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Abstract: Cinematic Shot Attribute Analysis aims to analyze the intrinsic attributes of movie shots,
such as movement and scale. In previous methods, specialized architectures were designed for each
specific task and relied on the use of optical flow maps. In this paper, we consider shot attribute
analysis as a unified task of motion–static weight allocation, and propose a motion–static dual-path
architecture for recognizing various shot attributes. In this architecture, we design a new action cue
generation module for adapting the end-to-end training process instead of a pre-trained optical flow
network; and, to address the issue of limited samples in movie shot datasets, we design a fixed-size
adjustment strategy to enable the network to directly utilize pre-trained vision transformer models
while adapting to shot data inputs at arbitrary sample rates. In addition, we quantitatively analyze
the sensitivity of different shot attributes to motion and static features for the first time. Subsequent
experimental results on two datasets, MovieShots and AVE, demonstrate that our proposed method
outperforms all previous approaches without increasing computational cost.

Keywords: shot attribute analysis; shot type classification; unified model; end-to-end architecture;
deep learning

1. Introduction

Frames, shots, and scenes are different entities or units that constitute a movie. A frame
is a still image, the basic unit of a movie; a shot consists of a series of frames displaying
related action or plot; and a scene is a collection of consecutive shots at the same time or
place used to show a coherent movie story line.

Generally, in movie analysis [1], shot segmentation algorithms [2,3] are used to divide
movies into thousands of distinct shots to facilitate understanding at the shot level. Unlike
action recognition [4–6], shot attribute analysis focuses more on common attributes of all
shots, such as scale, movement, and angle, which we refer to as the intrinsic attributes of
movie shots.

By extracting and comprehending intrinsic shot attributes, we can semantically index
and search movie archives based on cinematographic characteristics. This also facilitates
high-level analysis of film styles by identifying patterns in the use of scale, movement,
and angle throughout a film. Furthermore, automatic shot attribute analysis can potentially
enable AI-assisted editing and intelligent cinematography tools that provide suggestions
based on learned film shot patterns and conventions.

In previous shot attribute analysis methods, as shown in Figure 1, each shot attribute
is often treated as an independent classification task, such as shot movement classification [7]
and shot scale classification [8]. These methods utilize task-specific network architectures
tailored for predicting each property. Consequently, they are applicable to single-property
prediction and cannot be easily generalized to other properties.

Moreover, prior research [9] has shown that action cues are critical features of shot
attribute analysis; thus, most methods [1,7,10,11] employ pre-trained optical flow networks
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to extract video optical flow map. However, since the training datasets of optical flow
networks [12–15] are mostly generated in virtual environments, distortions may occur
when extracting optical flow from real movie shots, and the end-to-end training process
cannot be achieved using additional optical flow networks.

Figure 1. Demonstration of the movie shot analysis task. After splitting the movie into shots, several
intrinsic attributes of the shots need to be accurately analyzed.

The above analysis identifies some of the problems in the shot attribute analysis task
and points to our main research motivation: how to design a unified architecture for
multiple shot attribute analysis, and how to capture the motion cues of a shot without
relying on optical flow networks while achieving an end-to-end training process.

Inspired by [6,16], we introduce a learnable frame difference generator to replace
the pre-trained optical flow network, i.e., using frame difference maps as motion cues,
and successfully enable the architecture for end-to-end training. However, certain shot
attributes like shot scale are less sensitive to motion cues; thus, overly relying on motion
cues when analyzing these attributes may affect the performance [1]. Therefore, inspired
by the dual-stream networks, we balance motion and static features and design a motion
and static branch to independently analyze motion cues and static frames, and further
quantify the weights of the motion and static feature in the fusion module. Then, given
the effectiveness of transformers in computer vision tasks [17,18], we attempt to replace
traditional convolutional neural networks with them. However, since transformers require
a large amount of training data, and the sample size of movie shot datasets [19–22] is
usually less than 30 K, we introduce transformer models pre-trained by Kinetics 400 [23],
and design a fixed-size adjustment strategy for the motion branch and a keyframe selection
strategy for the static branch to adapt to fit the input size; meanwhile, this design also
allows our architecture to accommodate shot data inputs at any video sample rate.

We validate our proposed method on two large movie shot datasets, MovieShots [1]
and AVE [24], and compare the performance with all previous methods. Given the sample
imbalance problems of movie shot datasets, we employ Macro-F1 for evaluation in addition
to the regular Top-1 accuracy. The results show that our model performs significantly better
than other methods while maintaining computational efficiency.

