p, γ

)
, where S is the state

space, Aj is the action space for agent j, and rj : S× Ai 7→ R is the reward function for the
agent j. The state transition probability p is S× A1 × . . .× AN → Ω(s) , which describes
the random change in state over time . Ω(s) is the set of probability distribution in the



Electronics 2023, 12, 327 4 of 13

whole state space. The discount factor is such that γ ∈ [0, 1) . The goal of each agent is to
maximize its total expected reward:

Ri =
T=∞

∑
t=0

γtrt
i (2)

The goal of the algorithm is to train the optimal strategy πi(ai | oi) ,ai ∈ Ai, oi ∈ Oi .
ai and oi represent the action and observation state of the current time step, respectively.

In order to solve the mixed competitive-cooperative multi-agent ODG problem, the
MADRL algorithm is applied in this paper. The main idea of the policy-based DRL
approach is to maximize the objective function by directly adjusting the parameter θ in the
direction of ∇θ J(θ). For a game with N agents, its strategy parameter can be expressed
as θ = {θ1, . . . , θN}. The policy of all agents is represented as π = {π1, . . . , πN}. If N
continuous deterministic strategies µθi (abbreviated as µi ) are used, then the gradient can
be written as

∇θi J(µi) = Ex,a∼D

[
∇θi µi(ai | oi)∇ai Q

µ
i (x, a1, . . . , aN)

∣∣∣
ai=µi(oi)

]
(3)

where Qµ
i (x, a1, . . . , aN) is a centralized action value function, which takes the action

a1, . . . , aN of all agents plus the state information x = (o1, . . . , oN) as input and outputs a
value Q for agent i under strategy µ . The experience playback buffer D contains a tuple
(x, x′, a1, . . . , aN , r1, . . . , rN). The centralized action value function Qµ

i is updated as follows:

L(θi) = Ex,a,r,x′

[(
Qµ

i (x, a1, . . . , aN)− y
)2
]

y = ri + γQµ′

i
(
x′, a′1, . . . , a′N

)∣∣∣
a′j=µ′j(oj)

(4)

where µ =
{

µ
θ
′
1
, . . . , µ

θ
′
N

}
is the target policy set with the delay parameter θ

′
i . This is the

MADDPG method. Its basic idea is centralized training and decentralized execution, as
shown in Figure 2.

Figure 2. Overview of MADDPG approach.



Electronics 2023, 12, 327 5 of 13

3.2. Frozen Agent Method

In some practical scenarios, such as the ODG of UAVs, it is assumed that the UAVs
on both sides will crash due to collisions during training. Under the centralized training
framework of the MADDPG algorithm, the Q network requires the input of all agents’
information. If we let the crashed agents continue to interact in the environment during
the training process, then the decisions of other agents will inevitably be affected. The
FA-MADDPG method we propose aims to solve the above problems. In our proposed
approach, after the agent crashes, the agent is frozen and no longer interacts with the
environment. The algorithm’s structure diagram is shown in Figure 3.

Figure 3. Overview of FA-MADDPG approach.

3.2.1. Details for FA-MADDPG

The application of the FA-MADDPG method in training will cause two problems, and
we give the following solutions. Problem 1: After some agents crash, it will also have an
impact on the decisions of other normal agents, which cannot be ignored. To solve this
problem, we can set the observation of the other agents to a special value. In this scenario,
the observation of the agent is set to the positions of all agents relative to the target in the
environment. The observation value can be set to a special constant value in other normal
agents so that the other normal agents can obtain information about whether the agent
crashed or not. Problem 2: If the crashed agent does not interact with the environment, then
the environment does not generate actions, states, or rewards, resulting in dimensional
changes in the data input to the NNs. For this problem, when updating the NNs, the data
generated by the interaction between the remaining agents and the environment after the
agent’s crash is not used. However, this does not mean that the data generated by the rest
of the normal agents interacting with the environment after an agent crash are meaningless.
This is because the rewards given by the environment to the agents are important measures
of algorithm performance. We still needed to use this part of the data; that is to say, if agents
crashed during training, then we divided the data generated by the interaction between all
agents and the environment in this episode into two parts. The experience pool stored only



Electronics 2023, 12, 327 6 of 13

the data before the agent crashed, and we calculated the total reward during training using
data from the entire episode. The results in Section 4 prove that this treatment is indeed
effective. The whole algorithm flow is shown in Algorithm 1.

Algorithm 1: Frozen-Agent Method for MADDPG.

