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Abstract: The insufficient amount of sample data and the uneven distribution of the collected data
across faults are key factors limiting the application of machine learning in power transformer fault
warning, as demonstrated by the poor adaptability of the established data-driven models under
actual operating conditions. In this paper, an unsupervised and supervised learning method is
designed for power transformer fault early warning based on electrical quantities and vibration
signals. The method is based on the Fourier levels of transformer vibration signals under different
electrical conditions measured in the field, and the vibration features are clustered according to
their intrinsic properties by means of a spectral clustering algorithm. A decision tree model of the
vibration characteristics under each cluster is then constructed to calculate early warning values for
the transformer vibration spectrum under different electrical conditions, enabling the assessment of
transformer production variability. The above process, which is based on field measurement data
and data mining analysis methods, is cheaper than the existing transformer fault warning techniques
at home and abroad and makes better use of information and training models.

Keywords: transformer vibration; spectral clustering algorithm; decision trees; vibration characteristics;
fault warning

1. Introduction

Fault-warning technology based on the online monitoring of vibration signals can find
early faults in transformers in a timely and effective way. This is an important function in
substations and power inspections, and it is also very important for preventing sudden
and large power outages caused by poor operating conditions of transformers, which can
even lead to accidents such as explosions and fires [1–5].

Fault warning tasks usually consist of two phases: offline modeling and online moni-
toring. In the offline modeling phase, a transformer operating mechanism model is trained
using a section of normal data to determine the boundaries of the normal data; for online
monitoring, if the data to be detected exceeds the established boundaries, there is a high
probability that a fault has occurred in the transformer in that operating condition [6]. With
the concept of the ubiquitous power IoT, various sensing and monitoring technologies have
been rapidly developed, and the transformer vibration signal data have gradually shown
big data characteristics such as large volume, high dimensionality, and fast growth, while
traditional diagnosis technology has problems of low efficiency and high cost. Therefore,
data mining and analysis based on actual operating conditions and the construction of
low-cost, generalized transformer condition identification and fault early warning models
are of great importance to ensure the stable operation of power systems and a quality
power supply. The laboratory-based vibration test platform is a common method used
by scholars at home and abroad to study transformer fault early warning [7]. In [8], a
110 kV power transformer that was producing GDR II warnings underwent a number of
electrical and chemical tests in order to be examined for defects. In [9], for the modeling
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and real-time application of fault diagnosis within the transformer, a single-phase, 600 VA,
220/110 V, 50 Hz transformer was employed in the lab. However, in actual engineering,
transformer state change is often the result of an accumulation of weak faults; state change
is a gradual process, and with many transformer models and complex structures, most
studies can only be carried out under limited conditions to simulate the special vibration
situations of transformers, so data-driven models trained based on laboratory-established
fault samples are not sufficiently adaptable to perform at some sites.

On the other hand, international researchers in the field of power transformer defect
warning have focused a lot on data-driven models, such as artificial neural networks,
support vector machines, random forests, and principal component analysis, to solve
these problems better [10–13]. In [14], a training technique for deriving rules from a func-
tionally approximated ANN utilizing the concentration of dissolved gases in transformer
oil as the input is suggested in order to implement fault warning and defect diagnostics
in transformers using artificial neural networks. However, the synchronization of the
model parameters can be difficult to control and operates slowly for the neural network
approach; in contrast, the defect warning strategy based on the SVM algorithm operates
quickly and accurately. In [15], in the SVM-BA optimized SVM model for oil-immersed
transformers, the kernel function and penalty margin are integrated with the Gaussian
classifier. However, supervised learning algorithms such as these have a strong reliance on
the completeness of sample information, and monitoring data in real industrial settings
often lacks appropriate data labels. Unsupervised learning and semi-supervised learn-
ing can be applied to condition monitoring data where fault data are scarce or lacking
in labels [16]. In [17], to handle the challenging cases that are largely unclassifiable by
Duval’s triangles, a novel DGA diagnostic method based on the K-means method with an
enhanced KNN cumulative voting mechanism was created. This method is appropriate
for the early warning of transformer defects. In [18], to analyze and process transformer
DGA data, the upgraded FCM algorithm is employed, significantly resolving the issue of
classic clustering methods not performing as expected in tasks requiring transformer defect
warning and diagnosis.

The number of faulty samples is very scarce, which in turn leads to an uneven distri-
bution of the actual equipment data set. When machine learning methods are applied to
such unbalanced samples, the training model is biased towards the majority class and does
not perform well for the minority class. Therefore, a good number of samples is a necessary
condition for ensuring that the above machine learning algorithms produce models that
work well in real life.

