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Abstract: A traditional centralized method of training AI models has been put to the test by the
emergence of data stores and public privacy concerns. To overcome these issues, the federated
learning (FL) approach was introduced. FL employs a privacy-by-design architecture to train deep
neural networks utilizing decentralized data, in which numerous devices collectively build any
machine learning system that does not reveal users’ personal information under the supervision of
a centralized server. While federated learning (FL), as a machine learning (ML) strategy, may be
effective for safeguarding the confidentiality of local data, it is also vulnerable to attacks. Increased
interest in the FL domain inspired us to write this paper, which informs readers of the numerous
threats to and flaws in the federated learning strategy, and introduces a multiple-defense mechanism
that can be employed to fend off threats.
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1. Introduction

Currently, as computing devices grow more commonplace due to widespread adop-
tion of technology, people continually create enormous volumes of information. Such data
collection and storage in a centralized storage area is expensive and time-consuming. Con-
ventional processes incorporating AI machine learning (ML) cannot handle such expansive
arrangements and applications due to fundamental problems including constrained band-
width, conflicting organization linkage, and severe inertness constraints [1]. AI is a widely
used approach with many applications, among which two examples are spam sifting and
estimating the value of gaseous gasoline. For these applications, the consistency or security
of the AI framework, especially that of attackers, has been a serious concern. To be more
explicit [2], traditional AI data-processing models frequently utilize basic models of data
transactions in which one side collects and passes data towards the other party, which
cleans and merges the data. The third party would utilize the pooled data to create models.
Models frequently offer finished products or services. The above-mentioned new data
norms and legislation pose obstacles to this old practice. Furthermore, since consumers
may be unsure about the models’ future usage, the transactions breach rules such as the
General Data Protection Regulation (GDPR).

The traditional centralized training of AI models is encountering efficiency and pri-
vacy concerns as data are kept in diverse silos and societies become more conscious of
data privacy risks. In response to this new reality, federated learning (FL) has recently
emerged as a viable alternative approach. This approach educates a system without trans-
ferring datasets across several decentralized endpoints or hosts, and retains local datasets.
This strategy differs from standard centralized machine learning methods, where all local
samples are posted to a single server, as well as more traditional decentralized alterna-
tives, which frequently presume that localized datasets are uniformly distributed. This
enables devices to cooperatively develop common forecasting models while maintaining
all the trained information in the system, sparing machine learning the requirement of
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having to save information in the cloud. This extends the above applications of model
parameters for system prediction. Data privacy and system robustness may be at risk from
existing FL protocol designs that can be exploited by attackers from within or outside the
system. It is crucial to develop FL systems that provide privacy guarantees and are resilient
against many sorts of attackers, in addition to training global models. As the number
of sophisticated computer devices and applications increases, the amount and variety of
information created at the organization’s edge will continue to grow at unprecedented
rates [3,4]. This stream of information is innately decentralized and heterogeneous, and
when amassed, it might incorporate experiences and disclosures with the possibility to
drive logical and mechanical advancement. There are two variants of assaults on machine
learning (ML) methods, namely causal attacks and exploratory attacks. Exploratory attacks
impact learning by influencing training data, and the attack might employ classifications
with any modifying instruction.

However, security threats related to information ownership are swiftly becoming a
concern for the general population. The contention between great administrations and
client protection is producing a need for new exploration and innovation to permit ways to
obtain experiences from information without uncovering private data. However, federated
learning is increased by a configuration that enables a large number of users to maintain
their unique information on their own devices, such as cell phones, while collectively
learning a model by only exchanging local boundaries with the server. A few ongoing
exploration endeavors have shown that FL’s default security is insufficient to shield un-
derlying preparing information against protection spillage attacks through slope-based
remaking.

Federated learning [5,6] is prone to software/hardware faults and adversarial attacks
because of its large-scale and decentralized implementation. Some clients in particular
might become defective owing to software defects or even be hacked during training,
delivering arbitrary or harmful information to the server and substantially reducing the
overall convergence performance. In addition, as seen in [7], federated learning represents
a possibly hazardous plan tradeoff: customers, who were beforehand exclusively latent
information providers, may now observe the middle-of-the-road model state and make
changes as a feature of the decentralized preparation process. This permits malicious
customers to adjust the preparation interaction with negligible limitations. In FL [8],
devices are subject to data and model poisoning assaults in terms of robustness. Malicious
participants may actively undermine the global model’s convergence, alter their local
data (data poisoning) or upload gradients, or install backdoored inputs on the global
model—which is known as model poisoning. Model poisoning threats also be characterized
as: (a) Byzantine assaults, wherein the attacker wants to introduce secret triggers to the
global model to exploit it; and (b) backdoor attacks, in which the attacker desires to
introduce hidden triggers into the global model to exploit it. Recent articles [9] have
established a "gradient inversion attack," which allows an adversary to listen in on a client’s
communications with the server to start reconstructing the client’s sensitive information.

In this study, we have discussed recent improvements for mitigating dangers to FL’s
privacy and their countermeasures. Current attacks are harmful material throughout
the data training set before the commencement of the training procedure, whereas the
training process is considered to be integrity-preserving. As a result, these assaults are
sometimes called data poisoning attacks.[6]. We have provide information about all possible
attacks on federated learning and their defenses by focusing on insider and outsider
attacks, as compared to [2], which only focused on insider attacks. In addition, we discuss
data reconstruction, model inversion, and backdoor attacks, which were not discussed in
[2]. The purpose of reviewing these attacks is to provide knowledge about assaults and
their countermeasures so that one can avoid using these materials. We also present the
taxonomies of attacks and their possible defenses. The report is structured in the following
manner: Section 2 is about the overview of federated learning. In Section 3, different types
of federated learning are discussed. Subsequently, Section 4 provides attacks performed
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on federated learning along with their defense mechanisms. At the end of Section 5, this
approach and its challenges are the addressed in an open discussion.

