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Abstract: Metaverse applications often require many new 3D point cloud models that are unlabeled
and that have never been seen before; this limited information results in difficulties for data-driven
model analyses. In this paper, we propose a novel data-driven 3D point cloud analysis network
GN-CNN that is suitable for such scenarios. We tackle the difficulties with a few-shot learning
(FSL) approach by proposing an unsupervised generative adversarial network GN-GAN to generate
prior knowledge and perform warm start pre-training for GN-CNN. Furthermore, the 3D models
in the Metaverse are mostly acquired with a focus on the models’ visual appearances instead of the
exact positions. Thus, conceptually, we also propose to augment the information by unleashing and
incorporating local variance information, which conveys the appearance of the model. This is realized
by introducing a graph convolution-enhanced combined multilayer perceptron operation (CMLP),
namely GCMLP, to capture the local geometric relationship as well as a local normal-aware GeoConv,
namely GNConv. The GN-GAN adopts an encoder–decoder structure and the GCMLP is used as the
core operation of the encoder. It can perform the reconstruction task. The GNConv is used as the
convolution-like operation in GN-CNN. The classification performance of GN-CNN is evaluated on
ModelNet10 with an overall accuracy of 95.9%. Its few-shot learning performance is evaluated on
ModelNet40, when the training set size is reduced to 30%, the overall classification accuracy can reach
91.8%, which is 2.5% higher than Geo-CNN. Experiments show that the proposed method could
improve the accuracy in 3D point cloud classification tasks and under few-shot learning scenarios,
compared with existing methods such as PointNet, PointNet++, DGCNN, and Geo-CNN, making it a
beneficial method for Metaverse applications.

Keywords: 3D point cloud; Metaverse; convolution neural network; generative adversarial network;
few-shot

1. Introduction

The point cloud is a popular 3D shape representation. The 3D point analysis has many
important applications in the Metaverse, such as classifying [1] and completing [2] the
acquired 3D models to be used. With the rapid development of the Metaverse, a large
number of new 3D point cloud models are generated and acquired. Many models are
novel, have never been seen before, or come unlabeled. Such limited information brings
challenges to data-driven 3D point cloud analyses, such as classification, because they
strongly rely on sufficiently labeled training data [3,4]. To tackle this problem, we propose
a convolution neural network, GN-CNN, with a few-shot learning approach by utilizing
a generative adversarial network GN-GAN to extract prior knowledge for augmenting
the information.

As shown in Figure 1, we pre-trained the GN-GAN to a warm start [5,6] GN-CNN,
which is the 3D point cloud analysis network. GN-GAN obtains the global point cloud
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feature (experience) vector. Then the vector is plugged in as prior knowledge into the
backbone network of GNConv, which is used as the convolution-like operation in GN-CNN.
Using the original and downsampled input helps to learn multi-scale point cloud features.

Figure 1. The overall architecture for warm starting GN-CNN by pre-training a GN-GAN. GN-GAN
generates and captures prior knowledge as the experience knowledge (vector) of the point clouds.
The experience vector is plugged into GN-CNN for warm starting. For GN-GAN, the left orange
point clouds are the ground truth. We use two resolutions—the top is downsampled and the bottom
is the original one; this helps to learn multi-scale point cloud features. The green point clouds are the
generated results.

Furthermore, the 3D models in the Metaverse are usually acquired with a focus
on the model’s visual appearances instead of the exact point positions, for example, for
driving [7] and indoor navigation [8], more attention is usually paid to the model’s appear-
ance to make sure the models look good, instead of the model actual accuracy, which is
usually the focus of computer-aided design (CAD). Based on this, unlike existing (few-
shot) learning methods [9,10], we propose unleashing the model appearance to further
augment the information. The model’s local surface variance and normal information
determine how light is reflected, and how the model’s appearance is perceived by the
viewers. Therefore, they are utilized in the proposed pipeline: First, in the encoder
of the encoder/decoder framework of the GN-GAN generator, we introduced a graph
convolution-enhanced combined multilayer perceptron operation (CMLP [11]), namely
GCMLP, by adding several graph convolution layers. Second, in GN-CNN, we utilize local
neighborhood normal information.

