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Abstract: Digital Twin (DT) provides a novel idea for Intelligent Transportation Systems (ITS), while
Internet of Vehicles (IoV) provides numerous positioning data of vehicles. However, complex inter-
actions between vehicles as well as offset and loss of measurements can lead to tracking errors of
DT trajectories. In this paper, we propose a multi-vehicle trajectory tracking framework towards
DT intersections (MVT2DTI). Firstly, the positioning data is unified to the same coordinate system
and associated with the tracked trajectories via matching. Secondly, a spatial–temporal tracker (STT)
utilizes long short-term memory network (LSTM) and graph attention network (GAT) to extract
spatial–temporal features for state prediction. Then, the distance matrix is computed as a proposed
tracking loss that feeds tracking errors back to the tracker. Through the iteration of association and
prediction, the unlabeled coordinates are connected into the DT trajectories. Finally, four datasets are
generated to validate the effectiveness and efficiency of the framework.

Keywords: digital twin intersections; internet of vehicles; multi-vehicle tracking; spatial–temporal
interaction

1. Introduction

The Internet of Things (IoT) moves towards smart transportation [1], smart health [2]
and various other industries [3], which makes cities smarter. As an extensive use of the
IoT, the Internet of Vehicles (IoV) interconnects numerous vehicles, roadside units (RSU),
and analytics departments [4], which bring new experiences to travelers and provide an
effective means for urban vehicle trajectory monitoring [5]. At the same time, the various
information in urban traffic has become complex, especially the vehicle trajectories at
intersections, which brings new challenges to the comprehensive perception of intelligent
transportation systems (ITS).

Digital Twin (DT), as a digitalization technology, provides a feasible solution for
capturing dynamic and complex traffic situations. Specifically, it creates virtual objects in
the digital space through software definition and accurately mapping the state, features,
and evolution of entities in the physical space [6]. DT broadens the idea of ITS. Hence, the
combined application of DT and IoV has attracted much attention [7]. However, DTs are
data-driven, and decision-making in ITS needs to be supported by real-time data from
various devices on the road. For vehicles in IoV, the global navigation satellite system
(GNSS) used for positioning has non-negligible errors and signal loss due to atmospheric
conditions, systematic errors, and multipath. In addition, due to economic, privacy and
security issues, there is no guarantee that all vehicles will participate in IoV, which brings
data difficulties [8]. Therefore, other vehicles and RSUs in the IoV are needed to indirectly
provide the coordinate positioning of these vehicles [9]. To this end, it is necessary to further
study the positive significance of IoV for vehicle tracking to restore the actual trajectory in
DT intersections. The process is shown in Figure 1.
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Figure 1. Illustration of mapping the real-world intersection to the DT intersection via IoV communication.

To achieve vehicle tracking, the tracker and the data association algorithm are two
essential components. The tracker analyzes the existing trajectories of objects for state
estimation, while the data association method establishes the association of objects across
frames [10]. There has been some work on designing advanced trackers for better perfor-
mance. Chen et al. [11] implement a temporal attention network, making full use of histori-
cal and current information, but it is unaware of the surrounding influences. Yuan et al. [12]
manually model inter-vehicle traffic forces to capture the interactions, which requires ex-
pert knowledge to tune the parameters. Wang et al. [13] propose LGM, which gains more
knowledge by looking ahead to future observations, but this in turn prevents it from
computing online. On the other hand, the Hungarian assignment algorithm (HA) [14] is
currently a popular data association algorithm for online frame-by-frame optimal matching.
Lu et al. [15] use a greedy algorithm to simplify the matching process. However, they
are both independent of the tracker, making it difficult to transmit information about the
impact of positioning errors on the tracker. Taken together, the tracker is unable to sense
inter-vehicle impacts or is difficult to apply practically, while the correlation between the
data association algorithm and the tracker is weak. As a result, both tracking components
can lead to incorrect tracking results, which is especially prominent when vehicles are
traveling through intersections. Figure 2 details this set of representative errors.

(a) (b) (c) (d)

Figure 2. Four cases illustrating tracker-to-target assignments. (a) False positive and ID switch occur
when vehicles change lanes. (b) False positive, false negative and ID switch occur when the vehicle
turns. (c) Data loss occurs when the road sensor loses the vehicle signal. (d) Road sensors acquire
vehicle signals with offset noise.

The IoT communication can take advantage of the 5G [16] and has high data storage
and computing power with RSUs [17]. At the same time, sensors and RSUs in the IoV
environment can provide us with the location of unconnected vehicles. Based on this fact,
we focus on real-time DT trajectory restoring towards urban intersections for IoV. We pro-
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pose a multi-vehicle trajectory tracking framework for DT intersections. Firstly, the vehicle
location is extracted and converted to the same coordinate system as observations. The
observations are associated with the tracked trajectories via matching, to update their state.
Secondly, the framework models the displacement changes and interactions of vehicles
with the proposed tracker to obtain state predictions. The tracker is trained with a pro-
posed tracking loss, which includes false positives, false negatives, ID switch errors, and
prediction accuracy. Finally, all vehicles’ DT trajectories are restored via iterating the above
steps. To conclude, our contributions to this paper are as follows:

• A multi-vehicle trajectory tracking framework for DT intersections (MVT2DTI) is
proposed. It uses the proposed spatial–temporal tracker (STT) to model the interactions
between the vehicles and their global motion patterns in IoV.