1 for episode=1 to M do
2 Initialize a random process N for action exploration;
3 Receive initial state x;
4 for t=1 to max-episode-length do
5 For each agent i , select action ai = µθi (oi) +Ni for current policy and

exploration;
6 Execute actions a = (a1, a2, . . . , aN) and observe reward r and new state x
7 if no agent is crashed then
8 Store (x, a, r, x′) into replay buffer D
9 else Store into replay buffer (x, a, r, x′) for the agents not crashed and store

a specific value into replay buffer D for the agents crashed;
10 x← x′;
11 for agent=1 to N do
12 Sample a random minibatch of L samples

(
xj, aj, rj, x′j

)
from D and

ensure there is no specific value;

13 Set yj = rj
i + γQµ′

i
(
x′j, a′1, . . . , a′N

)∣∣∣
a′k=µ′k

(
oj

k

) ;

14 Update Q by minimizing the loss

L(θi) =
1
L ∑

j

(
yj −Qµ

i

(
xj, aj

1, . . . , aj
N

))2
;

15 Update policy by using the sampled policy gradient

∇θi J ≈ 1
L ∑

j
∇θi µi

(
oj

i

)
∇ai Q

µ
i

(
xj, aj

1, . . . , ai, . . . , aj
N

)
|
ai=µi

(
oj

i

);

16 Update policy by using the sampled policy gradient.

3.2.2. Reward Function and Observation Settings

We set the observation value of each agent to the positions of the other agents relative
to the target. If other agents crashed, then the position of the crashed agent relative to the
target was recorded by the observation of the current agent as (−1, −1).

The setting of the reward function is an effective incentive for the agent in the training
process. Therefore, a reasonable set of rewards is crucial to the training process. The goal
of the attacking agent is to hit the target while staying as far away from the defending
agent as possible to avoid crashing. If only the collision reward is set, then a sparse reward
problem will be caused. We present shaped reward functions. The reward function of the
ith attacking agent consists of two parts in the following forms:

ri = rdis
i + rcol

i
rdis

i = −d(i, goal) + min
j

d
(
i, goodj

)
rcol

i =

{
+5, i f i hits goal
−5, i f i collides with any de f ending agent

(5)

where rdis
i is the distance reward and rcol

i is the collision reward. d(i, goal) refers to the
distance between the attacking agent i and the target. d

(
i, goodj

)
refers to the distance

between the attacking agent and defending agent j .
The goal of the defending agents is to prevent the attacking agents from hitting the

target and avoid colliding with the attacking agents. The reward function for the defending



Electronics 2023, 12, 327 7 of 13

agents was divided into two parts. One part was ratt
i , obtained according to the distance

between the target and the attacking agents. The other part was rde f
i , based on the distance

between the defending agents and the attacking agents. The reward function of the ith
defending agent has the following form:

ri = ratt
i + rde f

i

ratt
i =


min

j
d
(

goal, attj
)
− 5, i f attj hits goal

min
j

d
(

goal, attj
)
, i f attj doesn′t hit goal

rde f
i =


−∑

j
d
(
i, attj

)
− 1, i f i hits attj

−∑
j

d
(
i, attj

)
, i f i doesn′t hit attj

(6)

where d
(

goal, attj
)

is the distance between the attacking agent j and the target and d
(
i, attj

)
is the distance between the defending agent i and the attacking agent j. As we can see,
both ratt

i and rgood
i are made up of a distance reward and collision reward. If the attacking

agent collides with the target, then a −5 collision reward is given to the defending agents,
and the training of this episode ends. If the defending agent collides with the attacking
agent, then the defending agent is given a collision reward of −1. Through the setting of
such a reward function, the defending agents can approach the attacking agents without
impacting the agent.

In this scenario, it is assumed that defending agents work together to defend against
attacking agents. We set up a cooperative reward function for the defending agents so that
they could learn to cooperate. The reward of each defending agent is the same and is the
average value of the reward for all defending agents:

rcoop =
1
n

n

∑
i=1

ri (7)

As can be seen from the setting of the reward function above, this is a complex game
involving cooperation and competition.

4. Training and Execution Results

In this section, we will show how the FA-MADDPG method is trained and executed
and how it works in practice.

4.1. Experiment Settings

To demonstrate the advantages of the FA-MADDPG algorithm, in this section, we
changed the number of agents on both sides of the confrontation and conducted multiple
simulations to verify the performance of this algorithm and its robustness to the changes in
agent number.

In our experiments, the hyperparameters were set as follows. We use the Adam optimizer
with a learning rate of τ = 0.01 for soft updating the policy networks and Q networks. The
discount factor γ was set to 0.95. The size of the replay buffer was 1× 106, and we updated
the network parameters after every 100 samples added to the replay buffer. The batch size for
updating was 1024. The configurations of the neural networks are shown in Table 1.