Different from the existing graph convolution-based methods, such as DGCNN [12]
and GeoConv [13], we used graph convolution to enhance CMLP [11], which does not
handle geometric relationships well. By integrating the capability of CMLP in learning
different levels of feature information and the capability of graph convolution in learning
local spatial connection relationships, the local surface variance information can be better
learned. Together with the normal information, the appearance of the model can be
better captured.

In this paper, we focus on classification and few-shot learning (GN-CNN) as well
as reconstruction (GU-GAN) tasks of 3D point cloud analysis. Our contributions are
summarized as the following:

(1) We propose a convolution neural network framework GN-CNN that is suitable for
Metaverse applications. We propose a few-shot learning approach using an unsuper-
vised generative adversarial network GU-GAN to warm start GN-CNN by generating
prior knowledge.
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(2) We propose the graph-enhanced combined multilayer perceptron operation (GCMLP)
in the GN-GAN encoder and normal-aware graph convolution operation GNConv to
better capture the model appearance information.

(3) Based on evaluations, state-of-the-art 3D point cloud classification accuracy and few-
shot learning accuracy on ModelNet40 and ModelNet10 are achieved.

Please refer to the table of abbreviations for the main abbreviations used in this paper.

2. Related Work
2.1. Deep Learning on 3D Point Cloud Analysis

Unlike the 2D image, the 3D point cloud does not have a straightforward regu-
lar grid (pixels), so it cannot use CNN directly. Therefore, some early work converts
point clouds to other regularized representations, such as volumetric 2D views [14–19] or
representations [20–24]. Although voxelization-based methods and view-based methods
can achieve good results on point cloud analysis tasks, the resolution of voxel grids always
seriously affects the efficiency of the neural network, and view-based methods always
consume much time in data preparation. PointNet [1] and PointNet++ [25] first use the 3D
coordinates of the point as direct input. Some works [26–29] also input point clouds directly
and construct their own networks based on PointNet [1] and PointNet++ [25]. However,
they extract features on each point independently, which cannot easily learn geometric
relationships among points of the point cloud.

2.2. Graph-Based Works on Point Cloud Analysis

As a milestone in the use of graph convolution on 3D point clouds, DGCNN [12],
dubbed EdgeConv, uses the k-nearest neighbor algorithm (k-NN) to construct a local neigh-
borhood graph and update the graph structure on deeper latent layers. With the stacking
of EdgeConv, DGCNN can learn the global features of the 3D point cloud. However, Edge-
Conv ignores the directional information of the edges formed by the local neighborhood.
RSCNN [30] learns the weight matrix by constructing a local neighborhood graph and
then multiplies it with the features in the network. GeoConv [13] builds a graph structure
and decomposes the edge features in latent layers according to the orthogonal basis. Geo-
Conv uses the directional information to enrich the geometric properties in the graph
convolution and achieved better results than EdgeConv. However, GeoConv still only
pays attention to the spatial connection relationship between neighboring points when
constructing the graph. Therefore, the obtained directional information involves the spatial
relationship between the points, the local surface information in different levels (i.e., low
and high levels), and normal information are not addressed.

2.3. Point Cloud Reconstruction and Completion Based on Deep Learning

Some works use GAN-based methods on point cloud reconstruction and completion.
The L-GAN [31] is the first to use deep learning methods for point cloud completion in
the 3D field, but since L-GAN does not focus on the point cloud completion task, the
results are not ideal. Some point cloud completion works pay more attention to real-
time performances, such as RL-GAN-Net [2], but the accuracy is not high. Some other
works plug graph convolution into the GAN-based networks. Valsesia et al. [32] used
graph convolution for unsupervised point cloud reconstruction, defining the graph as the
output of the generator. Huang et al. [11] further studied 3D point cloud completion and
proposed PF-Net based on unsupervised learning, using the pyramid structure to construct
the decoder. PF-Net obtains high-precision 3D point cloud completion results by jointly
training both the generator and discriminator.
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2.4. Summary

Please refer to Table 1 for a comparison with other methods.