• We utilize an improved tracking loss to back-propagate tracking errors. The tracking loss
captures the impact of offset and loss in measurements to resolve the ID inconsistency
of DT trajectories.

• We generate four scene datasets on the trajectory data of Hangzhou city. Based on this,
we validate the performance of the framework and further reveal the effectiveness
of STT.

The rest of this article is organized as follows. Section 2 describes related work.
Section 3 introduces some preliminary concepts. The proposed framework is described in
detail in Section 4. Furthermore, Section 5 presents the experimental setup and verifies the
proposed framework. Finally, Section 6 concludes this article.

2. Related Work

We surveyed existing tracking algorithms. Among them, the proposed framework
focuses on two components, the data association algorithm, and the tracker. It should
be noted that the scope of these works is broad and only those related to tracking will
be reviewed.

2.1. Data Association

Since early detectors were noisy and unreliable, several approaches search for optimal
data associations in offline or online computations and treat this as a network traffic opti-
mization problem. Butt et al. [18] proposed a method for global multi-object tracking, where
global matching is done with path estimation by preserving candidate pairs that match
between consecutive frames. Schulter et al. [19] parametrize cost functions with neural
networks with respect to the min-flow training objective. In addition, tracking can also find
the optimal set of tracks through the conditional distribution of sequential track states, which
is regarded as a maximum a posteriori (MAP) estimation problem. Choi et al. [20] propose
to use long-term interest point trajectories to encode relative motion patterns between a
pair of detections based on conditional random fields (CRFs). Ban et al. [21] propose an
online variational Bayesian model for multi-person tracking, which yields a variational
expectation-maximization (VEM) algorithm. Whether they are based on network traffic
optimization or on the conditional distribution of sequential track states, the problem with
these works is that the data association methods they propose are usually only partially
trainable in terms of parameters. Moreover, these methods often are not generalizable and
are bound to specific tracking algorithms.

Some recent works utilize neural networks to compute the affinity or association
cost between extracted features, taking the output of the network as the input to the data
association step. Milan et al. [22] construct a modified RNN for state prediction and a
modified LSTM for data association, respectively, which completely rely on the ability of the
neural network to complete the tracking step. Sun et al. [23] proposed Deep Affinity Network
(DAN). The model detects multiple representations of objects by pre-learning so that the
representations of the same object are as similar as possible in DAN, realizing deep learning-
based affinity estimation across arbitrary frames. As the most traditional and general method,
HA is difficult to integrate into deep networks due to its non-differentiability. Recently,
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Xu et al. [24] proposed the Deep Hungarian Network (DHN), which approximates the HA
by pre-training the assignment results of the normalized matrix. Subsequently, other works
expand and apply [25] based on DHN. These recent works show the great promise of neural
networks in data association. Motivated by these works, this paper uses DHN to compute
the distance matrix as an affinity matrix and propose an improved tracking loss applicable
to the tracking of vehicle trajectories.

2.2. Tracker

The role of the tracker is to use the existing state of the tracked target for state estima-
tion, which provides prior knowledge for subsequent steps.

The linear motion model is the first to appear. Breitenstein et al. [26] use the constant
velocity assumption in their work. Based on this assumption, Milan et al. [27] model
velocity smoothness in consecutive frames and force it to change smoothly. In addition,
acceleration smoothness is also considered [28], which uses Gaussian distributions of
displacement, velocity, and acceleration to calculate the next state estimation probability.
Meanwhile, nonlinear motion models are proposed to describe more accurate motions.
Yang et al. [29] applied a nonlinear motion model for tracking objects that move more freely.
These methods are intuitive and simple, but their performance can be greatly compromised
in complex scenarios.

With the increase of tracked targets, simple models cannot handle the interaction
between multiple targets. To this end, an interaction model is applied to the tracking
problem. Specifically, in the scene of pedestrians and vehicles, an object will be influenced
by other objects, which is considered a social force [30]. Yuan et al. [12] manually modeled
a group behavior model (GBM) as the inter-vehicle traffic force, and applied the GBM
to Kalman filtering to predict the state of the vehicles. They argue that combining GBM
with Kalman filtering can make predictions constrained by traffic rules, avoiding vehicle-
to-vehicle collisions. Tian et al. [31] proposed a new Quasi-Bayesian adaptive method to
update the transition probability matrix under the influence of multi-vehicle interactions.
This is combined with prior information to compute longitudinal and lateral state estimates
of the vehicle in a 2D coordinate system. All these methods are based on a priori knowledge
for manual modeling of all parameters, which makes it difficult even for experts in the field
to finalize the parameters for excellent performance.

With the development of deep neural networks, some works try to use them to learn
the motion of objects, avoiding the limitations of manual modeling. Kim et al. [32] used a
bilinear LSTM to learn long-term features for tracking objects. This tracking method can
also be considered as a kind of MHT tracking framework [33]. Babaee et al. [34] used RNN
to learn the motion of the target, thereby solving the occlusion problem. Chen et al. [11]
implemented an attention network with LSTM units, making full use of historical and
current information during tracking. To make full use of all the localization information,
Wang et al. [13] proposed the LGM tracker, which completes the offline vehicle tracking
task from a motion perspective without using appearance information. The neural network-
based methods take little account of inter-vehicle interactions, which is complementary
to the prior knowledge-based methods. Therefore, it brings us new ideas. Finally, Table 1
summarizes some of the most representative related works.
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Table 1. Summary of selected related work.