Based on the above analysis, the data mining concept is used in this paper to study
the vibration characteristic values of transformers under different operating conditions
based on the field measurement data of transformer vibration signals and the existing
transformer vibration mechanism model of power quality. Firstly, a spectral clustering
algorithm is used to cluster the transformer vibration signal data set to achieve the division
of the field-measured transformer vibration signal into working conditions. A decision tree
model is then constructed to analyze the vibration characteristics of the transformer during
harmonic current, light load, heavy load, and three-phase unbalanced current operation.
The method establishes a direct link between the transformer’s operating state and each
of its amplitude and frequency characteristic quantities. It also gives a way to keep track
of the transformer’s state and warn of problems using vibration signals during gradual
state changes.

2. Model Selection and the Basic Algorithm Flow
2.1. Transformer Vibration Mechanism Model Based on Electrical Quantities

To comprehensively and accurately analyze the vibration propagation characteristics
of transformers, two types of electrical quantities, namely transformer voltage and current,
need to be taken into account, and the vibration sources need to be located based on the
different characteristic electrical quantities. Therefore, this paper chooses typical power
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quality problems in the grid, such as voltage distortion, harmonic current, and three-phase
unbalance, and rebuilds the vibration propagation mechanism model with different types
of electrical quantities that can reflect the load variation of a light load and a heavy load.
This shows the relationship between electrical quantities and vibration signals, as shown in
Figure 1.
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2.2. Electrical Quantity-Based Transformer Vibration Fault Warning Process

The two stages of the algorithm development process are feature extraction and
algorithm identification. The creation of a complete defect warning mechanism follows the
construction of a transformer vibration feature model for each operating situation and the
establishment of alarm thresholds. Figure 2 depicts the big picture.
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3. Clustering of Transformer Vibration Signal Feature Quantities
3.1. Principle of the Spectral Clustering Algorithm

Spectral clustering (SC) is one of the typical representatives of modern clustering algo-
rithms based on graph theory, which inherits the traditional algorithm idea and combines
it with graph theory optimization theory, greatly improving the universality of clustering
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algorithms. In power systems, spectral clustering has been widely used in areas such as
black start, load classification, and ultrashort-term wind speed prediction [19].

The essence of spectral clustering is to transform the clustering problem into a graph
optimal partitioning problem, which is a method of cutting the graph based on matrix
eigenvectors and according to the edge weights between vertices [20]. The basic idea of
spectral clustering is to treat the original data set to be processed as an undirected weighted
graph in space G(V, E), which is the set of data points in the dataset V = (V1, V2, · · · , Vn),
the set of vertices in the undirected weight graph, and the set of edges. Most spectral
clustering algorithms use the fully connected (FC) method to construct the adjacency matrix
W, where the element values in the matrix represent the degree of similarity between the
data points. Use the Gaussian kernel function RBF in FC to define the edge weights between
any two points:

Wij =

exp
(
− ‖vi−vj‖2

2
2σ2

)
, i 6= j

0, i = j
(1)

where vi, vj are any two sample points of the data set V, and σ is a fixed scale parameter in
the Gaussian kernel function.

The degree of a vertex is the sum of the connection weights of that vertex and other
vertices, and using the definition of the degree of each data point, the degree matrix can
be obtained, D. This gives the Laplacian matrix, also known as the Kirchhoff matrix, as a
matrix representation of the graph:

L = D−W (2)

Dividing the data set into problems by introducing indicator variables translates into
solving the optimal indicator vector matrix H, solving the problem of difficult NPs in the
optimal division of the atlas. The k-class normalized tangent diagram can be transformed
into the following model: {

min
H∈Rmxk

Tr(HT LH)

s.t HT DH = I
(3)

where Tr is the trace of the matrix and H is the vector matrix. Model (3) is a standard prob-
lem for minimizing the trace. According to the Laplace matrix property, this optimization
problem can be transformed into finding the minimum first k eigenvalues of D−1/2LD−1/2

and normalizing the corresponding eigenvectors to obtain the final eigenmatrix F. The
clustering result is obtained by performing K-means clustering on the eigenmatrix F.

