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Abstract: Nonlinear functions are widely used as activation functions in artificial neural networks, 

which have a great impact on the fitting ability of artificial neural networks. Due to the complexity 

of the activation function, the computation of the activation function and its derivative requires a 

lot of computing resources and time during training. In order to improve the computational effi-

ciency of the derivatives of the activation function in the back-propagation of artificial neural net-

works, this paper proposes a method based on piecewise linear approximation method to calculate 

the derivative of the activation function. This method is hardware-friendly and universal, it can 

efficiently compute various nonlinear activation functions in the field of neural network hardware 

accelerators. In this paper, we use least squares to improve a piecewise linear approximation calcu-

lation method that can control the absolute error and get less number of segments or smaller average 

error, which means fewer hardware resources are required. We use this method to perform a seg-

mented linear approximation to the original or derivative function of the activation function. Both 

types of activation functions are substituted into a multilayer perceptron for binary classification 

experiments to verify the effectiveness of the proposed method. Experimental results show that the 

same or even slightly higher classification accuracy can be achieved by using this method, and the 

computation time of the back-propagation is reduced by 4–6% compared to the direct calculation of 

the derivative directly from the function expression using the operator encapsulated in PyTorch. 

This shows that the proposed method provides an efficient solution of nonlinear activation func-

tions for hardware acceleration of neural networks. 
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1. Introduction 

In recent years, various artificial neural networks (ANNs) accelerators have emerged, 

including hardware accelerations for convolutional neural networks [1–3], and trans-

former [4–6], which all involve the implementation of activation functions, however, these 

accelerators are basically oriented to the inference only, and there are only a few acceler-

ators for training tasks, such as [7,8]. Above work either uses simple activation functions, 

such as ReLu, whose derivatives is also simple, or skip the calculation of the derivative of 

the activation function. The calculation of the derivative of the activation function is often 

one of the difficult points in the training task of ANNs. Most of the activation functions 

are complex transcendental functions, such as sigmoid, swish [9], and softplus [10], which 

provide nonlinear fitting capability for ANNs, and their derivative calculations involve 

not only derivative operations, but also complex transcendental function calculations. 

Therefore, it is necessary to optimize the calculation of the derivative of the activation 

function. 

Similar to the way many accelerators implement the activation function, this paper 

uses a piecewise linear(PWL) approximation method, which requires only one multiply-
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add to calculate the derivative of the activation function. Activation function can be di-

vided into two types: (1) the derivative function can be represented by the original func-

tion, such as sigmoid:, � = 1 / �1 + ���(−�)�, whose derivative function �� = � (1 − �); 

(2) the derivative function can’t be expressed by the original function, such as softplus: 

� = ��� �1 + ���(�)�, swish: � = � / �1 + ���(−�)�. For the first type of activation func-

tion, the original function value is first calculated using the PWL approximation method, 

and then the derivative value is calculated indirectly, meanwhile, analyze the transfer er-

ror, while for another type of activation function, the derivative function is fitted directly 

using a PWL approximation method. Then, we add the function obtained by approxima-

tion to the neural network in the form of a custom activation function and complete the 

training test task. In the following, the background knowledge of neural network training 

and the development of PWL approximation algorithm are briefly introduced. 

The training of ANNs is done by adjusting the parameters of the hidden and output 

layers so that the results computed by the network are as close to the real ones as possible. 

The training process consists of two parts: forward propagation and backward propaga-

tion [11]. In the forward propagation process, the training data is computed through the 

weights, bias, and activation functions to obtain the hidden layer, and the hidden layer 

gets the next hidden layer through the weights, bias, and activation functions of the next 

level, and the output vector, usually the classification result, is finally obtained after layer-

by-layer iteration. 