Reference Approach Limitations Similarity/Dis-Similarity with Our Approach

[11]
They implemented an attention network with LSTM units,
making full use of historical and current information
during tracking.

It is unaware of the surrounding influences. The data
association algorithm is independent of the tracker. Both use LSTM to capture temporal information.

[12]
They manually modeled a group behavior model (GBM) as
the inter-vehicle traffic force and applied the GBM to Kalman
filtering to predict the state of the vehicles.

It is difficult to finalize the parameters for excellent
performance. The data association algorithm is
independent of the tracker.

Both consider inter-vehicle interactions.

[13] They proposed LGM, which gains more knowledge by
looking ahead to future observations.

Cannot be applied in the online stream. High
computational consumption.

Both combined the tracker and the data association
algorithm, but in very different ways.

[21]
They propose an online variational Bayesian model for
multi-person tracking, which yields a variational
expectation-maximization (VEM) algorithm.

The data association algorithm is independent of the
tracker. Deep learning methods were not used. Both are online algorithms.

[23]

They proposed DAN, which detects multiple representations
of objects by pre-learning so that the representations of the
same object are as similar as possible, realizing deep
learning-based affinity estimation across arbitrary frames.

The representations of the tracked objects need to be
prepared in advance for training data
association components.

Both combined the tracker and the data association
algorithm, but the two components are trained in
opposite directions.
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3. Preliminary

In this section, some symbols, definitions, and concepts will be introduced.

Definition 1 (Trajectory). A vehicle trajectory is the driving route of a vehicle, represented as a
sequence of GPS points with a time series. It should be noted that there are three types of vehicle
trajectories described in this paper. The first type is the trajectory on the road, i.e., ground truth.
The second type is the trajectory collected by the sensors, i.e, observations with errors. The third
type is the tracked target trajectory connected by the data association algorithm, i.e., DT trajectories.

Definition 2 (Tracker). It is a logical model for state prediction. Based on the state of the existing
tracked target, the tracker needs to predict the future state to prepare for the matching at the next
time step.

Definition 3 (Trajectory Storage). It stores the trajectories of the tracked targets for the tracker’s
state prediction and next matching. The extension of the stored trajectory indicates the movement
trend of the DT trajectory.

Definition 4 (Tracking Errors). The tracking errors represent the matching errors for DT trajec-
tories, including false positive, false negative, and ID switch errors.

Problem Description: There are N vehicles in the scene during a time T and Nt vehicles
at time step t. Note that the number of vehicles may vary from time to time. For those
vehicles, we employ ot

i to denote the i-th collected observation at time step t, and Ot =
(ot

1, ot
2, . . . , ot

Mt) to denote the observations collected for Nt vehicles. Here, Mt represents
the number of observations with the time step t, which may not be equal to Nt when some
vehicles are missed. The goal is to match Ot with Ot−1 for the same vehicle. Finally, the DT
trajectories mapped by the real trajectories are obtained.

4. Methodology

In this section, the tracker STT, the specific data association steps, and the DHN-based
tracking loss are introduced sequentially. STT is introduced first because the computational
flow is more intuitive this way. The proposed framework is shown in Figure 3.

Figure 3. Overview of the proposed framework.

4.1. Spatial-Temporal Tracker (STT)

In the desired perfect case, the observations of the same vehicle in all time steps are
correctly matched until the vehicle leaves the scene. However, the motion of a vehicle is
complex and is usually affected by its own characteristics and other vehicles. Inspired
by the work [35] and social properties, we implement a spatial–temporal feature fusion
tracker STT.

4.1.1. Local Temporal Encoding

As we all know, drivers have their own driving habits, and vehicles also have their own
hardware limitations, which can lead to different driving behaviors, including acceleration
and speed. Considering that the state of the vehicle at the current time step will be affected
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by the previous, LSTM [36], a popular time series forecasting model, is used to model the
temporal features of the vehicle, named L-LSTM (Local encoding LSTM).

In our implementation, before preparing to predict the next time step t, the relative
displacement of the vehicle at time step t− 1 is calculated first:

∆lngt−1
i = lngt−1

i − lngt−2
i (1)

∆latt−1
i = latt−1

i − latt−2
i (2)

where lngt−1
i and latt−1

i represent the longitude and latitude of the vehicle at time step t− 1,
respectively. ∆lngt−1

i and ∆latt−1
i represent the displacement. Then, the displacements are

concatenated to the relative displacement vector ∆vt−1
i , which is input to the L-LSTM cell:

∆vt−1
i = ∆lngt−1

i ‖∆latt−1
i (3)

lh,t
i , lc,t

i = L-LSTM(lh,t−1
i , lc,t−1

i , ∆vt−1
i ; Wl , bl) (4)

where ‖ represents the concatenation operation. lh,t
i and lc,t

i represent the L-LSTM hidden
state and cell state of vehicle i at time step t, respectively. Wl and bl are the weight and bias
of the L-LSTM cell, and their values are adjusted during training and shared among all
vehicles in the scene. At this point, lh,t

i is local temporal embedding.