Table 1. NN configurations.

Parameter Value

Policy network hidden layers 2
Policy network hidden units 64

Q network hidden layers 2
Q network hidden units 64

Activation function ReLU



Electronics 2023, 12, 327 8 of 13

The experiment was carried out on a computer with an Intel Core i5-12400CPU, 16 GB
of RAM, and an Nvidia GTX 2060 GPU.

4.2. Experiment Results and Analysis

In the multi-agent ODG, both opposing parties want to achieve their goals. In this
paper, the DRL method was applied to obtain the strategy that maximized each agent’s
own return, rather than the strategy of victory or dominance of one party. Since the crash
reward was not calculated during training, comparing the total reward of all intelligent
bodies cannot reflect the performance of this algorithm well. Therefore, we evaluated the
performance of the algorithm by comparing the average reward of all agents.

To fit in with the actual confrontation scenario, we randomly generated the initial
positions of each agent in the canvas at the beginning of each episode. To verify the
robustness of the algorithm proposed in this paper, we ran experiments in four scenarios
with different numbers of agents on both sides. The number of agents in four scenarios is
shown in Table 2.

Table 2. Number of agents in different scenarios.

Scenario Number Number of Defending Agents Number of Attacking Agents

1 3 3
2 3 4
3 3 5
4 4 3

4.2.1. Reward Curves during Training

In four different scenarios, we applied the FA-MADDPG and MADDPG algorithms
to train 8000 episodes. In Figure 4, the horizontal axis is the number of trained episodes,
and the vertical axis is the average reward for all normal agents in that episode. In the
MADDPG algorithm training process, we assumed that the agent still ran normally after a
collision. As can be seen from the training results, in each scenario, the reward curve of the
FA-MADDPG algorithm is higher than that of MADDPG algorithm, and the fluctuation
range of the reward curve is smaller.

4.2.2. Execution Results

When we used the MADDPG algorithm for training, we had to ignore the situation
of agent crashes during training and consider the situation in the execution stage. In this
module, we illustrated the performance and robustness of the FA-MADDPG algorithm by
comparing the execution effects of the FA-MADDPG and MADDPG algorithms in several
different scenarios. In each scenario, the initial position of each agent was randomly gener-
ated, and 50,000 iterations were carried out. Assume that the task completion condition is
that any attacking agent hits the target or all attacking agents are intercepted by defending
agents. In each episode, the completion of the task or the number of iteration steps reaches
a threshold that is considered the end of the execution episode. In Figure 5, a slice of the
execution process is shown. When the agents were destroyed, they no longer interacted
with the environment. They are expressed as gray circles in the figure. In fact, they no
longer existed after crashing. The other agents worked as usual and did not consider the
gray circles in the figure. The execution rewards for the four scenarios are shown in Figure 6.
In the simulation stage, we will illustrate the superior performance of the FA-MADDPG
algorithm from three aspects: the execution reward, the number of episodes executed, and
the task completion rate.



Electronics 2023, 12, 327 9 of 13

(a) (b)

(c) (d)

Figure 4. Training reward curves in different scenarios: (a) 3 vs. 3 training reward curves, (b) 3 vs.
4 training reward curves, (c) 3 vs. 5 training reward curves, and (d) 4 vs. 3 training reward curves.

Figure 5. Render slices in Scenario 4.



Electronics 2023, 12, 327 10 of 13

(a) (b)

(c) (d)

Figure 6. Execution reward curves in different scenarios: (a) 3 vs. 3 execution reward curves,
(b) 3 vs. 4 execution reward curves, (c) 3 vs. 5 execution reward curves, and (d) 4 vs. 3 execution
reward curves.

The number of executed episodes and average rewards of the two algorithms in each
scenario are shown in Table 3. In the following three aspects, the performance of the
FA-MADDPG algorithm was better than that of the MADDPG algorithm: (1) Execution
rewards, where the reward values of the FA-MADDPG algorithm were significantly higher
than those of the MADDPG algorithm; in other words, agents could make decisions that
gave them greater returns with the FA-MADDPG algorithm; (2) the number of episodes
executed, as with the same number of iterations, the number of episodes executed by the
MADDPG algorithm was almost 50% that of the FA-MADDPG algorithm; and (3) task
completion rate. Figure 7 shows the task completion rates of the two algorithms. Compared
with the MADDPG algorithm, the FA-MADDPG algorithm had a higher action efficiency
and task completion rate, and the average completion rate in the four scenarios was nearly
37% higher than for the MADDPG algorithm. All of this verifies the superior performance
of the FA-MADDPG algorithm. For other algorithms such as DDPG, we also needed
to assume that no agents crashed during training, so we just compared them with the
MADDPG algorithm. It is proven that the MADDPG algorithm usually performs better
than other algorithms in the multi-agent scenarios [15,19].