Our contributions are as follows:
1. We summarize the main issues in the task of shot attribute analysis. Building

upon these, we propose a unified dual-branch end-to-end architecture capable of analyz-
ing all movie shot attributes, and further quantify the motion/static feature weights of
different attributes.

2. We design a learnable frame difference generator to replace the pre-trained optical
flow network, and through specific strategies make the network compatible with vision
transformer pre-trained models, effectively solving the problem of lacking samples in the
movie shot dataset.

3. Experiments on MovieShots and AVE prove that our shot attribute analysis archi-
tecture significantly outperforms all previous methods in various shot intrinsic attributes,
and exhibits notable advantages in computational efficiency.

2. Related Work
2.1. Two-Stream Architecture

A dual-stream network [9,25–27] consists of two parallel networks: one processes spa-
tial information (spatial stream), while the other handles temporal information (temporal
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stream); this architecture performs well in processing video data and significantly improves
the accuracy of action recognition. Here, we refer to them as the motion branch and static
branch. In the traditional dual-stream network architecture, the motion branch uses optical
flow maps as input to capture dynamic information in videos, such as the movement
path and speeds of objects. The static branch uses video frame inputs to understand the
low-level texture features and high-level semantic information in the video.

In our method, we optimize the two-stream architecture for shot attribute analysis:
(1) We use the frame difference generator instead of the optical flow network to extract
the dynamic information. (2) We choose the visual transformer architecture in lieu of the
traditional convolutional backbone. (3) We select one key frame as input due to the charac-
teristics of the shot analysis task, which significantly reduces the amount of computation.
(4) In the resulting fusion module, we add an adaptive parameter to balance the contribu-
tion weights of the dual branches in different shot attributes instead of concatenating the
two features directly.

2.2. Shot Arrtibute Analysis

The goal of the shot attribute analysis task is to analyze the intrinsic attributes of
movie shots. Traditional methods [10,11,19–22,28,29] rely on hand-crafted low-level fea-
tures (e.g., dominant color regions, camera motion histogram descriptors) as well as tra-
ditional machine learning methods (e.g., support vector machines, decision trees), which
are constrained by the priori hypothesis of the selected features, leading to analysis of the
results with low accuracy and a lack of generalization ability.

In following CNN-based approach [1,7,8,30–33], the baseline SGNet [1], for instance,
employs video frames and optical flow maps as inputs to generate subject maps, which
segment the foreground and background of the video. The foreground and background are
then analyzed using a dual-stream network structure to examine movement and scale within
a unified architecture.

Subsequent approaches like MUL-MOVE-Net [7] analyze shot movement using 1D
angular histograms generated from optical flow maps. Bias CNN [8] introduces vertical and
horizontal pooling methods to analyze shot scale. SCTSNet [30] combines the recognition
of movement, scale, and angle to assist in shot boundary detection.

The CNN-based methods mentioned above achieve much higher accuracy in shot
attribute analysis tasks compared to traditional machine learning methods. However,
due to the local assumption inherent in the design of small convolutional kernels, these
methods might not capture global features adequately. Furthermore, film shot attributes
encompass both strong temporal properties (e.g., movement) and weak temporal properties
(e.g., scale, angle). Vision transformers [17], owing to their absence of inductive bias, can
automatically learn global features across the temporal and spatial dimensions of shot clips
during training. This property potentially makes them more suitable for shot attribute
analysis tasks.

2.3. Movie Shot Dataset

Due to copyright restrictions, most movie shot datasets publicly released, and the
limited number of shot samples [19–21,33], pose a challenge to the advancement of shot
attribute analysis research. MovieShots [1] is the first large dataset to provide multi-category
(movement and scale) shot attribute annotations along with complete video data. It has
been utilized several times in subsequent studies. In this paper, alongside MovieShots, we
additionally incorporate another larger movie shot dataset, AVE [24], and select four shot
attributes - shot motion, shot scale, shot angle, and shot type, for analysis.

Subsequently, we conduct extensive experiments using these two datasets. To our
knowledge, AVE has been employed for the first time in shot attribute analysis tasks.
We believe that compare to previous studies that use non-open datasets or solely rely
on MovieShots, our experiments conducted on two large datasets can demonstrate the
effectiveness of our architecture.
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3. Approach

In this section, we present a unified end-to-end training architecture suitable for
various shot attribute tasks. Despite prior attempts to employ a unified architecture for
analyzing multiple shot attributes, adjustments have been made in the structural design
to cater to distinct classification tasks (e.g., Var Block in SGNet [1]). In our architecture,
as shown in Figure 2a, we conceptualize the analysis tasks as a balance between motion
and static aspects, leading to the design of corresponding feature extraction backbones.