2. Overview of Federated Learning

In its most basic version, the FL architecture comprises a director or server that or-
ganizes instructive events [10]. FL represents the advent of a new revolution in machine
learning that is employed when training data are dispersed. This enables numerous
customers to construct a shared machine learning technique, despite protecting the confi-
dentiality of their data. This strategy differs from conventional machine learning, which
needs training data to be centralized in a single data center or repository. The fact that FL
can train a model without centralizing client datasets has garnered significant interest in
machine learning. The majority of clients are edge devices which may count in the millions.
These devices connect to the server no less than two times in each training cycle. Clients
receive individual parameters for the current global model from the server, which trains
the global model using their local data. Clients then submit the updated parameters to the
aggregator (server) [11]. This iteration cycle will repeat until either a predefined period or
an accuracy condition is fulfilled. In the federated averaging algorithm, aggregation is an
averaging procedure [12]. That is all there is to FL model training. We hope that the key
element in this procedure is obvious: rather than transferring the original data all around,
model weights are conveyed, as shown in Figure 1.

Figure 1. Federated Learning Architecture [13].

By utilizing participant-provided local training data, FL aids in creating a shared global
model with improved performance [14]. Some of the most significant applications and
rapidly expanding trends in the use of FL in practice include loan status prediction, health
condition assessment, and next-word prediction while typing [15]. FL [16] is a rapidly
expanding field of study because of its decentralized data method and characteristics
relating to privacy and safety that strive to meet the needs of contemporary security in
terms of customer data regulations. On the other hand, it is vulnerable to a variety of
assaults and the training and deployment of the system have been plagued by errors at
every stage [17].

3. Types of Federated Learning

When training an algorithm for machine learning, federated learning—also known
as collaborative learning—allows for devices or servers in the network’s periphery to
work together without exchanging data samples. Federated learning involves numerous
individuals remotely sharing data in order to train a single deep learning model and
iteratively improve it. Both sides obtain their respective models from a cloud-based
datacenter, with the latter often providing a pre-trained foundation model. After training
it on secret information, the model’s updated settings are summed up and encrypted.
The cloud receives the encrypted model updates, decrypts them, takes an average, and
incorporates them into the master model. The collaborative training process is repeated
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again until the model is completely trained. Moreover, the FL framework has several types
that are described in this section.

• Horizontal FL (HFL) : Horizontal FL is appropriate for datasets with the same feature
but located on various devices. HFL is divided into horizontal FL to Horizontal to
business (H2B) and horizontal FL to horizontal to consumers (H2C) . Traditionally,
H2B has a small group of members. They are often chosen throughout FL training.
Participants often have high processing capacity and strong technical skills. hundreds
or perhaps millions of potential participants under H2C. Only a subset of them gets
trained in each cycle.

• Vertical FL (VFL): Different vertical federations employ different feature sets, the
term vertical federated learning can also be abbreviated to heterogeneous federated
learning. When two datasets have the same sample ID space but different feature
spaces, a technique known as vertical federated learning or feature-based federated
learning may be used. In deliberately vertical FL cases, datasets are identical but have
distinct characteristics, as shown in [18]. VFL is primarily directed towards corporate
players. Thus, VFL individuals have similarities to H2B participants [19].

• Federated Transfer Learning (FTL): Federated FTL is similar to classical machine
learning by being used to augment a model that has been pre-trained with a new
feature. However, the descriptions given for federated transfer learning are more
involved, comprising intermediate learning to map to a common feature subspace, as
opposed to the convolutional neural network transfer techniques, which are essentially
dropping the last few layers from a network trained on big data, and then re-tuning
the model to recognize labels on a small dataset [20]. The greatest example would be
to expand vertical federated learning to additional sample cases not available in all
partnering organizations.

• Cross-Silo FL: When the count of participating machines is constrained, they are
available for all rounds, and cross-silo federated learning is employed. The training
architecture for cross-silo FL differs significantly from the one used in an example-
based context. Clients may trade certain intermediate outcomes rather than model
parameters, depending on the details of the training process, to aid other parties’
gradient calculations, which may or may not include a central server as a neutral
party [21]. The training data might be in FL format, either horizontal or vertical.
Cross-silo is often utilized in circumstances involving corporations.

• Cross-Device FL: Cross-device FL is used in scenarios involving a large number
of participating devices. Learning across several user devices using data generated
by a single user is the focus of cross-device configurations. Cross-device federated
learning was first used when Google used GBoard user data to build next-word
prediction models [22]. Client selection and incentive design are two significant
strategies facilitating this sort of FL.

4. FL Attacks and Their Defenses

Machine learning has the potential to be one of the most disruptive technologies in
decades. Almost every business may benefit from artificial intelligence (AI) applications,
and adoption rates reflect a popular belief in the technology’s promise [23]. However, as
machine learning becomes more prevalent, the danger of all forms of assault becomes
increasingly serious [24]. While technologies hold enormous potential for good, their
potential for damage has grown as a growing number of enterprises depend on them.
Attacker want to capitalize on such potential. Attacks against the integrity of machine
learning are increasingly complicated and possibly more dangerous. Figure 2 demonstrates
the different types of attacks on the FL framework.
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Figure 2. Attacks on FL.

The majority of a database is unaffected, apart from an unnoticed backdoor that
allows attackers to manipulate it. The model seems to perform as planned, but with one
catastrophic fault, such as always classifying one file type as innocuous.

4.1. Poisoning Attacks and Defenses
4.1.1. Data Poisoning Attacks and Defenses

Tampering with ML training data creates unwanted results [25]. An attacker will
break into a machine learning database and introduce false or misleading data. As the
algorithm learns from this tainted data, it will reach unanticipated and perhaps destructive
conclusions [26]. This strike can do a lot of damage with very little effort. The major
disadvantage of AI is that its effectiveness is nearly directly related to the quality of its
data. Poor-quality data will give substandard results regardless of how complex the model
is, and history demonstrates that it does not take much to do so [27]. Figure 3 shows the
process of a data poisoning attack.

Figure 3. Data Poisoning Attack.

Adversaries may implant a collection of tainted and infected data during training
to produce a result in categorization at the moment of inference in current poisoning
attacks. There are two categories of poisoning assaults now in use: provision and targeted
attacks [28]. In availability attacks, specific test cases are meant to be mistakenly classified,
and targeted assaults, as outlined in [29], jeopardize the model’s overall accuracy [29]
and are defined in [30] as those that target accessibility and those that target honesty.
Target accessibility is a group in which the enemy is intended to diminish the overall
model performance.