Table 1. Comparison with other methods.

Related Work Features Our Method

PointNet [1], PointNet++ [25] Focused on individual point features Learning geometric relationships between
points

RSCNN [30] Defining convolutional kernels Not defining convolutional kernels, but using
graph convolution

DGCNN [12] Lacking directional information Utilizing normal information

GeoConv [13] Focused on neighboring points Considering local surface information in differ-
ent levels and normal information

L-GAN [31] Not targeted for the point cloud completion Applicable for reconstruction
RL-GAN-Net [2] For real-time Not for real-time

PF-Net [11] Using GAN with pyramid structure Using two different resolutions in GN-GAN for
warm start

Current few-shot learning methods [9,10,33] of 3D point clouds mostly learn semantic
information from the support point sets and then generalize it to analyze the query point
sets. Different from the existing methods, we use a GAN-based and appearance-aware
approach. Our methods can improve the accuracy of results compared to the voxel-based
and non-graph-based methods; please refer to the results section.

3. Method

This section presents the proposed GN-CNN and GN-GAN and the core operations in
the two networks. We will first introduce our overall architecture, GN-CNN, and warm
start strategy, then describe the structure of GCMLP and GN-GAN.

3.1. The Overall Architecture and GN-CNN

The overall network architecture includes GN-CNN, which is the backbone network
for point cloud classification and few-shot learning tasks, as well as GN-GAN, which aims
at warm starting GN-CNN. GN-GAN can also be used for point cloud reconstruction tasks.

Our GN-CNN pipeline is inspired by Geo-CNN [11], and the network structure is
also divided into two branches, as shown in Figure 2. The first branch of GN-CNN is
PointNet++, using PointNet to extract features layer by layer. Each layer uses multilayer
perceptron (MLP) and max pooling to abstract features to high dimensions, and the three
layers of PointNet encode features into dimensions [64, 128, 384], and finally, we obtain a
feature size of N × 384, where N is the number of points.

In the second branch of GN-CNN, the input is the same as the first branch. First, the
input point cloud feature with a size of N × 6 into an MLP to map the size of the feature
to N × 64, and then pass a layer of GNConv to obtain the feature with a size of N × 128,
and then pass an MLP to obtain the feature with a size of N × 256 and follow a layer of
GNConv to obtain the feature with a size of N × 512. The N × 384 feature obtained by the
first branch is connected to obtain a feature of size N × 896, and then input into a layer of
GNConv to obtain a feature of size N × 768, and finally passes through an MLP to obtain a
feature of size N × 1920. Next, we use max pooling to obtain a vector with length [1920].
The vector with length [1920] is the point cloud global feature representation vector.

Next, we use the prior knowledge extracted by the GN-GAN encoder with the same
length of [1920] for feature aggregation with the point cloud global feature vector extracted
by GN-CNN encoder, and GN-CNN is warm-started. The aggregation function adopts
an element-wise sum. The GN-CNN decoder consists of four FC layers with the vectors
of output lengths [1024, 512, 256, C], where C is the number of classes in the point cloud
classification tasks.
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Figure 2. The overall architecture of the proposed method. The architecture includes two essential
networks, GN-CNN and GN-GAN. GN-CNN is our backbone network for classification and few-shot
learning. GN-GAN is for the reconstruction task and is pre-trained to obtain the prior knowledge
(represented by the red box) to warm start GN-CNN.