Figure 2. (a) Overview of our movie shot analysis architecture. The motion branch accepts shot
data inputs and employs the frame difference generator to generate difference maps. These maps
are subsequently passed through the fixed size adjustment to resize the features to the dimensions
(16, 224, 224), then outputs the motion feature by passing motion backbone. The static branch selects
the intermediate frame of the shot clip and extracts static feature using static backbone. (b) We
propose three frame difference generation methods, wherein the input and output sizes remain
unaltered except for a reduction in the temporal dimension by one.

In the following four subsections, we first define the lens attribute analysis task with a
formula specification in Section 3.1. Subsequently, we elaborate on the design of the motion
and static branches in Sections 3.2 and 3.3. In Section 3.4, a quantifiable strategy for fusing
motion and static features is introduced.

3.1. Problem Definition

Consider a given shot S = { f1, f2... fn} consists of a sequence of frames, where
fi ∈ R3×H×Wrepresents the ith frame of the shot, and n denotes the number of frames
in the shot. Each frame can be regarded as a 2d image that encompasses the static visual in-
formation of the shot. The objective of shot attribute analysis is to identify a set of functions
Θ = {θ1, θ2...θn}, which can map movie shot S to a pre-defined set of movie shot types
C = {C1, C2...Cm}. Here, cj denotes the jth movie shot attribute, while m signifies the total
number of the attributes (for instance, in MovieShots, C = {movement, scale}). The entire
process can be expressed by the following equation: {C1, C2...Cm} = {θ1(S), θ2(S)...θn(S)},
or alternatively as C = Θ(S).
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3.2. Motion Branch
3.2.1. Drawbacks of Optical Flow

When analyzing motion clues in movie shots, previous shot attribute analysis meth-
ods [1,7,10,11] often employ optical flow maps as the motion cue, which show the dif-
ferences between successive frames through pixel-level displacement vectors. However,
the extraction of optical flow maps requires the introduction of additional optical flow
pre-trained networks [13] and consumes a substantial amount of time for optical flow
calculation, making it unsuitable for the end-to-end architecture. Moreover, we point
out that since the datasets [12,14] used to train the optical flow network are generated in
virtual environments, it might not fully and accurately simulate various complex scenes
and object movements in the real world, especially in dynamic and variable movie shots.
If there is any distortion in the obtained optical flow maps it may affect the accuracy of the
analysis results.

3.2.2. Frame Difference Generator

In the motion branch, we build a unique frame difference generator module. This
module accurately represents the dynamic variations between consecutive frames by
generating frame difference maps. As shown in Figure 2b , we propose three methods
for this module: (1) Frame-Diff: Firstly, we split the input clip into separate frames,
subtract the latter frame from the former frame sequentially, and stitch the result directly.
This method is advantageous as it directly showcases the differences between adjacent
frames. (2) Conv-Diff: This function also entails splitting the input into separate parts,
but the subsequent frame is first passed through a single convolutional layer (kernel
size = 3, stride = 1, padding = 1) before being subtracted from the previous frame. This
process allows the resulting features to represent motion changes while considering local
feature information. (3) Depthwise-Diff: In this method, we first truncate the input data
for transformation and rearrangement, combine the channel dimension with the batch
dimension, and then extract frames 0 to T − 1 and frames 1 to T for the preceding and
subsequent frames, respectively. The latter is processed through a depthwise separable
convolutional [34] layer and then subtracted from the former, followed by one deformation
layer for output transformation.

Among these three methods, we particularly emphasize the Depthwise-Diff method,
and subsequent experimental results in Section 4 have demonstrated the efficiency of
this method. Firstly, in terms of implementation, this method is equivalent to processing
each frame independently through a convolution block with only one convolution ker-
nel. During this process, due to the dimension transformation that has already occurred,
the convolution operation will be performed along the time dimension (dim = 2), which
significantly differs from the typical operation along the channel dimension. This design
allows for the parallel processing of all input frames, resulting in higher computational
efficiency and parameter utilization compared to the other two methods. Additionally, it
provides a more comprehensive way to capture and understand the temporal dependency
features in dynamic motion cues. The entire process can be expressed as D = S− Γ(S),
where D ∈ R(T−1)×3×H×W represents the difference maps and Γ represents the genera-
tion method.