The basic principle of back-propagation is that the loss function is first calculated 

based on the forward propagation output and the label, and then some optimization 

methods such as gradient descent are used to calculate the bias derivative of the loss func-

tion for each weight and bias by the chain rule, the effect of the weight or bias on the loss 

function, and finally the weights and biases are updated. According to [12], the process of 

calculating the bias derivatives by the chain rule is actually done by constructing the Ja-

cobi matrix of each layer and then calculating the vector Jacobi product (VJP), where the 

activation function layer is a point-wise layer and its Jacobi matrix is a diagonal matrix, in 

practice, it is more efficient to calculate the VJP directly. 

PWL is popular in the field of transcendental function approximation calculations 

due to its computational efficiency and memory friendliness. Many PWL algorithms have 

been proposed, and the core idea is the trade-off between the number of segments and 

accuracy, since more segments means more storage space is required. Frenzen et.al [13] 

studied the number of segments required for approximation calculations of various com-

monly used functions. The development of segmentation algorithms can be broadly sum-

marized as follows: uniform segmentation, non-uniform segmentation, and adaptive seg-

mentation. Initially, PWL basically used uniform segmentation, and [14] implement the 

approximate computation of log functions in hardware based on uniform segmentation. 

Obviously, uniform segmentation has great limitations, and the error gap is large for dif-

ferent functions and different segments. So non-uniform segmentation is proposed, and 

[15] propose a non-uniform segmentation approach to approximate the fit of the ��� 

function, and it divides the whole interval of independent variables into 15 segments and 

more segments near the zero point to improve the computational accuracy. This approach 

is still not accurate enough and cannot be extended to other functions. 

Recently, the segmentation algorithm gradually tends to a general way with con-

trolled error and fewer segments, [16] propose a method to determine the segmentation 

points based on the second-order derivatives, it holds that the second-order derivatives 

reflect the degree of concavity of the function curve, and more segments should be di-

vided where the absolute value of the second-order derivatives is large, this work can 

make the �� error below 10�� with 64 segments, however, the obvious drawback is that 

it needs to calculate the 2/5th power of the second order derivative and introduces an 

integration operation, which makes it difficult to calculate segmentation points. In [17], 

S.R. Chiluveru et al. use the least squares method to approximate the transcendental func-

tion and iterate over the input interval to find the interval that satisfies the error 
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requirement, however, the method is proposed for continuous intervals and needs im-

provement in hardware implementation. A general PWL method with controllable abso-

lute error is proposed in [18], which determines the slope and intercept of the fitted line 

by the starting and ending points of the subinterval, and moves the line vertically to con-

trol the maximum absolute error. To the best of our knowledge, it is state of the art. On its 

basis, we use the least squares method, instead of simply using the subinterval start and 

end points, to determine the slope and intercept of the fitted straight line, which means 

that all points within the subinterval are taken into account. Experiments show that the 

improved method, in specific cases, yields a smaller average error or a smaller number of 

segments. We call the method PWLMMAE (Piecewise Linear Minimize Maximum Abso-

lute Error) and will describe it in detail in the next section. 

To summarize, this paper focuses on the computation of the derivative values of the 

activation function for back-propagation in ANNs training tasks and makes the following 

contributions. 

1. We use least squares to improve a general, error-controlled PWL approximation 

method to obtain fewer segments or smaller average errors, and then extend it to the 

calculation of various activation functions and their derivatives. 

2. We evaluate the applicability of the method in neural networks in terms of conver-

gence speed, generalization ability, and hardware overhead. 

3. We replace the derivative calculation in the neural network training task with pro-

posed method and verified its effectiveness on a three-layer perceptron: our method 

reduced the backpropagation computation time by 4–6% with the same or even 

slightly higher classification accuracy. 

2. Methods 

In this section we first describe the flow of the PWLMMAE algorithm and then apply 

it to two typical activation functions and analyze their errors. 

2.1. PWLMMAE 

Similar to [19–21], the core idea of the algorithm is to determine the subinterval 

straight line by least squares, then calculate the maximum absolute error between the line 

and the real curve, and find the maximum absolute error less than the predetermined 

error through continuous iteration, the steps of the algorithm are as follows. 

2.1.1. Input Range Discretization 

Considering the hardware implementation, the input range should be discretized. 