3.2. Warm Start

The warm start techniques are often used in the field of deep learning [5,6,34] and
reinforcement learning. The warm start is to initialize the network parameters to make
networks have a particular experience at the beginning of training. This method can
accelerate the convergence of the neural network. When the data size is limited, the neural
network can make corresponding judgments based on the experience knowledge to obtain
better few-shot learning results. Our warm start strategy is shown in Figure 3. GNCNNE
is the encoder of GN-CNN, GNCNND is the decoder of GN-CNN, Fv is the global feature
representation extracted by the GN-CNN encoder, and Ev is the experience knowledge.
We aggregate Ev and Fv, and then input them into the decoder of GN-CNN. Rout is the
output of the GN-CNN decoder. The output Rout of the GN-CNN decoder is defined as:

Rout = GNCNND(A(Fv, Ev))

= GNCNND(A(GNCNNE(P), GNE(P))),
(1)

where GNE() represents the encoder of GN-GAN, P is a point cloud, A() is the aggregation
function, we use element-wise add as the aggregation function.

Figure 3. Warm start strategy for GN-CNN.

3.3. GCMLP

CMLP [11] takes the maximum value in each channel on low-level and high-level
through MLP and then concatenates the vector after the max pooling. CMLP can integrate
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low-level and high-level features to learn multi-level information better, but it does not
handle the geometric relationship information among points.

Since graph convolution can handle geometric relationships among points, espe-
cially for the local neighborhood learning of point clouds, we propose GCMLP, as shown
in Figure 4, to improve CMLP performance by using a graph convolution layer named
GMLP. In GCMLP, three MLP layers in CMLP are replaced with GMLP layers, while still
concatenating the low-level and high-level feature vectors after max pooling. For a GMLP
layer, we first use k-NN for each point pi(i = 1, 2, . . . , N) within N points to find the k
nearest neighbors pj(j = 1, 2, . . . , k) and take k neighboring points pj as source points and
pi as target points and construct an edge pj − pi (including the self-loop from pi to pi).
Finally, we concatenate [pj − pi, pi], and then go through the MLP layer.

Figure 4. GCMLP in the generator of GN-GAN. We use three GMLP layers to replace MLP layers
in CMLP. Combining both low-level and high-level features, the local surface information can be
captured better.

GCMLP first uses an MLP to encode the dimensions of the original point cloud to
[64], then uses three GMLP layers to encode the dimensions to [64, 128, 256], and finally
is followed by two MLP layers to encode the dimensions to [512, 1024]. We max pool the
output of the last four layers and concatenate the four vectors. The lengths of the four
vectors are [128, 256, 512, 1024].

3.4. GN-GAN and Loss Function

The overall structure of GN-GAN is shown in Figure 5. We use iterative farthest
point sampling (IFPS) to downsample the input point cloud to obtain two resolutions of
the point cloud. The encoder of the GN-GAN generator takes both two resolutions as
input. The number of points in the high-resolution point cloud is N, and the number in
the low-resolution point cloud after down-sampling is N2 = N

K . The point clouds with two
resolutions are passed through two GCMLPs, respectively, and the generator reconstructs
two point clouds with the same resolutions as respective inputs. We concatenate the two
feature vectors obtained through GCMLP and input them into an MLP to encode the
dimensions of the global feature vector FV to 1920. CD is the Chamfer distance to evaluate
the difference between the reconstructed point cloud and ground truth.

The structure of the decoder in the GN-GAN generator is shown in Figure 6, where
FV is inputted into the decoder. The red box in Figure 6 is FV . We first use two fully
connected (FC) layers to encode the dimensions of FV to [1024, 256]. The [256] vector is
used to obtain the vector F1 with the size of 3 · N2 through an FC layer, and F1 is reshaped
to the size N2 × 3 to obtain PL, which is the low-resolution reconstructed point cloud. Next,
we use the [1024] vector to obtain F2 which size is N · N2 through the FC layer, reshape F2
into F3 of size N × N2, and input F3 into a convolution layer to obtain F4 of size N2 × 3N

N2
.

We reshape F4 to F5 of size N2 × N
N2
× 3. At this point, we expand PL to N2 × 1× 3, and add

it to F5. Finally, we reshape it to obtain the high-resolution reconstructed point clouds PH of
size N × 3.
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Figure 5. Overall structure of GN-GAN.

