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Abstract: The Frangi neuron proposed in this work is a complex element that allows high-level
Hessian-based image processing. Its adaptive parameters (weights) can be trained using a minimum
number of training data. In our experiment, we showed that just one image is enough to optimize the
values of the weights. An intuitive application of the Frangi neuron is to use it in image segmentation
process. In order to test the performance of the Frangi neuron, we used diverse medical datasets on
which second-order structures are visualized. The Frangi network presented in this paper trained
on a single image proved to be significantly more effective than the U-net trained on the same
dataset. For the datasets tested, the network performed better as measured by area under the curve
receiver operating characteristic (ROC AUC) than U-net and the Frangi algorithm. However, the
Frangi network performed several times faster than the non-GPU implementation of Frangi. There is
nothing to prevent the Frangi neuron from being used as part of any other network as a component
to process two-dimensional images, for example, to detect certain second-order features in them.

Keywords: neural network; machine learning; deep learning; Frangi filter; Hessian; semantic
segmentation

1. Introduction

Neural networks that utilize convolutional and MaxPooling layers dominate mod-
ern multi-scale digital image processing. It is an effect of high approximation capabilities
of such architectures and relative simplicity. In order to prepare the network to start
solving a particular problem, it is required to gather a sufficiently large training set
due to which the network parameters can be trained. In some problems, gathering a
sufficiently large dataset is difficult and expensive, and sometimes even impossible. This
is especially true for medical data, for example, where even a large medical unit may
not have abundant data for a certain disease. Also, data augmentation may not be suffi-
cient if the collected data are not sufficiently representative. It should not be forgotten
that before the era of deep neural networks, there were many effective mathematical
models that could be used effectively for signal processing. They require a much smaller
number of adaptive parameters to be specified in order to operate effectively than is
the case with convolutional neural networks. The trade-off is expense of computational
complexity and sophistication of these algorithms. On the other hand, with the use of
modern computational frameworks, many complex algorithms can be implemented as
elements of neural networks and then used as integral parts of the structure of neural
networks that learn along with the overall architecture of the network. Vessel enhance-
ment filters (aka vesselness) have been part of angiographic image processing for many
years [1]. However, the application of these methods is not limited to blood vessels.
Successful applications of such filters have also been reported in detecting facial wrin-
kles [2] or saliva ferning prediction [3]. Blood vessel filtering uses a variety of methods.
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Among the most popular are deep neural networks [4], particularly U-network-based
architectures [5], directional convolutional kernels [6], various approaches to region
growing [7] and applied mathematical morphology [8]. In recent years, there have been
several proposals to improve the response of hessian-based methods by, for example,
using swarm optimization [9], genetic programming and other approaches [10–17]. In
this work, we propose so-called Frangi neurons that allow filtering second-order struc-
tures from digital images and for optimizing parameters of which a minimal training
set consisting of even a single image is required. We show that the use of a Frangi
neuron in a properly constructed neural network facilitates better performance in the
task of segmenting second-order structures than the state-of-the-art solution U-net [18]
and allows training the model using only one training image. Frangi filtering [19] is
a commonly used method, most often in situations where tubular or linear structures
such as blood vessels need to be segmented. So-called Vesselness Filters [20] are used
in liver [21], retinal [22], brain [23] finger [24], face wrinkles [25], and fabric defect [26]
imaging. Frangi filtering is used effectively in optoacoustic (photoacoustic) imaging [13],
computed tomography [27], magnetic resonance [23] or simple digital photography [25].
In the literature, methods have been proposed to optimize the parameters of the Frangi
filter; for example, work [28] uses an ordered logit model for this purpose. In our work,
these parameters are optimized while training the neural network and no additional
optimization procedure is needed.

The construction of a neural network inspired by Frangi’s algorithm is described in
paper [29]. In practice, it is a convolutional network in which layers are initialized with
parameters so that they compute the Hessian of the input image. Those parameters are
optimized during training. In total, there are nine kernels and six parameters to update
during training. In our approach, there is no restriction to the number of parallel Frangi
blocks, and the Hessian calculation is fixed. In this way, we obtain a significantly larger
filter response to second-order structures with different diameters. Furthermore, in this
work, we define a single Frangi neuron that can stand alone as a component of any neural
network and not just one particular architecture.

Our proposed method, like one-shot semantic segmentation networks, allows tuning
the parameters to adapt to a new class of images. However, unlike the models proposed,
for example, in works [30,31], the parameters of the segmentation networks are not based
on convolutional layers, but on a ready-made hessian-based model. This results in a
significant reduction in network tuning time at the expense of reducing the flexibility of
the segmentation model.