3.2.3. Motion Backbone

For the choice of the backbone in the motion branch, we deviate from the commonly
used ResNet50 [35] in previous methods, and instead opt for introducing the vision trans-
former [36–40] backbone. Initially, we conduct preliminary experiments using several self-
attention blocks on two movie shot datasets. After practical experimentation and analysis
(we elaborate the process in detail in Section 4.3), we choose the Multiscale Visual Trans-
former [40] (MViT) with a multiscale feature hierarchies structure as our motion backbone.

The MViT backbone is a relatively optimal choice determined after extensive experi-
mentation. Simultaneously, we discover that not all video transformer architectures can
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serve as suitable motion backbones. For the task of shot attribute analysis, whether uti-
lizing motion cues as input or directly employing frame sequences as input, the most
critical aspect is the low-level semantic information. This observation might have been
overlooked in prior related studies. Subsequent ablation experiments in Section 4.5 can
further substantiate our conclusion.

The entire MViT Backbone can be represented by the following equation:

Q̂ = DWQ K̂ = DWK V̂ = DWV (1)

Vmotion = So f tmax(P(Q̂)P(K̂)T/
√

d)P(V̂) (2)

where D denotes the frame difference map after fixed-size adjustment; Q̂, K̂, V̂ denote the
query, key and value in the self-attention operator; WQ, WK, WV denote the corresponding
weight matrix; P denotes the pooling attention; and Vmotion denotes the obtained motion
feature vector.

3.2.4. Fixed-Size Adjustment

Training a vision transformer requires a large-scale annotated dataset. in the design
of the motion backbone, movie shot datasets usually have a lack of shot samples (<10 K),
which is insufficient to support training a transformer backbone from scratch. To better
utilize various backbones pre-trained by Kinetics 400, we set t = 16, c = 3, h = 224, w = 224
as the standard backbone input size. Then, we introduce a fixed-size adjustment module to
resize the frame difference map D to this size. Specifically, we used linear interpolation
to adjust D, ensuring that the input size of the motion backbone matches the input size of
the pre-trained model. This process can be represented as D = Finterpolate(D). Additionally,
the fixed-size adjustment module indicates that our architecture can use shot clips of
arbitrary length and sample rate as input.

3.3. Static Branch

Based on practical experience, for some intrinsic attributes of shots, such scale, we
can directly judge whether it is a close-up or a medium shot from any frame of the shot.
Therefore, for the static branch, we believe that using the entire sequence of frames as input,
like a traditional two-stream network, would introduce a significant amount of redundant
information. Instead, it is common to select key frames from the shot as input. However,
we have found that in movie shots, there are rarely meaningless frames; thus, utilizing
one keyframe to represent static information within a shot is a highly intuitive solution.
In our method, we directly select the intermediate frame of the shot as the static input. For
the static backbone, we choose ViT [17] pre-trained by Image21K. The process of the static
branch can be expressed as Vstatic = ViT(S[:,t//2,:,:]), where Vstatic denotes the static feature
outputted from the static branch.

3.4. Quantitative Feature Fusion

Upon obtaining the motion feature Vmotion and the static feature Vstatic, a direct ap-
proach would involve concatenating these two vectors and then passing them through
a classification layer to obtain predictive outcomes. However, we point out that this
could lead to interference between two features (as the weight parameters of the fully
connected layer would be applied to all elements of both vectors simultaneously). In order
to maintain the independence of motion and static information, while also quantitatively
assessing the contribution from the branches, we add a trainable parameter that allows
the network to automatically learn the contribution weights of the branches (refer to re-
sults in Section 4.4). The entire process can be expressed using the following formula:
Ci = Classi f ier(λ ∗Vmotion + (1− λ) ∗Vstatic), where λ denotes the trainable parameter.
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4. Experiment
4.1. Datasets

In this paper, two large-scale movie shot datasets, MovieShots [1] and AVE [24], are
utilized. MovieShots is the first large public movie shot dataset with complete shot sample
clips constructed by the CUHK—SenseTime Joint Lab. It contains 46 K shots extracted from
7 K movie trailers and is meticulously annotated for scale and movement. AVE is a dataset
constructed by Adobe Research and KAIST for AI-assisted video editing, containing 196 K
shots taken from 5 K movie clips, annotated with shot attributes such as shot size, shot angle,
shot motion, and shot type. Table 1 shows the statistics of both dataset.