The original target distribution is data poisoning attacks which are broadly classi-
fied into two types: First is clean-label attacks (CLA) [31–33], where the attacker cannot
change the mark of any preparation information, because there is a technique that ensures
that information has a place with the correct class and data sample poisoning must be
unnoticeable. The second type of attack is the use of derogatory labels [13,34] whereby the
attacker might introduce different sample data into the training data to obtain the model to
mistakenly classify the data with the desired target label. Data tampering attacks are open
to all FL participants. Attacks using poisoned data [35] because they deploy a distributed
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type of FL are frequently less successful than model poisoning attempts. The impact of
the FL model depends on how much the backdoor players participate in the attacks and
the extent to which training data have been contaminated [36]. Figure 4 and Table 1 show
different defense mechanisms.

Figure 4. Defense Mechanism for Data Poisoning Attacks.

Defense Mechanism 1: Data sanitization is a well-known security strategy against
data poisoning attacks, in which suspect data are screened away before they enter the
training process. The term data sanitization refers to the act of wiping or erasing information
from a storage medium in such a way that it cannot recover. Even with sophisticated
forensic equipment, once a sensor has been cleaned, there are no repairable data left on it.
Data sanitization is accomplished through complete eradication, cryptography ablation,
and data removal [37]. One of the defenses used in Slab is that of powerful data sanitization
protection against a wide range of threats [38].

Defense Mechanism 2: In paper [39], the authors discussed the addition of an
influence-based defensive method to the slab defense, to lessen the impact of poisoned
data on the learner’s model. The damage that poisoned training data may do to a learner’s
model in a live setting can be mitigated through the use of influence-based protection
measures. A traditional method in robust statistics, namely that of an influence function, is
used in this approach. Additionally, current data sanitization procedures may be used in
conjunction with it to further remove some of the contaminated data. By creating an esti-
mated upper limit on the loss, defense and data-dependent defenses for certified defense
enable the analysis of the oracle [40].

Defense Mechanism 3: In [41], the authors analyzed how the algorithm stochastic
gradient descent which provides robustness against data poisoning attacks. The component
defending against such assaults seeks to identify malevolent members based on the ratio
of the number of the times that the model refreshes to the total number in each round of
learning [42]. SGD is significantly faster than Batch GD because it chooses a "random"
instance of training data at each step and then computes the gradient. Furthermore, other
mechanisms are discussed in Table 1 below.

Table 1. Comparing Defenses used in multiple research papers.

Related Papers Defense Mechanism Model Accuracy

[43]
AUROR 70%
EE-Detection (elliptic envelope) 85%

[44]
Deep k-NN 99%
One-class SVM 37%
Random point eviction 12%

[32]
CONTRA 84%
FoolsGold 79%
Krum 68 %



Electronics 2023, 12, 260 7 of 18

4.1.2. Model Poisoning Attacks and Defenses

The term "model poisoning" describes a variety of tactics used to influence the feder-
ated learning algorithm [45] due to the distributed type of FL, which are frequently less
effective than model poisoning attacks. The FL model’s impact is determined by both the
volume of contaminated training data and the contribution of backdoor players to the
assaults [43]. To degrade the performance of the global model, adversaries may change
the local model gradients, for instance, by lowering the overall accuracy. Direct gradient
manipulation enabled us to set up covert global model backdoors [44]. Rule manipulation
during model training is another. According to several other papers including [45], model
poisoning is explained via model training rules, which is significantly more effective than
model poisoning via data poisoning [46]. Under some circumstances, changing a single
local model may jeopardize the global model. The authors used a complex training rule
adjustment in this example [47]. By adding a penalty component to the objective function,
we effectively close the gap between malicious and benign weight update distributions and
performed a covert targeted model poisoning assault.

Targeted model poisoning, as shown in Figure 5, aims to convince the FL model to
confidently misclassify a particular group of inputs. It should be noted that assaults in
this situation are not confrontational [48], as these inputs are not altered during testing
to cause misclassification. Poisoning attacks on model updates, where only a fraction of
the updates transmitted to the server at any given iteration is safe, have received a lot of
attention recently. A backdoor could be inserted into a model with a single-shot attack.
These contaminated updates [49] may be created by inserting hidden backdoors.

Figure 5. Model Poisoning Attack.

We discovered that model poisoning attacks are significantly more successful than
data poisoning assaults in FL situations [50]. We investigated a targeted model poisoning
attack wherein a single non-colluding hostile actor tries to compel the model to erroneously
categorize a set of specified inputs, and we found that model poisoning attacks are substan-
tially more successful than data poisoning attacks under FL circumstances. These employ
parameter estimation for the benign players’ updates and the alternating minimization
technique to alternately optimize for the training loss and the hostile aim to increase the
assault stealth and escape detection. This adversarial model poisoning technique could
be used to poison the FL model covertly. Figure 6 and Table 2 show the different defense
mechanisms to address the data poisoning attack.
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Figure 6. Defense Mechanism for Model Poisoning Attacks.

Defense Mechanism 1: Byzantine robust aggregation is a system that does well
against untargeted poisoning assaults and focused model poisoning assaults using en-
hanced learning rates [51], but it does less well against flexible poisoning assaults, which
reduces the accuracy of the global model test. Analyzing the resilience against Byzantine
attacks, in which the attackers arbitrarily corrupt the parameters, Byzantine robust aggre-
gation is a flexible and robust aggregation approach known as an auto-weighted geometric
median (AutoGM) [52].

Defense Mechanism 2: According to alternative processes such as clustering-based
procedures, model updates should be reviewed at the aggregate and then separated into
two groups, for instance, using dimensionality reduction approaches such as head part
analysis [53]. The most popular clustering method is called K-means clustering. As the
simplest unsupervised learning method, it uses a centroid to make predictions. The goal of
this approach is to reduce within-cluster variability. However, these techniques also count
on the impartiality and uniform distribution of the training data.