Electronics 2023, 12, 327 11 of 13

Table 3. Execution episodes and rewards for two algorithms.

Scenario Number Algorithm Execution Episodes Average Reward

1 FA-MADDPG 3902 −72.47
MADDPG 2088 −163.27

2 FA-MADDPG 5428 −48.48
MADDPG 2435 −148.8

3 FA-MADDPG 5906 −55.23
MADDPG 2591 −145.15

4 FA-MADDPG 5254 −54.83
MADDPG 2432 −151.25

Figure 7. Comparison of the completion rates.

5. Conclusions

This paper mainly studied the problem of a multi-agent ODG based on the improved
MADDPG algorithm and solved the problem of the MADDPG algorithm not coping with
the reduction in the number of agents in the training process. First, we built a multi-
agent SMG model. The FA-MADDPG algorithm was proposed to fix the defect that the
MADDPG algorithm could not deal with the reduction in the number of agents due to
collisions when training the model. Under the premise of not changing the structure of
the NN, the agent crashed due to collisions during training and not interacting with the
environment, and the NN parameters were updated with specific data. In order to solve
the sparse reward problem, we designed the distance–collision reward function. Finally,
we conducted training and simulation experiments under different scenarios with four
groups of agents. The FA-MADDPG algorithm can successfully deal with a reduction in the
number of agents in multi-agent scenarios. Aside from that, the results from three aspects
showed that the FA-MADDPG algorithm has excellent performance. The rewards of the
FA-MADDPG algorithm were significantly higher than those of the MADDPG algorithm.
The number of episodes executed by the MADDPG algorithm was almost 50% that of the
FA-MADDPG algorithm under the same iterations. The average completion rate in the
four scenarios was nearly 37% higher than that of the MADDPG algorithm.

The multi-agent ODG is a very complicated game problem. When applying the
MADDPG method to solve this kind of problem, there are still many difficulties, such
as the number of agents on both sides increasing due to reinforcement, the agents being
heterogeneous, and large-scale game confrontation. These will be the areas we need to
focus on in the future. In addition, the application of this algorithm to the actual drone
swarm or ground robot confrontation will also be one of the focuses of our future works.



Electronics 2023, 12, 327 12 of 13

Author Contributions: Conceptualization, X.L. and Z.L.; methodology, X.L.; software, X.L.; valida-
tion, Z.L., X.Z., X.Y. (Xuebo Yang) and X.Y. (Xinghu Yu); formal analysis, X.L.; investigation, Z.L.;
resources, X.L.; data curation, X.L.; writing—original draft preparation, X.L.; writing—review and
editing, Z.L.; visualization, X.L.; supervision, Z.L.; project administration, Z.L., X.Y. (Xuebo Yang)
and X.Y. (Xinghu Yu); funding acquisition, Z.L., X.Z., X.Y. (Xuebo Yang) and X.Y. (Xinghu Yu). All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 62273122 and U21B6001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, J.; Zha, W.; Peng, Z.; Gu, D. Multi-player pursuit–evasion games with one superior evader. Automatica 2016, 71, 24–32.

[CrossRef]
2. Margellos, K.; Lygeros, J. Hamilton–Jacobi Formulation for Reach–Avoid Differential Games. IEEE Trans. Autom. Control. 2011, 56,

1849–1861. [CrossRef]
3. Zhou, Z.; Zhang, W.; Ding, J.; Huang, H.; Stipanović, D.M.; Tomlin, C.J. Cooperative pursuit with Voronoi partitions. Automatica

2016, 72, 64–72. [CrossRef]
4. Chen, M.; Zhou, Z.; Tomlin, C.J. Multiplayer reach-avoid games via pairwise outcomes. IEEE Trans. Autom. Control. 2016, 62,

1451–1457. [CrossRef]
5. Zou, B.; Peng, X. A Bilateral Cooperative Strategy for Swarm Escort under the Attack of Aggressive Swarms. Electronics 2022, 11, 3643.

[CrossRef]
6. Zhang, S.; Ran, W.; Liu, G.; Li, Y.; Xu, Y. A Multi-Agent-Based Defense System Design for Multiple Unmanned Surface Vehicles.