3.2. Extraction of Amplitude–Frequency Characteristic Quantities of Transformer Vibration Signals

For experimental investigation, the vibration signals of a 10 kV three-phase wound
transformer were recorded under four different operating conditions: harmonic current,
light load, heavy load, and three-phase unbalance. Three sets of vibration signals were
recorded for each condition. Each experiment used 40 sets of data with a 200 ms time
window, each of which was divided into 60 s of recorded data at a 10 kHz sampling rate.
In order to acquire the amplitudes of the harmonic components of transformer vibration
from 50 Hz to 2400 Hz, with 50 Hz as the fundamental waveform, for a total of 48, a fast
Fourier transform was carried out on each 200 ms window of vibration time domain data.
The results are presented in Figure 3.
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The following matrix is produced by the Fourier transform using the time domain
data for each set of 40 windows.

CFea = [C1, C2, · · · , Cn, · · · , C40] (4)

In Equation (4), the matrix CFea represents different types of electrical quantities, such
as harmonic currents, etc. The vector Cn is the Fourier transform amplitude information for
the nth vibration time domain data window, n ∈ [1, 40], as shown in Equation (8) below.

Cn = [cn−1, cn−2, · · · , cn−m, · · · cn−48] (5)
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In Equation (5), Cn−m is the amplitude of each vibration harmonic component corre-
sponding to the amplitude–frequency curve in Figure 3, i.e., the nth vibration harmonic
amplitude of the mth time window.

3.3. Extraction of Amplitude–Frequency Characteristic Quantities of Transformer Vibration Signals

The spectrum data of four different transformer vibration signals—harmonic, light
load, heavy load, and three-phase unbalance—obtained following FFT processing, with
a total of 440 groups, are pooled as the sample data set in this study after their operating
condition labels have been removed. The shape of the distribution of the data samples
in space is observed by means of a scatter plot. In unsupervised learning, the principal
component analysis (PCA) algorithm is used to “downscale” the data set. This maps the
high-dimensional data to the low-dimensional space, which allows one to see how the
sample data set is distributed in the low-dimensional space.

The shape of the sample distribution shown in Figure 4 reflects the fact that the
sample data set is nonconvex and irregularly distributed in space. Noisy data and local
optimal solutions can make it difficult to find similarity measures and iterate them through
Euclidean distances, Manhattan formulas, Jaccard coefficients, and so on when working
with these kinds of data sets.
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Two algorithms, K-means, and fuzzy clustering [21] are popular unsupervised learning
algorithms in data mining analysis and are widely used in image processing, material
exploration, and simulation prediction.

Three different data sets taken from transformer vibration signals at 50 Hz−400 Hz,
50 Hz−1250 Hz, and 50 Hz−2400 Hz were used to test the clustering effects of three
algorithms: spectral clustering, K-means, and FCM.

As a point of comparison, a cluster count of 4 in the horizontal coordinate was used
because the elbow approach revealed that the ideal number of clusters for the transformer
vibration spectrum data set was 4. As evaluation markers of the clustering effect, the
Davies–Bouldin index (DBI) and the silhouette coefficient were employed. The better the
clustering effect, the closer the similar samples are to one another and the further apart
the different samples are from one another; on the other hand, the better the clustering
effect, the smaller the value of DBI, the closer the similar samples are to one another, and
the farther apart the different samples are from one another.

Combining Figure 5 and Table 1, the following conclusions can be drawn.
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Table 1. Comparative metrics of clustering effects of different algorithms.

Algorithm Data Set Dimension Silhouette Coefficient Davies–Bouldin Index

Spectral clustering 8 0.7870 0.4466
K-means 8 0.8100 0.2840

FCM 8 0.7241 0.3577
Spectral clustering 25 0.8342 0.3430

K-means 25 0.7791 0.3429
FCM 25 0.6718 0.3933

Spectral clustering 48 0.9267 0.1548
K-means 48 0.6876 0.3960

FCM 48 0.6765 0.4989

1© The performance of the spectral clustering method eventually surpasses that of the
K-means and FCM algorithms as data amount and dimensions rise.

2© A comparison of the contour coefficients of the three clustering algorithms under
different categories is given in Figure 5a. For all three algorithms, the maximum value of
the silhouette coefficient is taken at a cluster class number of four. When there are few
cluster classes, the values of the spectral clustering algorithms’ silhouette coefficients are
all higher than those of the K-means and FCM algorithms.

A comparison of the DBI of the three clustering algorithms for different classes is given
in Figure 5b. The spectral clustering algorithm takes the least value of DBI at a cluster class
number of four. When there are few cluster classes, the spectral clustering algorithm’s total
DBI values are lower than those of the K-means and FCM algorithms.