Table 1. Statistics of MovieShots and AVE.

Dataset Train Val Test Total Avg. Duration of Shots (s)

Movieshots Num. of movies 4843 1062 1953 7858 ——
Num. of shots 32,720 4610 9527 46,857 3.95

AVE Num. of scenes 3914 559 1118 5591 ——
Num. of shots 151,053 15,040 30,083 196,176 3.81

4.2. Experiment Setup
4.2.1. Data

Following [1,24], we split MovieShots and AVE into training, validation, and test sets
at a ratio of 7:1:2. All scenes are unique across the training, validation, and test sets. Table 1
displays the statistical information of the two datasets.

4.2.2. Implementation Details

Due to the prevalent sample imbalance in MovieShots and AVE (e.g., static shots
account for over 60% in movement and eye-level shots account for over 70% in shot-angle),
we adopt focal loss [41] instead of conventional cross entropy as the loss function for shot
attribute analysis tasks. The focal loss function is defined as:

FL(pt) = −α(1− pt)
γ log(pt)

pt =

{
p, (y = 1)

1− p, (y = 0)
(3)

where pt is the predicted probability for the ground truth class, α represents the class
weight, and γ represents the tuning parameter. In our implementation, we set α to 1 and γ
to 2.

To meet our goal of directly applying existing video classification pre-trained models
for shot classification, we favor publicly accessible pre-trained models for the motion
backbone and static backbone without altering model hyperparameters like layer numbers.
After extensive experiments (Tables 2, 3, and 5), we select the MViT-B [40] pre-trained
by Kinetics 400 as the motion backbone, and ViT-Base [17] pre-trained by Image21K as
the static backbone. For the frame difference generator, Depthwise-Diff achieves better
performance than the other two methods in most tasks, so we set it as the default function.
For the Frame Difference Generator, Depthwise-Diff achieves better performance than
the other two methods in most tasks, so we set it as the default. For quantitative feature
fusion, we find that a feature dimension of 768 provides a good trade-off between model
complexity and representational capacity.

Following [24], we uniformly sample 16 frames from a shot clip as input. During the
training process, we configure the batch size to be 8 and employ the mini-SGD optimizer
with a momentum of 0.9. The initial learning rate is set at 0.002, and we utilize an expo-
nential learning rate decay strategy with a gamma value of 0.9. All models are trained for
10 epochs. All experiments are conducted on one RTX4090 and utilizing Pytorch Lightning
to construct the entire shot attribute analysis system.
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4.2.3. Evaluation Metrics

Due to the long-tail distribution problem, in addition to adhering to the practice of
using Top-1 accuracy from previous works, we also adopt Macro-F1 as an evaluation metric.

Top-1 accuracy is defined as the percentage of test examples for which the model’s
top predicted class matches the true label. More formally, given a dataset of N examples
{(x1, y1), (x2, y2), ..., (xN , yN)}, Top-1 accuracy is calculated as:

Top-1 Accuracy =
1
N

N

∑
i=1

I(argmaxcP(y = c|xi) = yi) (4)

where P(y = c|x) is the model’s predicted probability distribution over classes c given
input x, and I(condition) is an indicator function that equals 1 if the condition is true, else 0.

Macro-F1 is the macro-averaged F1 score over all classes. F1 score for a class is the
harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

(5)

Macro-F1 averages the F1 scores across classes, treating each class equally:

Macro-F1 =
1
C

C

∑
c=1

F1c (6)

where C is the number of classes and F1c is the F1 score for class c.

4.3. Overall Results
4.3.1. MovieShots

Table 2 displays the overall results and computational costs of some methods on
MovieShots [1]. Among them, only MUL-MOVE-Net [7] and SGNet (img + flow) [1] use
optical flow maps as inputs, while other methods solely utilized shot data as input. To better
compare with our designed architecture, we additionally reproduce CNN-based methods
such as R3D [42], X3D [43], SlowFast-Resnet50 [44], and transformer-based methods like
TimeSformer [36], ViViT [38], and MViT [40] (all pre-trained by the K400 dataset). SGNet
(img + flow) is the baseline.

Three traditional methods, DCR [45], CAMHID [10], and 2DHM [11], are strictly
limited in their performance in scale and movement since they use hand-crafted features.
Among the CNN-based methods, we find that I3D-Resnet50, TSN-Resnet50, SlowFast-
Resnet50, and X3D have relatively high accuracy in scale, while R3D have significantly
higher results in movement than the other methods. These results can verify our previous
hypothesis: shots have both strong temporal attributes (movement) and weak temporal
attributes (scale). When undergoing end-to-end training, methods leaning towards strong
temporal attributes tend to perform better in such attributes but worse in weak tempo-
ral ones.