Figure 6. The structure of the decoder in the GN-GAN generator. The decoder uses reshape, Conv
layer, and FC layer to output two point clouds with the same resolutions as input.

The reconstruction loss of GN-GAN is defined using the Chamfer distance. Chamfer
distance is the average nearest squared distance between two point clouds. Define the
ground truth point cloud as Preal = {p1, p2, . . . , pN}, and the reconstructed point cloud is
Pf ake = {p′1, p′2, . . . , p′N}, then Chamfer distance LCD between Pf ake and Preal is divided into
two parts CD1 and CD2:

CD1 =
1

Preal

N

∑
i=1

min
j∈[1,N]

‖pi − p′j‖2
2 (2)

CD2 =
1

Pf ake

N

∑
j=1

min
i∈[1,N]

‖pi − p′j‖2
2. (3)

Finally, LCD is defined as:

LCD = CD1 + CD2. (4)

The reconstruction loss of GN-GAN is defined as:

Lgen = LCDh + αLCDl , (5)
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where LCDh is the Chamfer distance between the high-resolution reconstructed point
cloud and the ground truth, and LCDl is the Chamfer distance between the low-resolution
reconstructed point cloud and the corresponding ground truth, and α is a hyperparameter.

The structure of the discriminator is shown in Figure 5, and we divide the adversarial
loss of the GN-GAN discriminator into two parts, which correspond to inputting the
ground truth point cloud into the discriminator and inputting the reconstructed point
cloud into the discriminator, respectively. The generator mapping process is defined as
G(·) and the discriminator mapping process is defined as D(·), then the adversarial loss is
defined as:

Ladv = ∑
1≤i≤N

log(D(xi)) + ∑
1≤i≤N

log(D(G(xi))), (6)

where xi ∈ X, i− 1, 2, . . . , N. The joint loss of GN-GAN is defined as:

L = λgenLgen + λadvLadv, (7)

where λgen and λadv are weights to balance two parts of joint loss, which satisfy:

λgen + λadv = 1. (8)

3.5. GNConv

GNConv is designed to capture the visual variance of the local surface formed by the
point cloud and augment the information with it. Since the normal of a point can depict
the information and appearance of the local neighborhood, so we use normals. As shown
in Figure 7, dnormal represents the distance between the two normals, reflecting the visual
variance of the surface. Conceptually, when dnormal is large, the local surface appearances
vary violently, which means there are more features (important information).

Figure 7. We use the distance of two normals to reflect the visual variance of the local surface formed
by the point cloud. The blue arrows represent the normals of the two triangle meshes. dnormal is the
distance between the two normals.

Inspired by GeoConv [13], GNConv includes the distance of normals between the
center point and the neighboring points on the local neighborhood graph in each iteration.
Define the point cloud as P = {p1, p2, ..., pN}, where pi = {xi, yi, zi}. Taking each point of P
as the center point, take the spherical neighborhood S(pi) = {pj|‖pi− pj‖ ≤ r}with radius
r, and the normal set is NP = {np1 , np2 , . . . , npN}. As the iteration progresses, gradually
increase r to obtain a larger receptive field. Define Xl

pi
∈ RC as the feature of pi obtained

after the lth iteration of GNConv, then the definition of GNConv is as follows:
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Xl
pi
= WcXl−1

pi
+ We∑pj∈S(pi)

fd(pi, pj, r) fn(pi, pj)

fd(pi, pj, r)
. (9)

As shown in Equation (9), the feature of pi on the lth layer has two parts. The first
part is the output of the previous layerXl−1

pi
multiplied by the center point weight Wc to

extract the center point feature, and the second part is the edge property between the center
point and neighboring points in the spherical neighborhood. The corresponding feature is
multiplied by the weight We and We to enlarge the feature dimension to be the same as the
dimension of the first part. In the second part, fn(pi, pj) is defined as:

fn(pi, pj) = Wnn(pi, pj) + ∑
~b

cos2(θ~b)W~bXl−1
eij

. (10)