Defense Mechanism 3: Other mechanisms including clustering-based procedures
propose that model updates are examined at the aggregator and then segregated into two
groups when utilizing dimensionality reduction approaches such as head part analysis
[54]. It may be used independently or as a jumping-off point for additional dimension-
reduction techniques. The data are transformed via PCA, a projection-based approach, into
a collection of orthogonal axes. However, for these tactics to be effective, the training data
need to be neutral and equally dispersed.

Defense Mechanism 4: To prevent federated learning from being compromised by
model poisoning assaults, the authors of [55] suggested a new method called Romoa, which
aggregates models for protection. In contrast to earlier research, Romoa can handle both
specific and general poisoning assaults with a single strategy. By using a novel similarity
metric, Romoa can improve fairness for federated learning participants and enable more
accurate attack detection. We suggest that Romoa may offer sufficient protection against
model poisoning attacks, particularly those assaults that break Byzantine-robust federated
learning methods, based on an extensive examination of standard datasets.



Electronics 2023, 12, 260 9 of 18

Table 2. Comparison of aggregation rules as mentioned in [7].

Related Papers Defense Mechanism Model Accuracy

Krum
Krum + ERR 38%
Krum + LFR 42%
Krum + union (ERR+LFR) 52%

Trimmed mean
Trimmed mean + ERR 83%
Trimmed mean + LFR 82 %
Trimmed mean + union (ERR+LFR) 82%

Median
Median + ERR 79 %
Median + LFR 80%
Median + union (ERR+LFR) 81 %

Romoa Romoa + similarity + union 93%

A different protective strategy is immune to all poisons [56]. They established a
cap on the severity of poison attacks and governmental guarantees about the defense’s
convergence when it is used. A thorough analysis of their attacks and countermeasures
was performed on three genuine datasets from the healthcare, loan assessment, and real
estate industries. The results are shown in Table 3.

Table 3. Comparison of the RONI and TRIM poisoning rates on the bases of MSE.

Related Papers Defense Mechanism Model Accuracy

RONI [18]
With 12% 3%
With 20% 6%

TRIM [18]
With 12% 0%
With 20% 0%

4.2. Inference Attacks and Defenses

Gradient trading may result in significant protection spillage during FL prepara-
tion [57–59]. Because deep learning algorithms seem to internally find various data quali-
ties that are unrelated to the core aim [60], model updates may expose more information
about undesired traits to adversarial players, as depicted in Figure 7.

Figure 7. Inference Attack [13].

An attacker can also examine the changes between subsequent snapshots, which are
equal to the aggregated updates from all participants minus the adversary, to determine
attributes. The use of generative adversarial networks (GANs) has been recommended to
tackle deep FL models [61]. It is possible that one player willfully compromises another.
Figure 2 shows different mechanisms that can be used to address these attacks.

The attacker may also use the FL model parameters screenshot to determine attributes
by examining the changes between subsequent snapshots, which are equal to the aggregated
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updates from all participants minus that of the adversary. The use of generative adversarial
networks (GANs) was recommended to tackle deep FL models [62]. The GAN attack
presupposes that just one participant provided the training data for the entire class and
that only in that case are the representations produced by the GAN accurate duplicates of
the training data. In typical ML contexts, this is akin to model inversion attacks [63].

For instance, information about preparation information may, under some conditions,
be inferred from model changes made throughout the learning system [64,65]. To learn
more about the preparation of other members unrelated to the elements that constitute
the classes in the FL model, an adversary may employ both passive and active property
forecasting attacks [66]. Deep leakage from gradient (DLG), a novel optimization approach,
can quickly generate training inputs and labels [37]. The relationship between the labels
and symbols of the linked gradients is used by the analytical method known as improved
deep leakage from gradient (iDLG) to obtain tags from those gradients [38]. Figure 8 and
Table 4 show the defense mechanisms of inference attacks.

Figure 8. Defense Mechanism for Inference Attacks.

Defense Mechanism 1: Secure Multiparty Computation (SMC) is a fundamental
technique used in secure computation [12]. A minimum of two groups must agree to
the SMC method for it to be used, and the results must be made available to a subset of
participants. In addition, in secure SMC, two processes were used; single masking, which
protects participants’ information, and chained communication, which enables the transfer
of masked information between participants through a serial chain frame.

Defense Mechanism 2: Differential privacy (DP). By introducing noise to the clipped
model parameters before model aggregation in differential privacy systems, the user’s
participation is hidden [39]. This mechanism secures data to some extent but it is difficult
to achieve higher accuracy as some accuracy is lost when noise is introduced into the model
parameters.

Defense Mechanism 3: A trusted environment for execution. The Trusted Execution
Environment (TEE) provides a secure environment for performing the federated learning
process with a low computational cost as compared to other safe computing approaches
[40]. The existing TEE environment was virtually tuned for CPU devices. This mechanism
works well for CPU-enabled devices but struggles to configure with other small devices.

Defense Mechanism 4: Homomorphic encryption executes estimations on inputs
that have been encoded without first being decoded. When information is encrypted
using a homomorphic algorithm, the result is ciphertext that behaves exactly like the
original data when it is decrypted. With homomorphic encryption, sensitive information
may undergo extensive mathematical processing without risking decryption. It is now
impossible to break the encryption, and experts believe that it is even secure against
quantum computers. However, assaults on the encryption process are not impossible.
Therefore, private information may be sent and examined without fear of disclosure,
provided the recipient has the right decryption key.
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Table 4. Defense mechanism against inference attacks as mentioned in [46].

Defense Mechanism Attack
Differential
privacy

SMC Homomorphic en-
cryption

Effective Ineffective Effective Loss function
Effective Limited effective-

ness
Effective Deep leakage gradi-

ent
Context-
dependent
effectiveness

Effective Effective mGAN

Effective Ineffective Ineffective GAN
Effective Ineffective Ineffective Adversarial example

4.3. Backdoor Attacks and Defenses

The attack prediction model poisoning falls under the category of backdoor attacks, as
shown in Figure 9. However, in comparison, these are less distinct. They work by retaining
the accuracy of the main task while introducing covert backdoors into the global model [31].
Compromised FL participating machines may establish a backdoor by training the model
on specified backdoor data [13]. Finding backdoor models becomes more challenging
when they do not diverge from other models [62]. By using an objective function that
rewards model correctness and penalizes it for deviating from what the aggregator defense
considers to be within its acceptance threshold, anomaly detection is avoided [63].