SGNet (img + flow), by using both optical flow maps and shot frames as input, im-
proves significantly by 9.35 in movement over SGNet (img) while maintaining accuracy
in scale. It should be noted that although SGNet, like our proposed architecture, also
uses motion cues as input and utilizes a dual-stream network structure, its emphasis lies
in segmenting movie shots into foreground and background, i.e., analyzing foreground–
background features, which is fundamentally different from our method’s motion–static
features. Following SGNet, Bias CNN and MUL-MOVE-Net w/ flow make some improve-
ments in efficiency and accuracy, but are only suitable for single attribute analysis tasks.
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Table 2. The overall results on MovieShots.

Scale Movement
Models Accuracy Macro-F1 Accuracy Macro-F1 GFLOPs

DCR [45] 51.53 —— 33.20 —— ——
CAMHID [10] 52.37 —— 40.19 —— ——

2DHM [11] 52.35 —— 40.34 —— ——

I3D-Resnet50 [4] 76.79 —— 78.45 —— ——
TSN-ResNet50 [6] 84.08 —— 70.46 —— ——

R3D [42] 69.35 69.76 83.73 42.48 163.417
X3D [43] 75.55 75.88 67.15 20.09 5.091

SlowFast-Resnet50 [44] 70.43 70.99 68.59 32.90 6.998

SGNet (img) [1] 87.21 —— 71.30 —— ——
SGNet (img + flow) [1] * 87.50 —— 80.65

MUL-MOVE-Net [7] —— —— 82.85 —— ——
Bias CNN [8] 87.19 —— —— —— ——

TimeSformer [36] 89.15 89.39 84.21 41.38 380.053
ViViT [38] 74.67 75.05 75.96 35.32 136.078
MViT [40] 87.54 87.84 86.24 43.13 56.333

Ours (depthwise-diff) 89.46 89.73 85.68 43.40 66.570
Ours (conv-diff) 89.00 89.28 86.46 43.18 66.610
Ours (frame-diff) 89.11 89.39 86.25 44.02 66.549

* baseline.

Among the transformer-based methods, we find that TimeSformer improves by 1.65
and 3.56 compared to the baseline, but its computational demand reaches a staggering
380GFLOPs. In contrast, ViTiT decreases by 12.83 and 4.69. We believe a possible reason is
that ViTiT first uses ViT to convert the shot input into high-level semantic features before
performing factorized self-attention. Therefore, it is essential to retain as much of the origin
input (or low-level semantic features) as possible when extracting features for shot attribute
analysis tasks. MViT improves by 0.04 and 5.59 over the baseline, further enhancing
performance in strong temporal attributes. In our designed architecture Ours(depth-wise-
diff), while using MViT as the motion backbone, also has a static branch, effectively
complementing weak temporal attributes. The results show that our method is 1.96 and
5.03 higher than the baseline, and the computational demand is only 1/6 of TimeSformer’s.
Moreover, although our method is 0.56 lower than MViT in Top-1 accuracy in movement, it
is 0.27 higher in Macro-F1.

4.3.2. AVE

AVE [24], compared to MovieShots, has more shot attribute labels. Table 3 shows
the experimental results on AVE. Since the original paper uses both video and audio as
inputs, and the vision backbone is R3D, we also choose to use the reproduced R3D as our
baseline. On AVE, due to the more uneven distribution of shot sample categories compared
to MovieShots, we choose Macro-F1 as the analysis metric.

Among the CNN-based methods, R3D, X3D, and SlowFast-Resnet50 performed far be-
low expectations for the four shot attributes. We believe that in shot attribute analysis tasks,
once the imbalance in shot sample categories becomes too high, using the convolutional
neural network structure can result in the analysis leaning more towards categories with a
higher sample proportion. Among the transformer-based methods, ViViT’s performance in
shot angle and shot motion was 0.62 and 0.11 lower than the baseline, 3.98 and 5.84 higher in
shot size and shot type, respectively. This conclusion, consistent with that on MovieShots,
shows that it is actually not suitable for shot attribute analysis tasks. In contrast, TimeS-
former sees significant improvements over the baseline: 19.55 (shot size), 21.65 (shot angle),
4.02 (shot motion), and 30.99 (shot type). Our proposed method, Ours(depthwise-diff), also



Electronics 2023, 12, 4174 10 of 15

improves by 19.64, 15.67, 9.09, and 31.57, achieving the best results in three shot attributes:
shot size, shot motion, and shot type.