4.1.2. Spatial Encoding

The driving of the vehicle on the road is affected by other vehicles; for example, the
vehicle may slow down due to the interference of other vehicles. Simply using an LSTM
for each vehicle does not capture interactions between vehicles. The previous work [37]
proposed the GAT model, which follows a self-attention strategy when computing graph-
structured data, by assigning different attention coefficients to adjacent graph nodes to
represent different importance. Meanwhile, another work [38] mentioned that the multi-
head attention mechanism can stabilize the learning process of self-attention. It allows nodes
to adopt different attention coefficients for neighbor nodes and uses a multi-head mechanism
to set multiple assignment schemes. With these schemes, the features of neighbor nodes
are aggregated and concatenated as the output. In this paper, with the help of sensors and
IoV communication in the scene, connected vehicles are able to obtain the local temporal
embedding of other vehicles in real-time and encode it with spatial information, as shown
in Figure 4.

Figure 4. An illustration of multi-head attention with a single graph attention layer.

In our implementation, lh,t
i is fed into the GAT, which outputs spatial embedding

based on different attention coefficients. First, the attention coefficient of node j to i at time
step t can be calculated by:

αt
ij =

exp
(

LeakyReLU(aT [Wlh,t
i ‖Wlh,t

j ]
)

∑k∈Ni
exp

(
LeakyReLU(aT [Wlh,t

i ‖Wlh,t
k ]
) , (5)
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where αt
ij is the attention coefficient of node j to i at time step t. ·T represents matrix

transposition. Ni represents the set of neighbor nodes of node i on the graph. W ∈ RF′×F

is a weight matrix shared by all nodes, which is used to linearly transform the features
of each node, where F is the dimension of lh,t

i , F′ is the dimension of output. a ∈ R2F′ is
a shared attentional mechanism for computing attention coefficients. Then, the attention
coefficients are normalized by the function LeackyReLU and softmax.

Then, the neighbor node features of each node need to be aggregated relying on the
attention coefficient. To make the calculation step more stable, K independent attention
mechanisms are used to transform the features of each node, which are then concatenated
to obtain the output features, as follows:

st
i =

K
‖

k=1
σ

(
∑

j∈Ni

αtk
ij Wklh,t

j

)
(6)

where ‖ represents concatenation. σ is a nonlinear function. αtk
ij is the normalized attention

coefficient calculated by the k-th attention mechanism. The corresponding Wk is the weight
matrix of the linear transformation of the input.

Equations (5) and (6) form a single graph attention layer. In our practice, two graph
attention layers are employed. The first layer uses a multi-head attention mechanism to
explore the feasibility of various attention coefficients, while the second layer further ag-
gregates the output of the first layer to obtain st

i , which we regard as spatial embedding. It
represents the aggregate hidden state of vehicle i at time step t, including potential influences
from other vehicles.

4.1.3. Global Temporal Encoding and Output

Assume that potential interactions between vehicles are successfully captured. How-
ever, for drivers in the real environment, there is a lag in their perception and response to
the environment. Besides, GAT cannot memorize historical interaction information. Based
on this fact, LSTM is used again, named G-LSTM (Global encoding LSTM), to perform
temporal feature extraction on st

i :

gh,t
i , gc,t

i = G-LSTM(gh,t−1
i , gc,t−1

i , st
i ; Wg, bg) (7)

where gh,t
i and gc,t

i are the G-LSTM hidden state and cell state of vehicle i at time step t,
respectively. Wg and bg are the weight and bias of the G-LSTM cell. At this point, gh,t

i is
global temporal embedding.

Through Equations (4) and (7), the features modeled with L-LSTM and the features
modeled with GAT and G-LSTM are obtained. Then, the addition operation is used to
achieve the combination of features and get the fusion feature et

i :

et
i = lh,t

i + gh,t
i (8)

At this time, for the fusion result et
i , gh,t

i can be regarded as the residual of lh,t
i . Finally, a

fully connected layer is used to decode et
i to obtain the prediction result:

∆vt
i = FC(et

i ; W f , b f ) (9)

where ∆vt
i represents the relative position of the vehicle at time step t. W f and b f are the

FC weight and bias.
Using the position xt−1

i and the relative position ∆vt
i of the vehicle i, the framework

get its predicted position x̂t
i and the predicted positions of all vehicles X̂t by analogy.
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4.1.4. Overall Process

For the implementation of real-time DT trajectories, in addition to the above steps,
some implementation ideas and details are explained. Suppose the current process is
after getting the matching result. At this point, the matching result is a one-to-one match
between X̂t of all tracked targets and Ot at the same time. For example, if x̂t

i and ot
j are

a pair match, it means that the ot
j is the successor of the trajectory of the i-th tracked

target. Thus, the observation is added to the trajectory, extending the DT trajectory segment.
Furthermore, in the implementation, for each observation that fails to match, a new starting
trajectory is created to record it. Besides, for each tracked target that fails to match, the
target’s state prediction at the current time step is added to the trajectory as a substitute for
the observation. Meanwhile, the target records the consecutive unmatched count, which
indicates the upper limit of the target’s matching loss. When the count exceeds the threshold
ε, it is considered that the vehicle to which the trajectory belongs has exceeded the detection
range. Consequently, the target trajectory is moved out of the trajectory storage.