The hessian-based second-order structure detection algorithm is, in fact, a well-known
approach. An important novelty that we propose in this paper is to enable the use of this
technique in the form of a dedicated neural layer. The recent developments in the design
of new types of deep learning architectures have made it possible to directly optimize the
parameters of such filters in a deep learning framework. Lately, other layers using efficient
signal processing algorithms were defined, such as, for example, Zernike layers [32–34] or
wavelet transform layers [35]. The theoretical principles of these methods are well known,
as in the case of Frangi’s filter. Creating neural network layers based on them allowed
us their effective use in deep learning models. We hope that a publication showing the
effectiveness and possible applications of the second-order Hessian approach encapsulated
in the neural layer will be useful to the scientific community.

2. Materials and Methods

In this section, we present the Frangi neuron mathematical model and the datasets on
which we test its effectiveness in practice.

2.1. Frangi Filter

One of the most influential methods on multiscale tubular structure filtering has been
described by Frangi et al. in [19]. This method uses the analysis of the second partial
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derivative of an image (Hessian) to detect local structures of this image. In the remainder
of this paper, we consider the two-dimensional case. The Frangi filter follows Algorithm 1.

Algorithm 1: Frangi filtering algorithm.
Data: Input: I-two-dimensional grayscale image
Parameters: Σ = [σ1, . . . σm] are standard deviations of the Gaussian kernel, β is
“blobness” threshold, γ is sensitivity threshold to areas of high variance of texture
(possible structure).
Result: R-resultant image, in which potential tubular structures are characterized

by a stronger filter response.
R← ∅;
for σ in Σ do

// Convolution of I with Gaussian kernel with standard deviation
equals σ

Iσ ← I ~ Gσ;
// Calculation of Hessian matrix from Iσ. Each element of

Hessian is a vector of four partial derivatives calculated
over δxx, δxy, δyx (δxy = δyx) and δyy.

HIσ ← H(Iσ);
// Calculation of matrix of pairs of eigenvalues for each 2 × 2

matrix created from partial derivatives of Hessian matrix.
Let us assume that ‖λ1‖ ≤ ‖λ2‖

λIσ ← eig(HIσ );
// Calculation of blob-like structures ratio

RBIσ ←
‖λ1‖
‖λ2‖

;

// Calculation of “second order structureness” ratio

SIσ ←
√

λ2
1 + λ2

2;

// Calculation of “vesselness”

VIσ ←
{

0 i f λ1 > 0 or λ2 > 0

exp(
−RB2

Iσ
2β2 )(1− exp(

−S2
Iσ

2γ2 )
;

if R = ∅ then
R = VIσ ;

end
else

// Elements-wise max
R = max(R, VIσ );

end
end
return R

Calculation of eigenvalues from a symmetric matrix of size 2 × 2 can be performed
according to Equation (1). λ1 =

Hxx+Hyy+
√
(Hxx−Hyy)2+4X2

xy

2

λ2 =
Hxx+Hyy−

√
(Hxx−Hyy)2+4X2

xy

2

. (1)

The computations performed in a loop of Algorithm 1 that uses different values of
sigma from the set sigma are independent of each other and can be performed in parallel.
Only the last operation R = max(R, VIsigma) aggregates the partial results via element-wise
(pixel-wise) maximum. This fact can be used to build a parallel neural network architecture
inspired by the performance of Frangi’s original algorithm.
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2.2. Frangi Neuron

Let us define a Frangi neuron as an indivisible block of operations that takes a tensor
of size (n,m) as its input and returns a tensor of identical size. The operations performed by
the Frangi neuron are identical to the operations performed in the individual loop iterations
of Algorithm 1. Each loop iteration of Algorithm 1 uses three parameters: σ, β, and γ.
In the case of the Frangi algorithm, these are invariant and are defined before the filter
is run. However, we can optimize them to achieve the desired effect by minimizing the
network’s loss function. Each Frangi neuron can thus independently have three parameters
subject to optimization: σ, β, and γ. We now discuss the practicality of optimizing each
parameter in the neural network learning process given a potential implementation of the
Frangi neuron.