Table 3. The overall results on AVE.

Shot Size Shot Angle Shot Motion Shot Type
Models Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Naive (V+A) [24] 39.1 —— 28.9 —— 31.2 —— 62.3 ——
Logit adj. (V+A) [24] 67.6 —— 49.8 —— 43.7 —— 66.7 ——

R3D [42] * 67.45 24.97 85.37 19.05 70.18 29.02 55.19 34.43
X3D [43] 65.44 15.82 85.44 18.43 69.41 28.74 46.39 10.56

SlowFast-Resnet50 [44] 66.10 20.38 81.13 19.72 68.17 29.40 52.25 33.55

TimeSformer [36] 72.94 44.52 87.35 40.70 71.16 33.04 75.94 65.42
ViViT [38] 69.30 28.95 85.44 18.43 70.11 28.91 57.96 40.27
MViT [40] 73.54 41.27 87.19 33.04 71.63 36.62 75.82 65.15

Ours(depthwise-diff) 73.39 44.61 86.91 34.72 70.85 38.11 76.28 66.00
Ours(conv-diff) 73.09 40.77 86.55 35.42 70.64 31.93 76.29 66.80
Ours(frame-diff) 73.34 41.32 86.86 30.85 71.35 31.11 74.06 63.52

* baseline.

4.3.3. Analysis of Frame Difference Methods

We further analyze the results of different frame difference methods on both
MovieShots and AVE. For a fair comparison, we only modify the frame difference genera-
tion module in all experiments, keeping the rest of the network unchanged. On MovieShots,
depthwise-diff surpasses conv-diff and frame-diff in Top-1 accuracy and Macro-F1 on scale,
but is slightly lower than frame-diff in movement. On the AVE dataset, depthwise-diff
significantly outperforms the other two frame difference methods in shot size and shot
motion, and is less than 0.1 below the highest Macro-F1 in shot angle and shot type. This
result demonstrates that our proposed depthwise-diff method is more suitable for our
architecture in general compared to the other two methods.

4.4. Quantitative Analysis

In shot attribute analysis tasks, it is intuitive to feel that the motion branch is more
suitable for strong temporal attributes, while the static branch is more suitable for weak
temporal attributes. However, there has been a lack of numerical representation for this
boundary. By visualizing the λ value in feature fusion module, we have quantitatively
analyzed the contributions of motion and static features in the results of each shot attribute,
as shown in Figure 3. We call the result of dividing the contribution percentage of motion
branch by the contribution percentage of static branch Temporal Tendency Coefficient of
Shot Attributes. The higher this value, the stronger the temporal dependency of the shot
attribute. In MovieShots, the tendency coefficients for movement and scale are 2.00 and 1.03,
respectively. In AVE, they are 2.01, 1.80, 2.56, and 1.90 for shot size, shot angle, shot motion,
and shot type, respectively. We believe that this value can guide the design of methods for
single shot attribute recognition tasks (e.g., shot motion recognition). Using 2 as a boundary,
attributes > 2 can choose to use a temporal model structure, while those <2 can opt for
single-frame input and non-temporal structures.



Electronics 2023, 12, 4174 11 of 15

Figure 3. The quantitative contribution of motion and static feature to each shot attribute.

4.5. Ablation Study

We conducted the following ablation experiments to demonstrate the effectiveness of
our proposed architecture: (1) input length (video sample rate); (2) motion/static branch;
(3) vision backbone; (4) pre-trained models.

4.5.1. The Influence of Different Shot Input Duration

Our proposed fixed-size adjustment strategy allows the model to accept shot input of
any duration. To analyze the impact of shot input duration on the results, we experiment
with different counts of the sample frames . We respectively use 2 (video sampling rate
1/64), 4 (1/32), 8 (1/16), and 16 (1/8) as input duration. Figure 4 shows the accuracy and
Macro-F1 variation curves on two datasets. In most cases, as the input duration increases
(sampling rate decreases), the shot attribute analysis results are better. We find that the
temporal tendency coefficient of lower scale and shot angle do not change significantly with
input duration. Moreover, due to our fixed-size adjustment strategy, the computational
load of the entire architecture does not decrease significantly as the video sampling rate
increases, which is one of the drawbacks of our architecture. We believe that, similar to
action recognition, using a 1/8 sampling rate and 16 frames as input is suitable for most
movie shots.