For a given input interval [M, N], the input � should be defined as a vector 

�  =  �(1: ���) = �, � +
1

2�
, � +

1

2�
, … , � (1)

where Q is the number of fractional bits setting in hardware and NUM is the length of the 

vector. 

2.1.2. Minimization of MAE for a Given Width of Subinterval 

The slope b and intercept a of the subinterval approximation line are first calculated 

using the least squares method by Equations (2) and (3), and we can use ℎ�(�) to represent 

the approximation line. 

�� + � � ��

�

���

=  � �(��)

�

���

 (2)
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���

+ � � ��
�

�

���

=  � ���(��)

�

���

 (3)

where n is the number of discrete points in the subinterval, � ∈ (�: �), 1  ≤ �  ≤ �  ≤ ���, 

then, the objective function is denoted by �(�), so the error vector can be expressed as 

Equation (4) 

� = ���(�: �)� − ℎ���(�: �)� (4)

The corresponding ��� can also be calculated as 

��� = { |��� (�)|, |���(�)| } (5)

2.1.3. Segmentation Points 

To obtain the maximum segmentation interval, we determine the segmentation 

points from right to left. Initially, we set ����� = �(1), ��� = �(���), then perform 

the PWL method on �(�����: ���) to calculate MAE by Equation (4). if ��� < �� , 

where ��  is a predefined error, approximation succeeds; otherwise ���  =  ���  −  1 

and repeat above step. Once approximation succeeds, we will update ����� and ��� 

to find the next subinterval, where ��� < ��. The values of ����� and ��� record the 

segmentation points. This process is shown in Figure 1, and the flow chart of the whole 

algorithm is as Figure 2. 

 

Figure 1. This figure shows the process how to modify the i th segment to meet the error require-

ment. The direction indicated by the arrow represents the direction of the update of the end point. 

2.2. PWL Approximation to Derivatives 

We choose two typical activation functions, one is sigmoid and the other is softplus, 

and approximate their derivatives separately setting �� = 0.001. 

For sigmoid, its function expression and derivative expression are as follows. 

�  =  
1

1 +  ���
 (6)

��  =  � (1  −  � ) (7)

We use PWLMMAE to fit its original function and then calculate its derivative by 

Equation (6). Here, we need to consider the problem of error transmission. When fitting 

the original function, we can control the absolute error below ��, and this error will be 
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transmitted to the derivative with Equation (7). According to the error propagation law, 

the error of derivative can be expressed as 

���  =  (1  −  2�)�� (8)

In Equation (8),  δ�  is the original error that is smaller than ��, and � ∈ (0,  1), so 

that we can find that this calculation does not enlarge the absolute error of the derivative, 

��� . It’s also smaller than ��.The same problem will happen to the tanh function, the dif-

ference is that the error of derivative of tanh will be enlarged to twice of the original error, 

however its effects is marginal, and we can still control the error of its derivative within a 

predefined value. The reason why we do not use PWLMMAE to fit the derivatives directly 

is that the above approach can simplify both the calculation of the original function in 

forward propagation and the derivatives in backward propagation with controlled errors 

and no increase in hardware area. 

 

Figure 2. PWLMMAE flow chart. 

For softplus, its function expression and derivative expression are as follows. 

� = �� �(1 + ��) (9)

��  =  
��

1  +  ��
 (10)

We fit its derivative function directly using PWLMMAE, so there is no need to con-

sider the error transfer. Figure 3 shows the approximation of the derivative of softplus 

and sigmoid. We can find that the max absolute error in the derivative of sigmoid is ex-

panded by a factor of two. 

3. Experiment 

In this section, we first perform comparison experiments of PWL methods. Then, we 

perform binary classification experiments on a three-layer perceptron, in which we eval-

uate the suitability of the PWLMMAE algorithm for implementing derivatives of the 
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activation function in three ways. Finally, we compare the classification accuracy and 

computational speed of our method with the operator encapsulated in PyTorch. 