Parameter σ is a parameter of the Gaussian kernel. Its value affects the diameter of the
structures detected by the filter. In practice, the value of σ determines the window size of
the Gaussian filter kdim, for example according to Equation (2) (see source codes of [36]).

kdim = 2 ∗ b4σ + 0.5c+ 1, (2)

where bc is the rounding down operator. This fact causes, in the case of processing data in
a single instruction multiple data pipeline, parameter σ to become troublesome because
the implementation of the convolution filter, e.g., in Tensorflow, requires a predefined filter
window size. For this reason, the Frangi neuron architecture proposed in this work has a
fixed value of σ that is not subject to optimization. Parameters β and γ are threshold values
for blob-like structures and the second-order structureness ratio. They are easy to optimize
because changing them does not change the structure inside the neuron. The values of
β and γ must be different from zero and there is no point in considering their negative
values. Since they are arguments of the denominator of the exponent of the exponential
function, there is a certain range of values in which they affect the performance of the filter.
For this reason, we impose constraints in the optimization process: 0.05 ≤ β < 10 and
0.05 ≤ γ < 50. Outside this range of values, the Frangi algorithm may become stuck in the
local minimum. The Frangi neuron diagram is shown in Figure 1.

I
trainable weights: [a b, ]
fixed parameters: [ ]σ V

σI

Fσ

Figure 1. Frangi neuron diagram.

2.3. Example Application: Network Using Frangi Neurons for Image Segmentation
(Frangi Network)

An intuitive application of the Frangi neuron is to use it in an architecture for the
detection of longitudinal structures of varying diameters. We present our proposed network
architecture of this type in Figure 2. This network consists of m Frangi neurons, each
initialized with different σ values according the Equation (3). The range of sigma values
depends on the range of diameters of the structures we want to detect. In practice, in the
remainder of this paper, we used the set of σ values defined according to equation

σ = [1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 7, 8, 9, 10], (3)

which proved to be very effective for the datasets tested. Frangi neurons are shown as
green circles in Figure 2.
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In Algorithm 1, each loop result with a given σ has an identical weight. In our
approach, we added a single block after each Frangi neuron to scale the neuron’s response.
We called it a scaling neuron. Its operation is to multiply the incoming signal by value I
in the interval I ∈ [0, 1]. The value of I is subject to optimization during network training.
These blocks are shown in Figure 2 as yellow circles. The next step is to aggregate the results
of the individual filters by computing the pixel wise maximum and scaling the results to
the interval [0, 1]. Values close to 0 indicate no detection of second-order structures. Values
close to 1 indicate a high probability that second-order structures are present. The network
can be trained using the stochastic gradient descent method of, for example, Adam [37]. The
Frangi neuron implements complex functionality and hence needs a very small training set
to optimize its parameters. Also, the Frangi network can be practically trained using only
one (!) training image. In our implementation, we used an augmentation of the training set
inspired by the augmentation used in the U-net [18]. We used random cropping, random
brightness, contrast and saturation modification, random rotation, shearing, horizontal and
vertical flipping, shifting and zooming. We used binary crossentropy as the loss function.
DICE, IoU as well as binary crossentropy [38] are used to train the neural network used for
segmentation. Modern scientific literature suggests that crsossentrop-based loss functions
should be used first as a target function, which is universal for various segmentation
problems, especially for medical images [38,39].

F *

P
ix

e
l w

is
e
 m

a
x
im

u
m

S
c
a
lin

g
 [0

,1
]

σ1
1

F *σ2
2

F *σm
m

Output
image

Input
image

Figure 2. Franginetwork for image segmentation.

2.4. Datasets

In order to test the performance of a Frangi neuron, we used diverse medical datasets
on which second-order structures are visualized. The following datasets were used in
other research work and the license allows us their use in our work. We did not perform
any research on humans to gather these data. Data do not contain personally identifiable
information or offensive content.

2.4.1. Retinopathy (Retina)

First dataset that we used is a retinopathy database [40] that was gathered to enable
comparative studies on segmentation of blood vessels in retinal images. That dataset
consists of 40 images in total. Overall, 20 images are in the training group, while the
remaining 20 images are in the test group. Both the training and test groups have reference
manual segmentations and binary masks that indicate only the region containing the eye
ball. Only the masked area is evaluated during segmentation quality testing. The images
and their manual segmentations are made publicly available at https://drive.grand-challe
nge.org/ (Access date: 4 September 2023).

https://drive.grand-challenge.org/
https://drive.grand-challenge.org/
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2.4.2. X-ray Coronary Artery Angiography (Coronary Artery)

The second dataset contains four X-ray coronary angiography images [41]. The images
show blood vessels of various sizes. A high level of background noise as well as the blood
vessels themselves are evident. A manual segmentation is provided for each image. Since
there is no distinction between training and test set, training on this set is performed by
selecting its subset to be used in training. In terms of image quality as well as diameter
variation, this dataset is much more difficult to segment than the retina one.

2.4.3. Brain MRA (Brain)

The last dataset contains five images of brain magnetic resonance angiography (MRA) [42].
Images depict vessels of varying thickness. MRA reconstructions show different axial
slices of human brain. Manual segmentation is provided for each image. Since there is no
separation between training and test set, training on this set is performed by selecting a
subset of it to be used for training.