Figure 4. Accuracy and Macro F1 on MovieShots and AVE with sample # frames.
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4.5.2. The Influence of Motion Branch and Static Branch

Table 4 shows the impact on results when using a single branch. When only the
motion branch is used, there is a slight (<3) decline in results on scale, shot size, shot angle,
and shot type, while there is a very minor increase in accuracy on movement and shot motion,
but a decrease in macro-F1. When only the static branch is used, movement and shot motion
decrease by 13.77 (accuracy)/10.99 (macro-f1) and 12.66/15.46, respectively, while shot type
decrease by 3.78/5.12, and scale, shot size, and shot angle remain essentially unchanged. This
indicates that the motion branch plays a leading role in our architecture and using only the
frame difference map as the input can also achieve good results, while the static branch
complements the low-level semantic information ignored by the motion branch.

Table 4. Ablation study on utilizing single branch.

Scale Movement Shot Size Shot Angle Shot Motion Shot Type
Branch Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

motion 86.88 87.13 86.14 42.82 72.82 34.87 86.32 35.05 71.68 34.37 74.65 63.97
static 89.12 89.42 71.91 32.41 73.43 40.62 86.54 32.47 58.19 22.65 72.50 60.88

4.5.3. The Influence of Visual Backbones

Table 5 shows the impact on results when using different visual backbones. Specifically,
we choose R3D [42] as a substitute for the motion backbone and ResNet50 [35] as a substitute
for static backbone. Compared with our benchmark configuration (MViT + ViT), the results
for scale, shot size, shot angle, and shot type declined when using MViT + ResNet50, while
movement and shot motion increased. A possible explanation is that ResNet50, due to its
convolutional block, tends to extract high-level semantic features of static images, while ViT,
which does not have an inductive bias, is more likely to learn low-level semantic features of
the images. When using R3D + ViT, the computational cost increases by 113GFLOPs, but the
results on all shot attributes show a significant decline. As with action recognition tasks,
after sufficient training, transformer-based methods generally outperform methods based
on the CNN-based method. However, we also point out that not all transformer-based
backbones are effective for shot attribute analysis tasks. The essence of using the vision
transformer is to utilize its lack of inductive bias to make the structure learn more low-level
semantic features during training.

Table 5. Comparison of different motion backbones and static backbones.

Scale Movement Shot Size Shot Angle Shot Motion Shot Type
Motion Backbone Static Backbone Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

MViT ResNet50 86.81 87.02 87.20 43.79 72.98 39.90 87.04 31.08 71.86 31.91 76.05 65.02
R3D ResNet50 73.89 74.13 80.69 39.14 68.43 29.46 84.84 18.93 63.50 26.32 50.11 27.71
R3D ViT 89.30 89.60 80.79 39.84 73.11 35.35 86.51 31.44 68.38 28.23 70.67 57.77

4.5.4. The Influence of Pre-Trained Models

To analyze the importance of pre-trained models in the shot attribute analysis task,
we choose MovieShots representing movie shot datasets with fewer than 30 K shots and
train the network after random initialization for 60 epochs. The results in Table 6 show
that if training starts from random initialization, the results on scale decline by 23.2/22.97,
while the performance on movement only decreases by 2.69/2.62. The statistics from [24]
indicate that most movie shot datasets have a sample size of less than 10 K, which is far
from the requirement for training transformer blocks from scratch. One of the purposes of
fixed adjustment strategy is to make our architecture usable for most models pre-trained
by action recognition datasets.
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Table 6. Ablation study on utilizing pre-trained models.

Scale Movement
Accuracy Macro-F1 Accuracy Macro-F1

With Pretrain (10 epoch) 89.46 89.73 85.68 43.40
From scratch (60 epoch) 66.26 66.76 82.99 40.78

5. Conclusions

In this paper, we first identify two issues in the shot attribute analysis task. Starting
from this, we design a unified, quantified end-to-end architecture. Through the motion-
static dual-branch structure, our method can adaptively learn the feature weights of motion
clues and static keyframes from input shots, thus adapting to various shot attribute classifi-
cation tasks. Experiments on MovieShots and AVE show that our proposed architecture
significantly outperforms all previous approaches. However, the long-tail problem of movie
shot category distribution has not been resolved. In our next step, we plan to improve
training strategies for unbalanced shot samples, so that the architecture can accurately
analyze shot attributes with fewer samples.
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