3.1. Experimental Setup 

In the first part, we approximate the two typical activation functions, sigmoid and tanh, 

and compare with [18]. In the binary classification experiments, we use the ionosphere 

dataset [22]. We replaced the activation layers in the network with our own implementa-

tion of sigmoid and softplus, respectively. For comparison, we implemented two versions 

of each activation function, one version using the PWLMMAE and the other version using 

operators such as torch.exp, torch.log in PyTorch. To determine the interval, we counted 

the input distribution of the activation layers in the network several times, as shown in 

the Figure 4, which allows us to determine the input range as (−15, 15), and for the very 

few inputs that are not in that range, we use the nearest segment linear approximation 

when calculating the derivatives. 

(a) (b) 

Figure 3. (a) approximation of derivative of softplus. (b) approximation of derivative of sigmoid. 

 

Figure 4. Distribution of inputs for each activation layer. 



Electronics 2023, 12, 267 7 of 11 
 

 

3.2. Segment Approximation Comparison 

We conduct comparison experiments for the sigmoid function and tanh function at 

different maximum absolute errors, respectively. The experimental settings and results 

are shown in the Table 1 below. The input range of the sigmoid function is set to (−15, 15), 

while the input range of the tanh function is set to (−4, 4), beyond which the values of the 

two functions converge separately. The fraction bit width Q is set to 4 bits. The preset 

maximum absolute errors are set for two sets, ��  =  0.001 and ��  =  0.0005. As can be 

seen from the Table. 1for the sigmoid function, our method is able to obtain a smaller  
�� (average error) with a reduced number of segments when ��  =  0.001, and for the 

tanh function, a significant reduction in the number of segments is achieved when ��  =

 0.0005. 

Table 1. Segment Approximation Comparison. 

Function Input_Range Q �� Method �� NO. of Segment 

sigmoid (−15,15) 4 

0.001 
[18] 4.65 x 10-4 21 

This 3.96 x 10-4 20 

0.0005 
[18] 2.61 x 10-4 29 

This 2.16 x 10-4 29 

tanh (−4,4) 4 

0.001 
[18] 5.00 x 10-4 30 

This 4.94 x 10-4 31 

0.0005 
[18] 2.39 x 10-4 52 

This 2.61 x 10-4 46 

3.3. Evaluate PWLMMAE 

According to [23], there are three criteria for selecting the implementation of the de-

rivative of activation function: (1) speed of convergence, (2) capability of generalization, 

and (3) hardware overhead and speed. In the following, we will evaluate the suitability of 

the PWLMMAE algorithm for implementing the derivative of the activation function in 

terms of these three aspects. 

3.3.1. Speed of Convergence 

As can be seen from Figure 5, the loss decreases rapidly in the first 50 epoch. After 

the same number of epoch, the network using the PWLMMAE method has a smaller loss 

value. In the last 50 epochs, loss decreases slowly and tends to converge. The sigmoid, 

softplus functions implemented using the PLWMMAE algorithm converge faster than sig-

moid, softplus function encapsulated in PyTorch. 
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(a) (b) 

Figure 5. Comparison of the convergence speed of the activation function implemented using the 

PWLMMAE algorithm and the activation function encapsulated by PyTorch. (a) Comparison of the 

convergence speed of softplus. (b) Comparison of the convergence speed ofsigmoid. 

3.3.2. Capability of Generalization 

We use the confusion matrix and the F-score to evaluate the model. The Tables 2 and 

3 below shows the macro precision macro-p, macro recall macro-R and macro-F1 calcu-

lated from the confusion matrix of 100 training, testing. The model using this method has 

a very small drop in macro-F1 compared to the model using the PyTorch activation layer, 

which means that using our method does not significantly reduce the generalization abil-

ity of the model. 

Table 2. Evaluate sigmoid. 

Activation Function Macro-P Macro-R Macro-F1 

sigmoid-PyTorch 0.90195 0.82159 0.85989 

sigmoid-PWLMMAE 0.90438 0.81338 0.85647 

Table 3. Evaluate softplus. 