Figure 9. Backdoor Attack.

Backdoor attacks, as shown in Figure 9, might be disastrous since they can predict false
positives with a high degree of precision. Additionally, sophisticated backdoor attacks [13]
in FL could be able to circumvent the catastrophic forgetting problem and keep the backdoor
from being forgotten while training is taking place. Secure averaging in federated learning
enables devices to maintain their anonymity during the model updating procedure. A
device or group of devices may add the backdoor capability to the global federated learning
model using the same capabilities [31]. Without affecting the model’s overall accuracy,
an opponent might employ a backdoor to incorrectly categorize some jobs. An attacker,
for instance, might pick a certain label for a data instance with a particular set of traits.
Backdoor attacks are often referred to as targeted assaults [12].

A backdoor attack usually focuses on a single input that was incorrectly classified
as belonging to the attacker’s class. [64]. A backdoor model may misclassify input from
any class marked with the trigger into the target class, which largely determines the attack.
A backdoor attack can be classified as class-specific or class-agnostic [64] depending on
whether the trigger effect is dependent on the target classes. A backdoor model may
misclassify input into the target class from any class marked by the existence of the trigger.
A backdoor model may misclassify the input from specified classes stamped with the
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trigger into the targeted class. Thus, the assault is determined by the existence of a trigger,
together with the class of the target.

Defense Mechanism: Norm thresholds or weak differential privacy are updated
to prevent backdoor attacks. Even if this impairs the performance of the global model,
participant-level differential privacy might act as a form of defense against such attacks.
Differential privacy ensures that hackers cannot reverse-engineer data pieces to identify
people, even if they obtain access to data containing such information. This decreases the
danger of individual data compromise even when the source data itself is compromised
[39]. However, enhanced model parameters can be eliminated from models using norm
thresholding. Due to the capabilities of the deep learning model and secure aggregation
techniques, it can be difficult to identify malicious individuals even with these safeguards.
Being a distributed system, the FL framework makes it more difficult to regulate randomly
malfunctioning components. Table 5 compares the defense mechanisms of different studies.

Table 5. Backdoor Countermeasure summary [64].

Domain Work Model
Access

Poisoned Data
Access

Blind backdoor removal Fine pruning White-box Inapplicable
Suppression Black-box Inapplicable
RAB White-box Applicable

Offline data inspection Activation clustering White-box Applicable
Gradient clustering White-box Applicable
Differential privacy White-box Applicable

Offline model inspection DeepInspect Black-box Inapplicable
Meta classifier Black-box Inapplicable

Online input inspection STRIP Black-box Inapplicable
Epistemic classifier White-box Inapplicable
NNoculation White-box Inapplicable

Online model inspection ABS White-box Inapplicable

4.4. Evasion Attacks and Defenses

In evasion assaults [47,48], an adversary carefully manipulates the information tests
conducted in the sent model to avoid detection. The term "antagonistic instances" refers to
evasion attacks that use altered tests that, to a human, appear realistically consistent with
the original information tests. They are, however, specifically designed to deceive a classifier.
Evasion attacks [13] are not new or uncommon in FL, but they do have specific flaws in
such environments. Perturbations are created by using limited optimization techniques,
such as projected gradient ascent, to maximize the loss function while keeping a norm
restriction in mind, as described in the white box. In a black-box scenario, adversaries can
take the place of models trained on analogous data. By allowing the attacker to access the
model and the local training loss function, FL facilitates various attacks. One of the most
frequent examples is when a photo’s pixels are changed before being uploaded, which
prevents the image recognition system from correctly categorizing the result. In truth, the
confrontational situation has the power to trick people. In terms of their understanding
of the target device, attackers can carry out three different types of attacks. White-box,
gray-box, and black-box are the different classifications [49]. It is assumed in that, in
white-box [47], the assailant is knowledgeable in all fields. They could, for example, be a
bank intern who has gathered all of the necessary information. Even though this is a firm
premise, evaluating fraud detectors in the worst-case scenario is beneficial. This scenario
can also be used as an upper bound when compared to other, more constrained scenarios.

Additionally, in gray-box [50], the attacker is only vaguely familiar with the detection
system. The fraud detector in particularly is aware of the data collection process used to
determine the features but is unaware of the training data, learning process, or learned
hyperparameters. The attacker is not aware of the detection method or training data in
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the black box [49,50]. For bank transactions, however, we assume that the attacker had a
month’s worth of earlier transactions to estimate the aggregated features. Figure 10 and
Table 6 shows the adversarial defense mechanisms of evasion attack.

Figure 10. Defense Mechanism for Evasion Attacks.

Defense Mechanism 1: Adversarial training provides a natural defensive strategy
against performing malicious samples by exposing a neural network against the aggressive
provision of guidance [11]. To mitigate adversarial assaults, malicious samples must be
created and incorporated into the training phase. This method trains a system to survive
typical malicious sample production approaches. Adversarial training is one of the best
defenses against adversarial assaults, according to recent research in the references [51–53].

Defense Mechanism 2: The majority of DNNs are not concerned with randomization-
based defense [11] seeking to transform adversarial consequences into random effects.
Although randomization-based defenses have equal effectiveness in both gray-box and
black-box settings, the EoT technique [54] may undermine the majority of them in white-box
environments by integrating the randomization process into the attack process.

Defense Mechanism 3: Adversarial training, which exposes a neural network to
perform malicious samples during training, provides a natural defensive strategy against
aggressive samples [11]. According to recent research in references [51–53], providing
guidance is one of the best defenses against adversarial assaults.

Table 6. Adversarial defense mechanisms [11].