In summary, for the spectral dataset of transformer vibration signals, the spectral
clustering algorithm can better measure the similarity between vibration spectrum data
and has a better clustering effect and stability.

4. Decision Trees

As a top-down supervised learning classification algorithm, the inherent characteristics
of the decision tree algorithm make it insensitive to the true or nonlinear characteristics of
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the data, taking into account the interactions between variables while also providing a clear
and intuitive representation of the relationship between logical labels and feature vectors in
the form of a tree diagram, enhancing the mapping relationship between vibration features
and transformer operating conditions. So, using decision trees to build a classification
model for transformer operating conditions can help make the analysis of data after spectral
clustering clearer and more accurate [22].

In this paper, a decision tree algorithm with information entropy and information gain
as splitting rules is used [23]. The type of working condition is used as a category attribute,
and other relevant factors, such as the amplitude of vibration harmonics components from
50 Hz to 2400 Hz, are used as non-category attributes to construct a transformer fault
warning decision tree. The specific steps are as follows:

Step 1: Determine the sample set D. The collected transformer vibration harmonic
component amplitudes from 50 Hz to 2400 Hz and the working condition category are
composed into a complete sample so that a large amount of actual data can form the
sample set.

Step 2: Calculate the sample information expectation. The sample information entropy
is calculated using Equation (6).

Ent(D) = −∑ |Dn |
i=1 p(Ai) log2 p(Ai) (6)

In Equation (6): D is the sample data set; |Dn| is the total number of transformer oper-
ating conditions types; Ai is the amplitude of the harmonic component of the transformer
vibration from 50 Hz to 2400 Hz for working condition type i; and p(Ai) is the number of
samples with condition type i as a proportion of the total number of samples.

Step 3: Calculate the information gain for each non-category attribute. In this sample
data set, there are 440 values of the non-categorical attribute K. According to the value
of this attribute, the sample set of transformer condition categories can be divided into
440 parts, and the following formula is used to calculate the information gain of each
non-categorical attribute.

EntK(D) =
440

∑
l=1

|Dl |
|D| × Ent(D) (7)

Gain(D, A) = Ent(D)− EntK(D) (8)

In Equation (8), where there are N values of the eigenvalue A:
∣∣DN

∣∣ is the N branch

containing all samples with value A on AN in the sample data set D; and |D
N |
|D| is the weight

of the N branch node.
Step 4: Select the split property node. For the non-class attributes, the amplitude of

each vibrational harmonic component of the transformer from 50 Hz to 2400 Hz is calculated
according to the method shown in Step 3, the sample information gain corresponding to
each attribute is determined, and the non-class attribute with the greatest gain is selected
as the split node.

5. Experimental Analysis

To ensure the homogeneity of the test samples, the spectral amplitudes of the samples
after FFT and removal of the working condition labels and merging were normalized using
a linear transformation.

Xnorm =
X− Xmin

Xmax − Xmin
(9)

where Xmax and Xmin are the maximum and minimum values of the spectral amplitude in
the sample, respectively.

The vibration spectrum data set obtained after the normalization transformation was
spectrally clustered to obtain four different types of vibration cluster classes. The results
are shown in Table 2.
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Table 2. Statistics of sample points in the cluster.

Cluster Class Number Number of Sample Points

Cluster 1 120
Cluster 2 120
Cluster 3 120
Cluster 4 80

The experimental results show that spectral clustering divides the transformer vibra-
tion signal spectrum data set into four vibration clusters. Based on how the original data
set was put together, the four clusters are called light load, heavy load, harmonic current,
and three-phase current unbalance.