After that, each target has a series of vehicle observations. They can be connected
into the DT trajectories to reflect how the vehicle travels on the road. To realize single-step
prediction, each tracked target has a tracking state H, which contains the hidden state and
cell state of L-LSTM and G-LSTM. All element values of H of the initial target are set to 0. In
the prediction process, ∆vt−1

i and Ht−1
i are taken out, and Ht−1

i is reconstructed into lh,t−1
i ,

lc,t−1
i , gh,t−1

i and gc,t−1
i , which are input to two LSTMs, respectively. Finally, the output is

reconstructed into Ht
i and updated to the corresponding target with ∆vt

i . The process is
shown in Figure 5.

Figure 5. Process of the single time step.

4.2. Loss

When training a prediction model, the distance between the prediction and the ground
truth is usually used as a loss to improve the accuracy of the prediction. However, the
goal is to improve the tracking performance of STT. Tracking accuracy is not the same
as prediction accuracy, which also considers information such as the consistency of the
tracking ID. A recent work [24] proposes a model DHN. It takes as input the distance matrix
between predictions and observations from the same time step and outputs an affinity
matrix of the same size. Inspired by the work, this paper reuses it by improving its tracking
loss, making it applicable to a wider range of task scenes, and for training STT.
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4.2.1. Distance Matrix

Since we only consider the location of vehicles, it is not possible to find an optimal
ground truth bounding box for each predicted bounding box based on their feature affinity,
i.e., IoU. The values in the distance matrix are defined as follows:

D′r,c =
√
(x̂r − oc)2 (10)

D = βD′ (11)

where D′r,c represents the value in the r-th row and the c-th column in D′. β is a scaling
coefficient to normalize D′. The result is scaled distance matrix D ∈ RL×M, where L
represents the number of tracked targets while M represents the number of observations.

The Euclidean distance is calculated between state predictions and observations. Then,
it is scaled so that the true positives of D are mainly distributed in the range of [0, 0.1],
which is defined by the standard training set of DHN. The DHN takes D as input and
output soft assignment matrix Ã ∈ [0, 1]L×M.

4.2.2. Improved FP and FN

The definitions of F̃P and F̃N are further extended, considering the situation when the
vehicle is missed or noise occurs. Figure 6 demonstrates the calculation process. Among
them, Cr ∈ [0, 1]L×(M+1) is defined by the original work, which is obtained by filling
a column of δ as a threshold after the last column of Ã and then applying softmax on
the row dimension. The column x̂∅ where the threshold is located is filled with yellow.
Cc ∈ [0, 1](L+1)×M can be obtained by the same calculation in the column dimension. The
row o∅ where the threshold is located is filled with yellow. BTP is a binary matrix of the
same size as Ã. The green-filled items indicate that the row and the column are a true
positives match with a value of 1, while the white-filled items have a value of 0. Pr is a
one-dimensional matrix, whose non-zero entries signal rows in BTP with non-zero entry,
represented by blue fill with a value of 1. Similarly, the non-zero entries of Pc are the
columns with non-zero entries in BTP.

Figure 6. Improved FP and FN.

Specifically, two mask matrices Pr and Pc are obtained through BTP. Then, mask it to
Cr and Cc, respectively:

F̃P = ∑
n

Pr
1,n × Cr

n,o∅
(12)

F̃N = ∑
m

Pc
1,m × Cc

x̂∅ ,m (13)

Each n and m can get the matching error of a target and an observation, respectively. F̃P
and F̃N indicates the sum of errors for targets and observations. The implication is that
items whose tracker and observation are true positive matches should not be regard as
false positives or false negatives.
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Finally, the loss function is defined as:

dMOTA = 1− F̃P + F̃N + γĨDS
M

(14)

dMOTP =
‖D� BTP‖1

‖BTP‖0
(15)

Lt = λ1(1− dMOTA) + λ2dMOTP (16)

where ĨDS is the L1 norm of the Hadamard product of Cc
1:L,1:M and the binary complement

of BTP. � denotes the Hadamard product. ‖ · ‖1 denotes the L1 norm of the matrix, while
‖ · ‖0 denotes the number of non-zero entries in the matrix. λ1 and λ2 is a loss balance
factor. Minimizing this loss function is equivalent to penalizing the errors generated by
false positives, false negatives, and ID switch errors.

4.3. Example

An example is used here to illustrate the capabilities of the proposed framework.
Figure 7 shows the vehicle trajectories over a period of time, and other trajectories are
not shown for clarity, where the numbers represent the IDs and the starting points of the
trajectories. Vehicle No. 120 tries to overtake vehicle No. 119 from the right, vehicle No.
119 follows vehicle No. 114, and vehicle No. 122 tries to overtake vehicle No. 121 from the
left. Similar to other neural networks, the proposed framework is mainly divided into two
parts: model and loss. Specifically, the L-LSTM in the STT model captures the acceleration
and deceleration information of the vehicle, and the GAT and G-LSTM capture the global
feature information to achieve embedding spatiotemporal features. The proposed tracking
loss strengthens the tracking ability on the basis of losing a certain prediction accuracy and
allows STT to learn the ability through backpropagation. When only LSTM and prediction
loss are used, higher prediction accuracy sometimes brings the paranoia of the model,
that is, low error tolerance. Wrong predictions at this point will lead to mismatches and
destruction. For example, the trajectory deflection of vehicles 120 and 122 when overtaking
is difficult to predict accurately, but it can be matched and tracked.