Activation Function Macro-P Macro-R Macro-F1 

softplus-PyTorch 0.92694 0.79302 0.85477 

softplus-PWLMMAE 0.91681 0.80705 0.85844 

3.3.3. Hardware Overhead and Speed 

It is obvious that only one multi-add operation is required to complete a derivative 

calculation using PWLMMAE. In [18], by designing the indexing circuit properly and us-

ing pipelining, it just takes one clock cycle to complete one derivative calculation and the 

hardware area is significantly better than other PWL methods. In addition, we study the 

accuracy of the input interval discretization, i.e., the bit width of the fractional part of the 

hardware implementation. In the hardware implementation of neural networks, aggres-

sive reduction of the data bit width can reduce the storage and operation overhead to a 

great extent [24], and for PWL approximation, it can also reduce the number of segments 

and reduce the storage overhead. As shown in the Table 4 below, when the bit width is 

reduced, the corresponding predefined maximum error �� changes to accommodate the 

max precision that can be represented by the bit width. For the sigmoid function, the clas-

sification accuracy of the neural network decreases when the bit width of the fractional 
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part is reduced, while for the softplus function, this does not occur. We analyze the reason 

is that in the custom implementation of both activation functions, the sigmoid original 

function is approximated, while the derivative function of the softplus function is approx-

imated, which means that the value of its original function is still exact. 

Table 4. effect of bit width of data on classification accuracy. 

Function Q(Bits) �� Acc Average NO. of Segment 

Sigmoid 

2 0.25 87.27 2 

3 0.125 88.93 3 

4 0.0625 89.82 3 

Softplus 

2 0.25 90.10 2 

3 0.125 90.01 3 

4 0.0625 90.19 3 

3.4. Performance Comparisons 

We train the network 100 times and count the average backward time during train-

ing, while verifying the results of each training on the test dataset and recording the Dis-

tribution of inputs for each activation layer classification accuracy. The Backward time 

refers to the time used to take the reverse derivative from the loss function and update the 

weights of each layer, which is called back-propagation. From the Table 5, we can see that 

our method can reduce the backward time by more than 4% for the sigmoid function and 

about 6% for the softplus function, while guaranteeing almost no impact on the classifica-

tion accuracy. 

Table 5. evaluate sigmoid. 

Activation Function Accuracy Backward Time(s) 

Sigmoid-PyTorch 90.00 2.031 

Sigmoid-PWLMMAE 89.82 1.935 

Softplus-PyTorch 89.91 2.139 

Softplus-PWLMMAE 90.19 2.005 

4. Conclusions 

This paper focuses on the calculation of nonlinear activation functions in ANNs. We 

propose a generalized, error-controlled PWL approximation method PWLMMAE using 

least squares, which is capable of obtaining smaller average approximation errors with 

fewer segments. This method can calculate the approximate calculation of any nonlinear 

function quickly with less hardware resources. We explore the possibility of applying this 

method to neural network hardware acceleration and use it to calculate the derivative 

values of the activation functions in the neural network training task. We first evaluate 

the applicability of the method in ANNs in terms of convergence speed, generalization 

capability, hardware area and speed. Experimental results show that the activation func-

tion implemented using the method is almost indistinguishable from the activation func-

tion encapsulated in PyTorch and is capable of performing well. Finally, we compare the 

accuracy, back-propagation computation time of the activation function implemented by 

this method and PyTorch operator on the test dataset, and our method reduces the back-

propagation computation time by 4–6% with the same or even slightly higher classifica-

tion accuracy. Based on the above experiments, it can be seen that the proposed approxi-

mate calculation method is suitable for the hardware acceleration of ANNs, including rea-

soning and training. However, running the algorithm at the software level is limited by 

the indexing time when calculating the derivatives, and we have only experimented on a 

three-layer perceptron, future work will see us apply the method to larger-scale networks 

and complete the hardware implementation. 
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