Defense Mechanism Accuracy

Adversarial training

FGSM adversarial
training [56]

Model accuracy up to 83%

PGD Adversarial
training [56]

Model accuracy up to 88.56% under
white-box attacks

Adversarial Logit
pairing [57]

Accuracy goes from 1% to 27.9% un-
der white-box

Randomization

Random input
transformation [58]

Accuracy is 60% for gray-box and
90% for black-box attacks

Random noising
[59]

Model accuracy up to 86 %

Random feature
pruning [60]

Accuracy increases to 16% depend-
ing on perturbation size

Denoising

GAN-based input
cleansing [61]

Error rate evaluated up to 0.9%

Feature denoising 50% model accuracy under white-
box attacks

4.5. Model Inversion Attacks and Defenses

While training a supervised neural network, a secret dataset is kept from the public
eye. Model inversion attacks are attempts by a hostile user to retrieve that dataset. Ref.
[67] provided a probabilistic explanation for model inversion assaults and developed a
variational target that takes into consideration both variety and precision. To achieve this
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variational goal, we selected a variational family defined inside the code space of a deep
generative model and trained it on a publicly available auxiliary dataset that is structurally
comparable to the target dataset. On empirical datasets consisting of photos of faces and
chest X-rays, our technique significantly outperforms the state of the art in terms of target
attack accuracy, sample realism, and variety. An attacker with access to both the training
set and the additional dataset A may perform a model inversion attack and retrieve certain
variables from training set B for those people. All of the variables from A and some from B
are interconnected here, and thus the new individual dataset in question would have to
include both sets of variables. Data retrieved from individuals in the training dataset will be
more accurate than characteristics merely inferred from individuals who were not included
in the training dataset due to the possibility of making a mistake and an inaccuracy in the
latter.

Defense Mechanism: Similarly, [68] suggested a revolutionary model inversion at-
tack (MIA) search technique, in which a pre-trained deep generative model capable of
producing a face picture from a random feature vector is utilized to reduce the dimension-
ality of the search space from images to feature vectors. As a result, the MIA procedure
can quickly find the low-dimensional feature vector matching the face picture with the
highest confidence score. Another study compared the PCA technique to random seed
GAN-integrated MIA, DCGAN-integrated MIA (DCGAN-MIA), and standard MIA in an
experimental setting, using two objective criteria and three subjective factors. The results
of the tests show that the suggested method is effective and superior in creating clones of
people’s faces that are almost indistinguishable from the originals.

4.6. Reconstruction Attacks and Defenses

The reconstruction attack refers to any technique that pieces together a private dataset
using only publicly available data. In most cases, the dataset includes personally identifiable
information that must be shielded from prying eyes. While the attacker may not have
access to the dataset itself, they may have access to public aggregate statistics about the
datasets, which may be accurate or corrupted in various ways (such as the addition of
noise) [69]. An attacker may successfully reassemble a significant chunk of the original
private data if the public statistics are not sufficiently skewed. Reconstruction attacks are
relevant for the study of private data because they demonstrate the need to properly distort
any released statistics to protect even a very limited idea of individual privacy. Many of the
first studies on differential privacy were driven by the discovery of reconstruction attacks,
which directly led to the notion of differential privacy.

Defense Mechanism: This attack can be secured by the safety limit of gradient-based
data reconstruction via a microscopic perspective on neural networks using rectified linear
units (ReLUs), the de facto standard for activation functions. The threshold for a successful
data reconstruction attack is measured in terms of the proportion of a training set that
consists of exclusively activated neurons. The number of ExANs in a training set is inversely
proportional to the risk of a data reconstruction attack, and vice versa [70]. Numerous attack
techniques significantly surpass their predecessors and come to rebuild training batches
located around the neural network’s vulnerable border. Meanwhile, exclusivity reduction
techniques are developed to increase the safe area around training batches that are already
within the secure border. This is done as a kind of mitigation since unique reconstruction
is impossible in this case. An adversarial training-based system with three modules—
adversarial reconstruction, noise regularization, and distance correlation minimization—
provides protection against a reconstruction assault. Because they are decoupled from one
another, those modules may be used alone or in tandem. This methodology has been shown
to be successful in safeguarding input privacy while maintaining the model’s functionality
via extensive trials on a large-scale industrial Internet advertising dataset.
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5. Discussion and Open Research Directions

Healthcare and transportation both employ federated learning. Although FL frame-
works offer more privacy protection than other ML frameworks, they are not susceptible
to several attacks. Additionally [12,71], the distributed form of the system makes it far
more challenging to put defensive mechanisms in place. The following are some of the
difficulties of federated learning:

• Communication Costs and Variations in the System: Due to the high number
of devices, local processing is significantly slower in federated networks [65] (e.g.,
millions of smartphones). Communication to cross the distortion could be significantly
more expensive than it is in conventional data centers. To fit a model to data provided
by the federated network, it is crucial to develop communication-efficient algorithms
that repeatedly transmit brief messages or model changes as part of the training
process rather than sending the entire dataset across the network.
Due to variances in hardware (CPU, RAM), network connection (3G, 4G, 5G, WiFi), and
power (battery level), each device in a federated network may have varied storage,
computation, and communication capabilities [3]. Due to network capacity and
system-related restrictions, it is also typical to only observe a small portion of the
network’s devices active at any given moment. In a network of a million devices, it
is feasible that only a few hundred are actually active [30]. Any active device may
become inactive at any time for a variety of reasons. These system-level characteristics
account for why issues such as stragglers and fault tolerance are more important than
in typical data centers [65].

• Diversity in statistics: Devices on the network frequently produce and gather non-
identically scattered data [65,72]. For instance, mobile phone users may utilize a range
of slang and jargon when asked to predict the next phrase [30]. More significantly, there
might be a foundational structure that depicts the connection between devices and the
dispersion of data points between them. It is possible that distributed optimization
will experience hiccups as a result of this data production paradigm, and modeling,
analysis, and evaluation will all be more challenging.