According to the transformer vibration signal clustering thermogram in Figure 6,
the spectrum at odd frequencies such as 50 Hz, 150 Hz, 250 Hz, and 400 Hz is stronger
under the unbalanced three-phase current condition, where the odd frequency component
is caused by the zero-sequence current invasion during the asymmetric operation of the
system. Under harmonic current conditions, the spectrum is higher at 100 Hz, 300 Hz,
400 Hz, and above 1000 Hz for high-frequency harmonic components, as the core mag-
netostriction generates 100 Hz, 200 Hz, and other vibrational harmonics, and harmonic
currents often lead to superimposed harmonic components on the winding amperage.
Under light load and heavy load conditions, the vibration signal is mostly made up of even
frequency components between 100 Hz and 500 Hz. However, under heavy load conditions, the
combination of winding vibration and core vibration caused by a current in the winding will
cause a high frequency vibration component of 1000 Hz or more through nonlinear propagation.
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On the basis of the vibration clusters of each transformer operating condition, the vibration
spectrum amplitude is converted into discrete variables consisting of “low”, “medium”, and
“high” by using the trilateration method. The information gain Gain(D, A400 Hz) = 0.977 pu-
rity of the vibration amplitude at 400 Hz is calculated to be the highest among the 48 vibra-
tion features, so 400 Hz can be used as the root node of the transformer vibration feature
decision tree model. The information gain at 50 Hz and 350 Hz in the second layer is
0.854 and 0.730, respectively, while the information gain at 50 Hz in the third layer is 0.222.
The transformer vibration feature decision tree model is shown in Figure 7.
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In the diagram, H0, H11, H12, H2 represent the amplitude of the vibration spectrum at
400 Hz, 50 Hz, 350 Hz, and 50 Hz, respectively. Among the four transformer operating
conditions reflected in Figure 7—light load, heavy load, harmonic current, and three-phase
current unbalance—the 400 Hz vibration signal amplitude in the light load condition is
relatively low compared to the other three conditions and is therefore first split out at
the root node in the decision tree. When the transformer operating condition satisfies
H0 ≤ 365.12, the transformer is in the light load operating condition.

The three-phase unbalance is divided into high-spectral components at 50 Hz and
350 Hz in the decision tree. Combining the clustering heat map with the mechanism
analysis, the spectral components of odd harmonics such as 50 Hz, 150 Hz, and 250 Hz can
be used as the vibration characteristics of the transformer’s three-phase current unbalance,
i.e., the transformer is in a three-phase unbalanced operation when the transformer opera-
tion state meets 365.12 < H0 ≤ 557.90 at H0 > 557.90, or H0 > 557.90 at H12 > 85.60, or
H0 > 557.90 at 49.63 < H12 ≤ 85.60 and H2 > 115.87.

Although there is a certain 50 Hz vibration component in the heavy load condition, the
difference between the 50 Hz vibration signal amplitude and that in the three-phase unbal-
ance is large, so the heavy load and three-phase current unbalance conditions can be judged
at the 50 Hz leaf node. When the transformer operating state meets 365.12 < H0 ≤ 557.90 at
71.16 < H11 ≤ 115.87 or H11 ≤ 71.16, the transformer is in the heavy load operating state.

This establishes the state classification of the four operating conditions of the trans-
former, as well as the safety thresholds for the 50 Hz, 350 Hz, and 400 Hz spectral com-
ponents for each operating condition. If the range of the relevant state parameters in the
decision tree model built from the collected vibration signals or the state identification
nodes changes, a fault warning is sent out about the transformer’s state.

The transformer vibration signal in two unknown states is acquired for characterization
and combined with the transformer vibration mechanism analysis to diagnose the type
of fault. In the fault state, the voltage, sound field, magnetic field, and other relevant
parameters are measured. The transformer is then modeled and simulated with finite
element simulation software to look at the magnetic field, coil force, and other properties in
this state to see if the above conclusion is correct [24].

Figure 8a,b demonstrate that when the transformer is operated in state 1, the vibration
signal in the original light load state has a significantly higher spectral component at fre-
quencies between 100 and 500 Hz, whereas when the transformer is operated in state 2, the
vibration signal only has a significantly higher spectral component at frequencies between
100 Hz and 200 Hz. The vibration signals produced by the transformer in these two un-
known states result in a decrease in the variability of the vibration characteristics between
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the various clusters in the vibration data set as compared to the vibration characteristics of
the different operating conditions in the transformer’s normal operating state.
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Figure 8c shows that the range of H0, H11, H12, H2 changes to varying degrees in
both unknown states of the transformer, especially in the light load condition where the
spectral components are beyond the normal H0 ≤ 365.12 range. Therefore, the light load
condition in state 1 cannot be directly classified on the basis of the vibration component
characteristics at 400 Hz, but needs to be further determined by the vibration component
characteristics at 50 Hz and 100 Hz to distinguish it from the three-phase unbalance and
harmonic currents, respectively; the root node of the decision tree constructed in state
2 becomes 150 Hz and the light load condition is directly classified according to the
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vibration component characteristics at 150 Hz, which is a very different condition from the
normal operating condition.