Before each iteration, we take each point pi as the center of the local spherical neigh-
borhood and determine the neighborhood S(pi) with a radius of r. The normal edge feature
n(pi, pj) between the center point and the neighboring points in the spherical neighborhood
is defined as:

n(pi, pj) = npj − npi , (11)

where pj ∈ S(pj), Wn is the weight of normal edge features. The edge feature Xl−1
eij

is
defined as:

Xl−1
eij

= Xl−1
pj
− Xl−1

pi
. (12)

For each spherical neighborhood, we construct an orthogonal basis with pi as the
origin and decompose the edge features along with the orthogonal basis, and cos(θ~b) is the
cosine between each component and the corresponding orthogonal basis. W~b is the weight
for feature extraction of the components along with three orthogonal bases. After the
feature components of the three edges are mapped to the high-dimensional feature space,
we aggregate the components by cos(θ~b). Finally, we aggregate the edge feature Xl−1

eij
and

the normal edge feature n(pi, pj)as shown in Equation (10).
In Equation (9), fd(pi, pj, r) is the weight function, and the weight is dynamically

changed according to the distance between pj and pi, which is defined as:

fd(pi, pj, r) = (r− ‖pi − pj‖)2. (13)

4. Experiments
4.1. Implementation Details

In our experiments, the GPU used in the classification experiment and the ablation
experiment was NVIDIA GeForce GTX 2080ti; the GPU used in the few-shot learning
experiment and the visualization of GN-GAN reconstruction results was NVIDIA GeForce
GTX 1070.

In the 3D point cloud classification experiment and the few-shot learning experiment,
the input 3D point cloud of GN-CNN contained 1024 points. The radii for three GNConv
layers were 0.15, 0.3, and 0.6. The first branch and the second branch both used the Adam
optimizer and the cosine annealing strategy. The training batch_size was 10, and the test
batch_size was 8.

When pre-training GN-GAN, the input point cloud resolution was 1024 points and 64
points after IFPS downsampling with K = 16. The generator used the Adam optimizer and
StepLR to update the parameters every 40 epochs. The discriminator also used the Adam
optimizer and StepLR to update the parameters every 40 epochs. The training batch_size
was 16, and the test batch_size was 8.
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4.2. Dataset

Our experiments used ModelNet40 [20] and ModelNet10 [20]. For classification,
we carried out experiments on both ModelNet10 and ModelNet40. The input point
cloud resolution was 1024 points, and we used all samples from the training and test sets.
For few-shot learning, we used ModelNet40 and randomly reduced 50%, 70%, 90%, and
95% of the total number of training samples; that is, using 50%, 30%, 10%, and 5% of the
total number of training samples. We kept the number of testing samples unchanged, so
the few-shot learning experiment used five training set sizes, including the original training
set. We used ModelNet40 to pre-train GN-GAN for experience knowledge.

4.3. Classification

We used warm-start GN-CNN to perform classification experiments on ModelNet40
and ModelNet10. The experiment’s results are shown in Tables 2 and 3, where MA is the
mean per-class accuracy and OA is the overall accuracy.

Table 2. Classification accuracy on ModelNet40.

Method MA (%) OA (%)

3DShapeNets [20] 77.3 84.7
VoxNet [21] 83.0 85.9
PointNet [1] 86.2 89.2

PointNet++ [25] - 90.7
DGCNN [12] 90.2 92.9
DeepSets [35] - 90.3

ECC [36] 83.2 87.4
SpiderCNN [37] - 92.4

Kd-Net [38] 88.5 91.8
PCNN [39] - 82.3

Geo-CNN [13] 91.1 93.4
Ours 90.5 93.0

Table 3. Classification accuracy on ModelNet10.