114119120

121
122

Figure 7. The vehicle trajectories at intersections over time.

5. Experiments

In this section, the dataset and experimental setup used in this paper is first introduced.
Then, the extensive experiments are conducted to evaluate the proposed framework.

5.1. Hardware and Software Environments

The experiments are conducted on a computer with 256-GB memory, an Intel Xeon
Gold 6130/2.1 GHz CPU, and a Quadro P6000/24 G GPU. Moreover, the proposed ap-
proach and all neural-network-based baseline models are implemented based on PyTorch
1.7.1 with the cuda101 using the Python language 3.6.13.
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5.2. Dataset Description

Original Dataset.
The dataset used in the experiment is the vehicle trajectories provided by Zhejiang

SUPCON Information Company, Ltd, which is China’s leading smart city solution and
service provider. It includes a full day of trajectory data at the intersection of Binwen Road
and Torch Avenue in Hangzhou on 10 May 2021. The data were sampled at a frequency of
approximately 0.1 s, including sampled device information, vehicle appearance description,
and positioning information. The decompressed file is about 7.9 GB in size and contains
more than 80,000 trajectories, with an average of 600 records per trajectory. To obtain the
ground truth as the original dataset, we remove the trajectories with missed intervals
greater than five time steps and fill the missed records for the remaining trajectories using
Lagrangian interpolation.

Extended Dataset.
In the real world, the signals captured by road sensors can generate errors in some

cases, which are described in Section 1. To assess the effectiveness of the proposed frame-
work more broadly, we intentionally manipulate the ground truth trajectories, making the
data noisy to simulate sensor errors. Specifically, to construct a dataset that is similar to the
real environment, this paper consider two crucial issues that arise with real-world sensors,
namely offset and miss.

1. Offset: So far in original datasets, vehicle trajectories are lowly biased. However, in the
real world, the sensor may have coordinate offset due to its own hardware defects or
the influence of external factors. We mimic this phenomenon by offsetting the original
dataset with a Gaussian distribution with mean 0 and variance 10−5 under the world
coordinates system.

2. Miss: Sensor signal loss occurs when the vehicle is occluded or the signal is attenuated
in a complex environment. We mimic this phenomenon by randomly dropping obser-
vations with a 10% probability in the original dataset and generating a missing dataset.

For brevity, we denote -O for offset datasets, -M for missing datasets, and -OM for
datasets with both.

5.3. Experiment Settings

Metrics.
As the input to the proposed framework is multiple coordinates without IDs, while

the output is the IDs assigned to observations by tracked targets whose state predictions
are matched. Therefore, this paper use the following three metrics, i.e., MOTA, MOTP [39]
and IDF1 [40], to evaluate the proposed method:

1. Multiple Object Tracking Accuracy (MOTA): The measure combines three error sources:
false positives, false negatives, and ID switch errors. The more the model is disturbed
by errors, the worse the metric will be. It is one of the contributions that this paper
needs to validate.

2. Multiple Object Tracking Precision (MOTP): Due to the coordinate dataset, the exper-
iments use the MOTP metric defined by [39], i.e., the average error in predicted
positions for matched observation pairs over all frames. Through the metric, we will
reveal that MOTP is not necessarily positively correlated with MOTA, thus validating
the significance of the proposed tracking loss.

3. ID F1 Score (IDF1): The ratio of correctly identified observations over the average
number of ground truth and predicted positions. It is similar to MOTA as a combined
metric, but differs in that it focuses on the continuous consistency of DT trajectory ID
with the ground truth ID. It is also one of the contributions that need to be verified.

For the values of these metrics, higher is better on MOTA and IDF1, and lower is
better on MOTP. In our practice, the units for MOTA and IDF1 are percentages, and for
MOTP are 10−5 degrees of the coordinates system.
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Parameters.
The key parameters of the proposed method are set as follows. All LSTMs are uni-

directional and have one layer. Since their hidden state size requires a balance between
performance and computation, as shown in Figure 8a, they are all set to 32. GAT is im-
plemented as two layers, the first layer uses a four-head attention mechanism, and the
second layer uses a single attention mechanism to aggregate the results of the first layer. In
terms of additional parameters, ε is set to 0 without loss and set to 1 with loss, because the
long-term loss involves the Reid field, which is beyond the research content of this work.
The main purpose of β is to scale the distance matrix D′ to get the input of DHN, which
needs to conform to the data distribution of the DHN standard training set. Considering
the range of longitude and latitude displacements, as shown in Figure 8b, β is set to 104. λ1
and λ2 used to balance the model loss function are set to 0.2 and 0.8, respectively. Finally,
the model is optimized with the Adam optimizer, and learning rates are set to 1× 10−2,
3× 10−2, and 2× 10−2 for the L-LSTM, GAT, and G-LSTM, respectively.

Baseline Model.
To verify the effectiveness of the proposed framework, we investigate several works

that actively use motion models, comparing the proposed model with the motion models
of the following methods:

1. Linear Regression (LR): an LR with no other additional mechanisms, all trajectories are
considered independent.

2. Non-linear Motion (NLM) [29]: An extension to LR that considers motion patterns such
as velocity, acceleration, etc.

3. Group Behavior Model (GBM) [12]: It models the traffic force between vehicles and
embeds the force in a Kalman filter to estimate the state of the target.