In summary, the two unknown states of the transformer are judged to be some kind of
fault in the light load condition, which needs to be dealt with in a fault alarm. The abnormal
vibration of the transformer’s internal silicon steel sheet due to loose screws will cause
a relative increase in magnetostrictive strain values, and the vibration component in the
100 Hz to 500 Hz frequency range generated by the core may increase accordingly. In the
event of a loose winding fault in the transformer winding, the vibration component at
100 Hz will increase relatively due to the dynamic Lorentz force on the winding and will
also increase at 200 Hz, 300 Hz, and other frequencies due to the nonlinear mechanics of the
pad. Therefore, in combination with the change in vibration characteristics and the analysis
of the vibration mechanism, it is assumed that the transformer generates a mechanical fault
in both states.

The magnetic flux density and the magnetostriction of the transformer silicon steel
sheet are strongly correlated; the higher the flux density, the stronger the magnetostriction.
The transformer flux density diagram for both states is shown in Figure 9a. The maximum
value of the main flux density of the transformer in both modes is more than 2.0 T, which
is outside of the normal working range of the transformer. The main flux density of
this transformer is approximately 1.7 T when operating under normal conditions. The
transformer’s stress distribution is depicted in Figure 9b, and the transformer winding
exhibits varying degrees of deformation in both modes. With the study in Figure 9a,b
combined, it is clear that the transformer’s aberrant vibration characteristics in both modes
are caused by internal mechanical flaws.
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The three fault warning models, SVM, KNN and K-means, were trained with empirical
parameters and the test results were compared with the SC−ID3 model and the comparison
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results are shown in Figure 10. According to Figure 10, it can be seen that the SC−ID3
model has the highest recognition accuracy among these four models, and it can also show
good recognition accuracy under the two working conditions of light load and heavy load
where the parameters are more similar.

Electronics 2023, 12, 265 13 of 15 
 

 

 
(b) 

Figure 9. Multiphysical field simulation diagram for two states of the transformer. (a) Magnetic flux 
density diagram. (b) Stress distribution in a transformer fault condition. 

The three fault warning models, SVM, KNN and K-means, were trained with empir-
ical parameters and the test results were compared with the SC−ID3 model and the com-
parison results are shown in Figure 10. According to Figure 10, it can be seen that the 
SC−ID3 model has the highest recognition accuracy among these four models, and it can 
also show good recognition accuracy under the two working conditions of light load and 
heavy load where the parameters are more similar. 

 
Figure 10. Comparison of multiple model recognition results. 

6. Conclusions 
For the transformer vibration signals under different operating conditions, this paper 

has carried out a feature clustering process based on the spectral clustering algorithm to 
obtain four vibration clusters combined with data sets labelled with operating conditions. 
The vibration characteristics under different operating conditions are analyzed by clus-
tering heat maps and building a decision tree model to determine the main information 
sources to distinguish the operating conditions. The following conclusions were drawn 
from the vibration characterization system set up in this paper: 
(1) The actual transformer vibration signals collected usually do not contain a priori in-

formation on obtaining the operating state, and the spectral clustering algorithm can 
achieve objective and accurate classification of each transformer operating condition 
data in the vibration signal spectrum data set. 

(2) The decision tree model of transformer vibration characteristics can be used for the 
early warning of faults under different operating conditions of transformers. At this 
point, however, it is important to build a multiphysical field simulation model of 
electric-magnetic forces to test how well the fault sources have been identified. 

Figure 10. Comparison of multiple model recognition results.

6. Conclusions

For the transformer vibration signals under different operating conditions, this paper
has carried out a feature clustering process based on the spectral clustering algorithm to
obtain four vibration clusters combined with data sets labelled with operating conditions.
The vibration characteristics under different operating conditions are analyzed by clustering
heat maps and building a decision tree model to determine the main information sources
to distinguish the operating conditions. The following conclusions were drawn from the
vibration characterization system set up in this paper:

(1) The actual transformer vibration signals collected usually do not contain a priori
information on obtaining the operating state, and the spectral clustering algorithm can
achieve objective and accurate classification of each transformer operating condition
data in the vibration signal spectrum data set.

(2) The decision tree model of transformer vibration characteristics can be used for the
early warning of faults under different operating conditions of transformers. At this
point, however, it is important to build a multiphysical field simulation model of
electric-magnetic forces to test how well the fault sources have been identified.

(3) Based on the vibration analysis system set up in this paper, the vibration state parame-
ters of power transformers can be analyzed online to determine how the transformers
are working and what their internal health status is. This gives us a new way to
monitor the condition of power transformers and find problems before they happen.
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