Method OA (%)

3DShapeNets [20] 83.5
VoxNet [21] 92.0

MLH-MV [40] 94.8
KCNet [41] 94.4
SO-Net [42] 95.7

LP-3DCNN [43] 94.4
MHBN [19] 95.0

3DCapsule [44] 94.7
VIPGAN [45] 94.1

Point2Sequence [46] 95.3
Ours 95.9

The results on ModelNet40 are shown in Table 2. Using our method, MA is 90.5%
and OA is 93.0%; OA increased by 3.8% compared with PointNet [1], and 2.3% compared
with PointNet++ [25]. Through a warm start strategy, the OA of our method increased
by 0.1% compared to the milestone work DGCNN [12] in the field of graph convolution.
Note that our result did not reach the reported OA of 93.4% in the original Geo-CNN [13]
when training 200 epochs using the same network structure and parameter settings, but it
is slightly better than the OA of the reproduced Geo-CNN, which is 92.9% (the same as
DGCNN). In our opinion, there are two main reasons: first, the reproduction process is
different from the original paper, which causes a different training result, and second, the
hardware and the number of epochs are different. Using more epochs, similar results as in
the original paper should be achieved.
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The OA of our method on ModelNet10 can reach 95.9%. As shown in Table 3, the OA
increased by 12.4% compared with 3DShapeNets [20], and increased by 1.5% compared
with KCNet. Compared with some work proposed in recent years, such as LP-3DCNN,
3DCapsule, VIPGAN, Point2Sequence, and MHBN, our result on ModelNet10 is the best.
Moreover, on the official website of Princeton ModelNet, the overall accuracy ranking of
the work performed on ModelNet10 for classification tasks is provided as the ModelNet
benchmark leaderboard, and the performance of GN-CNN is ranked fifth.

4.4. Few-Shot Learning

Our few-shot learning experiment uses ModelNet40 and the results are shown in
Table 4. Moreover, 100%, 50%, 30%, 10%, and 5% represent the five training set sizes after
random sampling. Since the other four methods did not conduct few-shot learning, we
used the other four methods to perform few-shot learning under the same conditions as
the GN-CNN experimental environment.

Table 4. Few-shot learning accuracy based on ModelNet40.

Method 100% 50% 30% 10% 5%
OA MA OA MA OA MA OA MA OA MA

PointNet [1] 89.2 86.2 87.4 82.8 86.4 82.1 79.9 72.8 78.0 67.0
PointNet++ [25] 91.2 - 91.5 89.3 89.7 87.5 84.1 79.5 78.4 72.5
DGCNN [12] 92.9 90.2 89.3 84.0 87.1 79.6 82.5 73.4 79.3 70.2
Geo-CNN [13] 93.4 91.1 91.7 89.0 89.3 85.4 72.7 77.7 80.3 74.2
Ours 93.0 90.5 92.2 89.3 91.8 88.5 85.1 80.0 82.6 74.8

We can see from Table 4 that our GN-CNN on the original training set can achieve
similar results as DGCNN and Geo-CNN, but after the size of the training set is reduced,
the OA and MA of GN-CNN are better than Geo-CNN. When the training set size reduces
to 30%, the OA of GN-CNN classification increases by 2.5% compared with Geo-CNN,
and the MA increases by 3.1%. Moreover, since the number of samples in the ModelNet40
training set is 9843, and the number of samples in the test set is 2468, there are only about
500 samples in the training set when we reduce the size to 5% of the original training set,
and the number of training samples only accounts for about 20% of the number of samples
in the test set. In this case, compared with DGCNN, the OA of GN-CNN increased by 3.3%,
and the MA increased by 4.6%.

4.5. Reconstruction Results of GN-GAN

To justify the prior knowledge extracted by the GN-GAN containing useful point
cloud information, we compare the point cloud reconstructed by the decoder with the
ground truth. We use the heatmap to visualize the comparison results, as shown in Figure 8.
When the point is closer to blue, the difference between the reconstructed and real points
is smaller.