4. RNN_LSTM [22]: It models an RNN-based architecture for state prediction, state up-
date, and target existence probability estimation, and an LSTM-based model for data
association.

5. Multi Attention Module (MAM) [11]: It proposes a promoting tracking strategy that
utilizes observations to generate a series of candidate targets to explore more possibilities.
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Figure 8. (a) The effect of hidden size on MOTP. (b) Distribution of longitude–latitude displacements.

The data association algorithm, except for the RNN_LSTM, uses the proposed LSTM,
and all other methods use the most commonly used online data association algorithm HA.

5.4. Quantitative Evaluation

Table 2 shows the evaluation of MVT2DTI against all baseline models on four scene
datasets. On the original dataset, it improves by 0.23% and 0.52% compared to the second
place on MOTA and IDF1, respectively, and decreases by 20.0% on MOTP. Note that the
improvement of MVT2DTI is significant on MOTP, but less on MOTA and IDF1.
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Table 2. The performances of all the baseline models and MVT2DTI under the three metrics on four
scene datasets.

Model
Original Original-O Original-M Original-OM

MOTA MOTP IDF1 MOTA MOTP IDF1 MOTA MOTP IDF1 MOTA MOTP IDF1

LR 92.40 0.570 85.51 85.38 1.806 68.45 71.58 0.574 64.39 58.32 1.863 47.54
NLM 95.04 0.297 93.49 59.48 2.132 47.21 76.10 0.322 76.57 16.34 2.257 30.89
GBM 95.01 0.358 94.38 92.24 1.336 84.82 75.27 0.407 77.09 72.98 1.384 65.67

RNN_LSTM 93.71 0.362 94.14 89.40 1.348 70.32 70.26 0.412 71.66 65.97 1.395 57.11
MAM 95.34 0.294 93.93 89.98 1.625 75.53 77.98 0.316 78.40 69.18 1.644 58.10

MVT2DTI 95.57 0.245 94.90 90.12 0.957 86.21 81.09 0.297 80.19 73.36 1.053 72.71

On the original-O dataset, MVT2DTI is 2.12% lower than GBM on MOTA, but 39.6%
lower on MOTP, and 1.39% higher on IDF1. A higher IDF1 indicates that it has better track
ID consistency. A plausible explanation is that GBM captures the motion trend of the vehicle
using the inter-vehicle force and Kalman filter, yet the trajectory ID that should have ended
was wrongly assigned to another trajectory. MVT2DTI does this equally well and avoids
vehicle ID switching. Compared with the original dataset, the advantage of MVT2DTI is
reduced on MOTA, while it is improved on IDF1 and MOTP.

On the original-M dataset, compared to the second place, MVT2DTI improves by
3.11% and 1.79% on MOTA and IDF1 and reduces by 6.4% on MOTP. Compared with the
original dataset, the advantage of it is slightly improved on MOTA and IDF1, while it
is decreased on MOTP. Intuitively, since it has lower MOTP than other methods on the
original dataset, it is better able to continue the motion trend of the vehicle when the signal
loss occurs. However, it also relies on the ground truth to update the hidden state of the
neural network, otherwise, its error will be amplified as the loss extends.

On the original-OM dataset, MVT2DTI improves by 0.38% and 7.04% on MOTA
and IDF1, respectively, and reduces by 31.43% on MOTP. Compared to original-O and
original-M datasets, it still maintains satisfactory performance.

Additionally, MVT2DTI is compared with an offline algorithm named LGM [13]. Since
the offline algorithm needs to overlook all the frames or look ahead to a few frames to
get future information, and the experiments take detection as an objective fact, the MOTP
metric is meaningless here. The result is shown in Figure 9. In terms of MOTA, MVT2DTI
is 3.25% and 5.31% lower than LGM on the two scenes, respectively. In terms of IDF1, it is
2.59% and 5.0% lower. The results on both datasets show the superior performance of the
offline method, while MVT2DTI follows LGM. Even if MVT2DTI has no future information,
it can learn the motion trend of the vehicle from the error data, which shows the stability.
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Figure 9. Performance comparison of LGM and MVT2DTI.
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Furthermore, considering that MVT2DTI is an online algorithm, we test the running
time of each model under the same dataset containing 1131 trajectories, as shown in Table 3.
The comprehensive results show that the computational efficiency of MVT2DTI is in the
middle ranking, while the FPS still reaches a considerable level. It means that MVT2DTI
can assign observations to the trajectories of tracked targets and complete a single-step
prediction within the valid time frame, satisfying the real-time requirement of the DT
system. This is due to the fact that MVT2DTI does not use a large-scale neural network, but
a combination of several basic neural network components.

Table 3. The comparison of model processing speed in seconds.