• Robustness to adversarial attacks: It has been shown that neural networks are vulner-
able to a wide variety of adversarial attacks, such as undetected adversarial samples
[3]. As neural networks are more frequently employed in federated settings, more
people will be exposed to them. While the issue of adversarial robustness [30] is still
under investigation, there are a few recommendations to address it, including the
following: 1) developing newer robustness metrics for images, text, and audio; 2)
including robustness audits in the deployment process; and 3) continuously testing
deployed models against unidentified adversaries. Federated learning is still in its
infancy, but it will be a popular topic in research for a very long time. As the game
goes on, FL’s attack strategies will alter [8,73]. Designers of FL systems should be
aware of current assaults so that they may take protective measures when developing
new systems. This survey offers a concise and easily readable analysis of this subject
to better comprehend the threat situation in FL. Global cooperation on FL is being
promoted via an increasing number of seminars at significant AI conferences [66]. A
multidisciplinary effort spanning the entire research community will be necessary to
develop a general-purpose defensive mechanism that can withstand a wide range of
assaults without degrading model performance.
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15. Konečný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated Optimization: Distributed machine learning for on-device
intelligence. arXiv 2016.

16. Abdulrahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning:
The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497.
http://doi.org/10.1109/JIOT.2020.3030072.

17. Exclusive: What Is Data Poisoning and Why Should We Be Concerned?—International Security Journal (ISJ), International
Security Journal (ISJ), 2022. [Online]. Available online: https://internationalsecurityjournal.com/what-is-data-poisoning/
(accessed on 26 January 2022).

18. Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating Machine Learning: Poisoning Attacks and
Countermeasures for Regression Learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 20–24 May 2018; pp. 19–35, doi: 10.1109/SP.2018.00057.

19. Awan, S.; Luo, B.; Li, F. CONTRA: Defending Against Poisoning Attacks in Federated Learning. Comput. Secur. Esorics 2021, 2021,
455–475. http://doi.org/10.1007/978-3-030-88418-522.

20. Phong, L.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption.
IEEE Trans. Inf. Forensics Secur. 2018, 13, 1333–1345. http://doi.org/10.1109/tifs.2017.2787987.

21. Su, L.; Xu, J. Securing Distributed Gradient Descent in High Dimensional Statistical Learning. Acm Meas. Anal. Comput. Syst.
2019, 3, 1–41. http://doi.org/10.1145/3322205.3311083.

22. Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017.
23. Gu, T.; Dolan-Gavitt, B.; Garg, S. BadNets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017.
24. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. arXiv 2018.
25. Cretu, G.F.; Stavrou, A.; Locasto, M.E.; Stolfo, S.J.; Keromytis, A.D. Casting out Demons: Sanitizing Training Data for Anomaly

Sensors. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–21 May 2008; pp.
81–95, http://doi.org/10.1109/SP.2008.11.

26. Steinhardt, J.; Koh, P.W.; Liang, P. Certified defenses for data poisoning attacks. arXiv 2017, arXiv:1706.03691.

https://towardsdatascience.com/federated-learning-a-step-by-step-implementation-in-tensorflow-aac568283399
https://towardsdatascience.com/federated-learning-a-step-by-step-implementation-in-tensorflow-aac568283399
https://internationalsecurityjournal.com/what-is-data-poisoning/


Electronics 2023, 12, 260 17 of 18

27. Seetharaman, S.; Malaviya, S.; Kv, R.; Shukla, M.; Lodha, S. Influence based defense against data poisoning attacks in online
learning. arXiv 2021.

28. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274.
29. Wang, Y.; Mianjy, P.; Arora, R. Robust Learning for Data poisoning attacks. In Proceeding of the Machine Learning Research,

Virtual, 18–24 July 2021.
30. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,

R.; et al. Advances and open problems in federated learning. arXiv 2019.
31. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the Twenty

Third International Conference on Artificial Intelligence and Statististics, Online, 26–28 August 2020; pp. 2938–2948.
32. Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! Targeted clean-label poisoning

attacks on neural networks. arXiv 2018.
33. Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards Poisoning of Deep

Learning Algorithms with Back-gradient Optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, TX, USA, 3 November 2017. http://doi.org/10.1145/3128572.3140451

34. Turner, A.; Tsipras, D.; Madry, A. Clean-Label Backdoor Attacks, OpenReview, 2022. [Online]. Available online: https://
openreview.net/forum?id=HJg6e2CcK7 (accessed on 31 January 2022).

35. Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep Models Under the GAN. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, Dallas, TX, USA, 30 October–3November 2017. http://doi.org/10.1145/3133956.3134012.

36. Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015. http://doi.org/10.1145/2810103.2813677.

37. Zhu, L.; Liu, Z.; Han, S. Deep Leakage from gradients. arXiv 2019.
38. Zhao, B.; Mopuri, K.; Bilen, H. IDLG: Improved Deep Leakage from gradients. arXiv 2020.
39. Geyer, R.; Klein, T.; Nabi, M. Differentially private federated learning: A client level perspective. arXiv 2017.
40. Mo, F.; Haddadi, H. Efficient and private federated learning using tee; In EuroSys, Dresden, Germany, 25–28 March 2019.
41. Mammen, P. Federated learning: Opportunities and challenges. arXiv 2021.
42. Miao, C.; Li, Q.; Xiao, H.; Jiang, W.; Huai, M.; Su, L. Towards data poisoning attacks in crowd sensing systems. In Proceedings of

the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Los Angeles, CA, USA, 26–29
June 2018; pp. 111–120.

43. Bouacida, N.; Mohapatra, P. Vulnerabilities in Federated Learning. IEEE Access 2021, 9, 63229–63249. http://doi.org/10.1109/
ACCESS.2021.3075203.

44. Peri, N.; Gupta, N.; Huang, W.R.; Fowl, L.; Zhu, C.; Feizi, S.; Goldstein, T.; Dickerson, J.P. Deep k-NN Defense Against Clean-Label
Data Poisoning Attacks. In Proceedings of the Computer Vision – ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; pp.
55-70, 2020. http://doi.org/10.1007/978-3-030-66415-24.

45. A Study of Defenses against Poisoning Attacks in a Distributed Learning Environment—F-Secure Blog, F-Secure Blog, 2022.
[Online]. Available online: https://blog.f-secure.com/poisoning-attacks-in-a-distributed-learning-environment/ (accessed on
26 January 2022).