As shown in Figure 8, although the reconstructed points deviate from the real points
in areas with more details of the 3D point clouds, such as the tips of airplane wings,
the neck of bottles, and the plant leaves, GN-GAN can reconstruct point clouds that
are very close to the ground truth on the whole, which shows that the prior knowledge
extracted by the encoder in the GN-GAN generator is helpful.
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Figure 8. Reconstruction heatmap of GN-GAN. We first obtain the difference between each point
in the ground truth and the reconstructed point cloud, and then the difference is projected onto the
corresponding point of ground truth. The heat map is formed according to the difference.

4.6. Ablation Study

The ablation study was conducted using ModelNet40. The training set size was
5% of the original. The results are shown in Table 5. Since our GN-CNN and GNConv
are inspired by Geo-CNN and GeoConv, the Geo-CNN is chosen as the “Baseline”. To
compare the performance of GNConv and GeoConv, in “Baseline (GNConv)”, the Geo-
Conv is replaced with GNConv. Compared with “Baseline”, GN-CNN not only uses GN-
Conv to extract features but also includes prior knowledge from the GN-GAN generator.
The encoder of the generator in GN-GAN relies on GCMLP to extract features. To compare
the performance of GCMLP and CMLP, in “Baseline (GNConv) + CMLP”, the GCMLP of
GN-GAN is replaced with CMLP, and the prior knowledge extracted by CMLP is plugged
into “Baseline (GNConv)”. In “Baseline + GCMLP”, the prior knowledge obtained through
GN-GAN is plugged into Geo-CNN.

Table 5. Ablation study based on ModelNet40.

Method OA (%)

Baseline 80.3
Baseline (GNConv) 81.1

Baseline (GNConv) + CMLP 82.4
Baseline + GCMLP 81.6

GN-CNN 82.6

Comparing the OA of “Baseline” and “Baseline (GNConv)”, it is shown that GN-
Conv has a stronger extracting ability than GeoConv. Comparing “Baseline (GNConv)”
and “Baseline (GNConv) + CMLP”, as well as “Baseline” and “Baseline + GCMLP”, it is
shown that prior knowledge helps improve the accuracy of few-shot learning. Comparing
“Baseline (GNConv) + CMLP” and our GN-CNN, it is shown that GCMLP has a stronger
feature-extracting ability than CMLP.
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To further compare the performance of GCMLP and CMLP, two layers of GCMLP in
GN-GAN are replaced with CMLP and named GN-GAN (CMLP). As shown in Table 6,
we use ground truth and predicted (GT-pred) error to evaluate the performance. GT-
pred error computes the average squared distance from each point in the ground truth
to its closest in the reconstructed point cloud. We observed that when using GCMLP to
extract features, the result is smaller, which means that the reconstruction result of GN-
GAN is better than that of GN-GAN (CMLP). This indicts that GCMLP has a stronger
feature-extracting ability.

Table 6. Comparison with GCMLP and CMLP.

Method OA (%)

CMLP 0.002403
GCMLP 0.002281

5. Conclusions

In this paper, we propose a convolutional neural network framework GN-CNN with
normal-aware convolution operation GNConv, which is suitable for Metaverse applications.
To solve the problem of few-shot learning of point clouds, we propose an unsupervised gen-
erative adversarial network GN-GAN, based on graph convolution-enhanced multilayer
perceptron operation GCMLP for point cloud reconstruction (for extracting experience
knowledge to warm start GN-CNN). The performance was evaluated on ModelNet40
and ModelNet10.

It is still challenging to reconstruct all local detailed features and the accuracy still has
room to improve. In the future, we plan to study more geometric characteristics of the point
cloud to improve the feature extraction performance and explore more prior knowledge of
point cloud geometric information to promote the learning of the backbone network.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Explanation
CNN convolutional neural network
(C)MLP (combined) multilayer perceptron
GAN generative adversarial network
Conv convolution
FC fully connected
CD Chamfer distance
IFPS iterative farthest point sampling
MA mean per-class accuracy
OA overall accuracy
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