Metrics LR GBM RNN_LSTM MAM LGM MVT2DTI

Total 28.42 65.05 31.41 153.65 351.25 68.66
Time Usage 1× 2.29× 1.11× 5.41× 12.36× 2.42×

FPS 175.9 76.9 159.2 32.5 14.2 72.8

5.5. Component Analysis

To further understand the effect of each component of MVT2DTI, we conduct ablation
experiments on it. MVT2DTI has two components, STT and the tracking loss Lt. Hence,
the ablation experiments are divided into the following groups. Firstly, a single LSTM is
used to predict the target state, without GAT and the second LSTM, and is trained with
Lt (denoted as STT1 + Lt). Secondly, a single LSTM and GAT are used to predict, without
the second LSTM, and are trained with Lt. The results of LSTM and GAT are added as
Equation (8) (denoted as STT12 + Lt). Thirdly, the assignment results are computed using
HA and train STT using MOTP only (denoted as STT + Lp). The last one is MVT2DTI
(denoted as STT + Lt). Therefore, experiments are conducted on four groups under two
scene datasets to clarify the role of components in different scenes, as shown in Table 4.

Table 4. Ablation experiments on individual components of MVT2DTI.

Model
Original Original-O

MOTA MOTP IDF1 MOTA MOTP IDF1

STT1 + Lt 94.96% 0.212 93.14% 89.82% 0.893 84.83%
STT12 + Lt 95.33% 0.263 94.25% 87.81% 1.361 77.40%
STT + Lp 95.81% 0.231 95.24% 90.03% 0.949 85.59%

STT + Lt 95.57% 0.245 94.90% 90.12% 0.957 86.21%

For the performance comparison of STT1, STT12 and STT under the two datasets. It
can be noticed that under the original dataset, the GAT module optimizes the performance
of a single LSTM, while STT outperforms the former two. Under the original-O dataset, the
GAT module produces a serious error. At this time, a single LSTM module outperforms the
GAT module, while STT still outperforms the other two. It shows that the GAT module can
capture the interaction information between vehicles in normal scenarios, while inaccurate
information in the scenario of offset data will lead to tracking errors. At this point, STT
utilizes G-LSTM to share the GAT results at each moment to the global, thereby recovering
its performance.

Comparing the performance of STT trained with Lt and Lp on the two datasets. It can
be noticed that under the original dataset, the extra part in the tracking loss interferes with
the training of the tracker because the wrong data is a small sample. Under the original-O
dataset, IDF1 is improved because the tracking loss takes into account the impact of more
misinformation on tracker training. Overall, STT outperforms individual components on
both datasets, and the tracking loss strengthens the tracker in the presence of errors.
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5.6. Discussion

To better understand the graph attention mechanism in STT, we select two sets of
trajectories at different time periods and visualize their attention weight assignment scheme
in Figure 10.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Attention weights assigned by the graph attention mechanism. (a–j) The five figures in
each row show five attention weights assignment schemes for the same trajectory, i.e., four attention
weights assignment schemes for the first layer and one for the second layer. The solid dots show the
vehicle positions at different time steps, and the arrows show the direction. The color of the circle
shows the time step, and its size shows the attention weight of the vehicle to a vehicle without circles
on its trajectory.

Figure 10a–d,f–i show the four attention weight assignment schemes obtained by the
first layer multi-head attention mechanism of the two trajectories, respectively. Note that
for the same trajectory, the four attention weight assignment schemes show drastically
different results, indicating that the multi-head attention mechanism tries different assign-
ment schemes for more possibilities. However, this also brings unstable attention weights.
Figure 10a,f assigns more weights to nearby trajectories. Figure 10c,h tries to assign more
weights to further but opposite trajectories, while Figure 10b,i assigns almost the same
weights to all trajectories.

Therefore, the second layer uses a single attention mechanism to assign more reasonable
attention weights to each trajectory. Figure 10j assigns higher weights to trajectories in the
same direction, especially a trajectory in front of the target trajectory, and assigns relatively
lower weights to trajectories in the opposite direction. Figure 10e assigns higher weights to
trajectories in the same direction and assigns lower weights to the farthest trajectories in the
opposite direction. Although the final attention weight assignments become more stable and
reasonable, there are still problems that need to be pointed out. Figure 10e assigns a lower
weight to adjacent trajectories than other trajectories at some time steps. Figure 10j assigns
a lower weight to another trajectory ahead. Besides, the weights they assign on certain
trajectories do not change smoothly at adjacent time steps. The first problem shows that
although the second layer of the graph attention model can stabilize the attention weight
assignment scheme, it cannot achieve perfect performance. The reason is MVT2DTI only
takes the relative displacement as input, so the weights it learns are more about the motion
trend of the vehicle. The second problem shows that GAT is not sensitive to time factors,
which further shows the importance of using G-LSTM to encode GAT results so that the
results can incorporate more time-step information.
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6. Conclusions

In this work, we propose a framework for vehicle trajectory tracking at intersections
with the help of IoV communication, paving the way for DT intersections. The framework’s
STT embeds GAT using a multi-head attention mechanism on LSTM to improve the
tracker’s ability to capture spatial–temporal features. Additionally, a new tracking loss
is proposed and used to train the tracker. Finally, under the iteration of data input, data
association, and state prediction, the unlabeled observations are connected as DT trajectories
to reflect their real motion pattern. While the model focuses on the vehicle interactions and
sampling errors that often occur at intersections, it can be applied to other road scenarios as
well. In the future, for the framework that accepts relative displacement as input, we will
consider some normalization methods and carefully try to introduce inter-vehicle distances.
In addition, we will consider applying the framework to city-level road networks. At that
time, the time complexity of calculation will strictly limit the number of vehicles. We will
do more research to maintain the balance between efficiency and performance, and edge
computing is considered promising.
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