Electronics 2022, 11, 2797. [CrossRef]
7. Yang, K.; Dong, W.; Cai, M.; Jia, S.; Liu, R. UCAV Air Combat Maneuver Decisions Based on a Proximal Policy Optimization

Algorithm with Situation Reward Shaping. Electronics 2022, 11, 2602. [CrossRef]
8. Zhao, X.; Yang, R.; Zhang, Y.; Yan, M.; Yue, L. Deep Reinforcement Learning for Intelligent Dual-UAV Reconnaissance Mission

Planning. Electronics 2022, 11, 2031. [CrossRef]
9. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
10. Ibrahim, A.M.; Yau, K.-L.A.; Chong, Y.-W.; Wu, C. Applications of Multi-Agent Deep Reinforcement Learning: Models and

Algorithms. Appl. Sci. 2021, 11, 10870. [CrossRef]
11. Qi, H.; Huang, H.; Hu, Z.; Wen, X.; Lu, Z. On-Demand Channel Bonding in Heterogeneous WLANs: A Multi-Agent Deep

Reinforcement Learning Approach. Sensors 2020, 20, 2789. [CrossRef]
12. Jung, S.; Yun, W.J.; Kim, J.; Kim, J.-H. Coordinated Multi-Agent Deep Reinforcement Learning for Energy-Aware UAV-Based

Big-Data Platforms. Electronics 2021, 10, 543. [CrossRef]
13. Chen, C.; Ma, F.; Xu, X.; Chen, Y.; Wang, J. A Novel Ship Collision Avoidance Awareness Approach for Cooperating Ships Using

Multi-Agent Deep Reinforcement Learning. J. Mar. Sci. Eng. 2021, 9, 1056. [CrossRef]
14. Liang, L.;Deng, F.; Peng, Z.; Li, Xi.; Zha, W. A differential game for cooperative target defense. Automatica 2019, 102, 58–71.

[CrossRef]
15. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter A.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6382–6393.
16. Wan, K.; Wu, D.; Zhai, Y.; Li, B.; Gao, X.; Hu, Z. An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-

Making Using Deep Reinforcement Learning. Entropy 2021, 23, 1433. [CrossRef] [PubMed]
17. Xiang, L.; Xie, T. Research on UAV Swarm Confrontation Task Based on MADDPG Algorithm. In Proceedings of the 2020 5th

International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020.
18. Li, P.; Jia, S.; Cai, Z. Research on Multi-robot Path Planning Method Based on Improved MADDPG Algorithm. In Proceedings of

the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021.
19. Zhang, R.; Zong, Q.; Zhang, X.; Dou, L.; Tian, B. Game of Drones: Multi-UAV Pursuit-Evasion Game With Online Motion

Planning by Deep Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef] [PubMed]
20. Littman, M.L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994;

Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–163.

http://doi.org/10.1016/j.automatica.2016.04.012
http://dx.doi.org/10.1109/TAC.2011.2105730
http://dx.doi.org/10.1016/j.automatica.2016.05.007
http://dx.doi.org/10.1109/TAC.2016.2577619
http://dx.doi.org/10.3390/electronics11223643
http://dx.doi.org/10.3390/electronics11172797
http://dx.doi.org/10.3390/electronics11162602
http://dx.doi.org/10.3390/electronics11132031
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/app112210870
http://dx.doi.org/10.3390/s20102789
http://dx.doi.org/10.3390/electronics10050543
http://dx.doi.org/10.3390/jmse9101056
http://dx.doi.org/10.1016/j.automatica.2018.12.034
http://dx.doi.org/10.3390/e23111433
http://www.ncbi.nlm.nih.gov/pubmed/34828131
http://dx.doi.org/10.1109/TNNLS.2022.3146976
http://www.ncbi.nlm.nih.gov/pubmed/35157597


Electronics 2023, 12, 327 13 of 13

21. Shao, K.; Zhu, Y.; Zhao, D. StarCraft Micromanagement With Reinforcement Learning and Curriculum Transfer Learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2019, 3, 73–84. [CrossRef]

22. Peng, P.; Wen, Y.; Yang, Y.; Yuan, Q.; Tang, Z.; Long, H.; Wang, J. Multiagent bidirectionally-coordinated nets: Emergence of
human-level coordination in learning to play starcraft combat games. arXiv 2017, arXiv:1703.10069.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TETCI.2018.2823329

	Introduction
	Scenario Description and Modeling
	Scenario Description
	Agent Modeling

	Frozen Agent Method for MADDPG
	Problem Formulation
	Frozen Agent Method
	Details for FA-MADDPG 
	Reward Function and Observation Settings


	Training and Execution Results
	Experiment Settings
	Experiment Results and Analysis
	Reward Curves during Training
	Execution Results 


	Conclusions
	References