46. Enthoven, D.; Al-Ars, Z. An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies. Fed. Learn. Syst.
2021, 173–196. http://doi.org/10.1007/978-3-030-70604-38.

47. Carminati, M.; Santini, L.; Polino, M.; Zanero, S. Evasion attacks against banking fraud detection systems. In Proceedings of the
23rd International Symposium on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain, 14–15 October 2020; pp.
285–300.

48. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Srndic, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion Attacks against Machine
Learning at Test Time. Adv. Inf. Syst. Eng. 2013, 387–402. http://doi.org/10.1007/978-3-642-40994-325.

49. “How to Attack Machine Learning (Evasion, Poisoning, Inference, Trojans, Backdoors)”, Medium, 2022. [Online]. Available
online: https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7
cb5832595c (accessed on 26 January 2022).

50. Demontis, A.; Melis, M.; Pintor, M.; Jagielski, M.; Biggio, B.; Oprea, A.; NitaRotaru, C.; Roli, F. Why do adversarial attacks
transfer? explaining transferability of evasion and poisoning attacks. In Proceedings of the 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 321–338.

51. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017.

52. Xie, C.; Wu, Y.; Maaten, L.; Yuille, A.; He, K. Feature Denoising for Improving Adversarial Robustness, arXiv 2019,
arXiv:1812.03411.

53. Carlini, N.; Katz, G.; Barrett, C.; Dill, D. “Ground-Truth Adversarial Examples", OpenReview, 2022. [Online]. Available online:
https://openreview.net/forum?id=Hki-ZlbA- (accessed on 31 January 2022).

54. Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing robust adversarial examples. arXiv 2017.

https://openreview.net/forum?id=HJg6e2CcK7
https://openreview.net/forum?id=HJg6e2CcK7
https://blog.f-secure.com/poisoning-attacks-in-a-distributed-learning-environment/
https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7cb5832595c
https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7cb5832595c
https://openreview.net/forum?id=Hki-ZlbA-


Electronics 2023, 12, 260 18 of 18

55. Mao, Y., Yuan, X., Zhao, X., Zhong, S. (2021). Romoa: Robust Model Aggregation for the Resistance of Federated Learning to
Model Poisoning Attacks. In: Bertino, E., Shulman, H., Waidner, M. (eds) Computer Security – ESORICS 2021. ESORICS 2021.
Lecture Notes in Computer Science(), vol 12972. Springer, Cham. https://doi.org/10.1007/978-3-030-88418-5_23

56. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014.
57. Kannan, H.; Kurakin, A.; Goodfellow, I. Adversarial Logit Pairing. arXiv 2018.
58. Guo, C.; Rana, M.; Cisse, M.; Maaten, L.v. Countering Adversarial Images using Input Transformations. arXiv 2017.
59. Liu, X.; Cheng, M.; Zhang, H.; Hsieh, C.-J. Towards robust neural networks via random self-ensemble. In Computer Vision – ECCV

2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 381–397.
60. Dhillon, G.S.; Azizzadenesheli, K.; Lipton, Z.C.; Bernstein, J.; Kossaifi, J.; Khanna, A.; Anandkumar, A. Stochastic Activation

Pruning for robust adversarial defense. arXiv 2018.
61. Shen, S.; Jin, G.; Gao, K.; Zhang, Y. APE-GAN: Adversarial perturbation elimination with GAN. arXiv 2017.
62. Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. Res. Attacks

Intrusions Defenses 2018, 273–294. http://doi.org/10.1007/978-3-030-00470-513.
63. Jiang, Y.; Wang, S.; Valls, V.; Ko, B.J.; Lee, We.; Leung, K.K.; Tassiulas, L. Model pruning enables efficient federated learning on

edge devices. arXiv 2019.
64. Gao, Y.; Doan, B.G.; Zhang, Z.; Ma, S.; Zhang, J.; Fu, A.; Nepal, S.; Kim, H. Backdoor attacks and countermeasures on deep

learning: A comprehensive review. arXiv 2020.
65. Li, T. “Federated Learning: Challenges, Methods, and Future Directions", Machine Learning Blog | ML@CMU | Carnegie Mellon

University, 2022. [Online]. Available online: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-
future-directions/ (accessed on 31 January 2022).

66. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–26 October
2016. http://doi.org/10.1145/2976749.2978318.

67. Wang, K.-C.; Fu, Y.; Li, K.; Khisti, A.; Zemel, R.; Makhzani, A. Variational Model Inversion Attacks. Advances in Neural
Information Processing Systems. Adv. Neural Inf. Process. Syst. 2022, 34, 9706–9719.

68. Khosravy, M.; Nakamura, K.; Hirose, Y.; Nitta, N.; Babaguchi, N. Model Inversion Attack by Integration of Deep Generative
Models: Privacy-Sensitive Face Generation from a Face Recognition System. IEEE Trans. Inf. Forensics Secur. 2022, 67, 9074–9719.

69. Garfinkel, S.; Abowd, J.M.; Martindale, C. Understanding database reconstruction attacks on public data. Commun. ACM 2019,
62, 46–53.

70. Lyu, L.; Chen, C. A novel attribute reconstruction attack in federated learning. arXiv 2021, arXiv:2108.06910.
71. Xie, C.; Huang, K.; Chen, P.; Li, B . Dba: Distributed backdoor attacks against federated learning. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019 .
72. Wei, W.; Liu, L.; Loper, M.; Chow, K.; Gursoy, M.; Truex, S.; Wu, Y. A framework for evaluating gradient leakage attacks in

federated learning. arXiv 2020.
73. Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against Support Vector Machines. arXiv 2012.

https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

	Introduction
	Overview of Federated Learning
	Types of Federated Learning
	FL Attacks and Their Defenses
	Poisoning Attacks and Defenses
	Data Poisoning Attacks and Defenses
	Model Poisoning Attacks and Defenses

	Inference Attacks and Defenses
	Backdoor Attacks and Defenses
	Evasion Attacks and Defenses
	Model Inversion Attacks and Defenses
	Reconstruction Attacks and Defenses

	Discussion and Open Research Directions
	References