3. Results

We implemented our solution using Python 3.8, tensorflow 2.8.0, keras 2.8.0, tensoflow-
addons 0.16.1 (for Gaussian smoothing). The source code of the proposed algorithm can be
downloaded from the GitHub repository https://github.com/browarsoftware/FrangiNe
uron (Access date: 4 September 2023). We tested the performance of the Frangi neuron in
the Frangi network (see Section 2.3) by comparing its performance to the Frangi filter and
the U-net. We used the Frangi filter implementation from the scikit-image package 0.19.2.
For the Frangi filter, we set σ values according to Equation (4).

Σ = [1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 5, 6, 7, 8, 9, 10]. (4)

Weobtained the U-net implementation from the GitHub repository, https://github
.com/jocicmarko/ultrasound-nerve-segmentation (Access date: 4 September 2023).
This source code is available under the MIT licence. Both the Frangi network and the
U-net were trained on a single image in the training set at 200 epochs. We repeated
the training on every single image in the set, and then the remaining images were used
to test the results. For training purposes, we used the Adam optimizer [37,43] with a
learning rate equal to 10−2 and a batch size equal to 16. In all cases, only one image
was used for training, and the rest wete used for validation (one-shot learning). We
applied cross-validation, so after the Frangi network and the U-net were trained and
validated, the network weights were randomly initialized, and another image was selected
for training and the rest of the dataset was selected for validation. We performed 20
trainings and validations for the retina dataset, 4 trainings and validations for the artery
dataset and 5 trainings and validations for the brain dataset. The quality of segmentation
was evaluated using the Area Under the Receiver Operating Characteristic Curve (ROC
AUC) measure, which is an appropriate metric for evaluating this type of task. We used the
scikit-learn 1.0.2 package for this. Our implementation and the data used are presented
in the https://github.com/jocicmarko/ultrasound-nerve-segmentation (accessed on 4
September 2023). The calculations were performed on Intel Core i7 3.00 GHz CPU, 64 GB
RAM, NVIDIA GeForce RTX 2060 GPU, Windows 10 OS.

The results of the segmentation performance of each method can be seen in Figures 3–5
and in Tables 1–4. Values in the tables are averaged. The last row of Table 1 contains the
average execution time of the algorithm on the retina set given in seconds. We calculated
Sensitivity, Specificity, Intersection of Union (IoU/Jaccard), Volumetric Overlap Error
(VOE) [44] and F1-score/Dice to make the results more comprehensive. We found those
metrics most appropriate. Other popular scorings like Average Symmetric Surface Distance
(ASSD) that measures the average of all distances for every point from one object to the
other and vice versa are not suitable for tubular structure segmentation but rather for
regions or volumes segmentation [45,46].

https://github.com/browarsoftware/FrangiNeuron
https://github.com/browarsoftware/FrangiNeuron
https://github.com/jocicmarko/ultrasound-nerve-segmentation
https://github.com/jocicmarko/ultrasound-nerve-segmentation
https://github.com/jocicmarko/ultrasound-nerve-segmentation
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Table 1. ROC AUC value of test dataset calculation for various segmentation algorithms. The bottom
row contains the average execution time of the algorithm on the retina set given in seconds.

Frangi Network Frangi U-Net

Retina 0.8684 0.7883 0.7769
Coronary artery 0.9117 0.9110 0.7264
Brain 0.9397 0.9297 0.5720
Exec time [S] 0.160 1.187 0.143

Table 2. Coefficients assessing the quality of segmentation of test datasets calculated for the
Frangi network.

Sensitivity Specificity IoU VOE F1-Score/Dice

Retina 0.6648 0.9557 0.4251 0.5749 0.5966
Coronary artery 0.9891 0.9143 0.4842 0.5158 0.6526
Brain 0.9242 0.9133 0.4768 0.5232 0.6451

Table 3. Coefficients assessing the quality of segmentation of test datasets calculated for the Frangi filter.

Sensitivity Specificity IoU VOE F1-Score/Dice

Retina 0.6244 0.9441 0.3648 0.6352 0.5348
Coronary artery 0.9551 0.9144 0.4677 0.5323 0.6377
Brain 0.9139 0.9166 0.4804 0.5196 0.6487

Table 4. Coefficients assessing the quality of segmentation of test datasets calculated for the U-net
network.

Sensitivity Specificity IoU VOE F1-Score/Dice

Retina 0.6506 0.9152 0.3130 0.6870 0.4767
Coronary artery 0.8088 0.8242 0.2577 0.7423 0.4095
Brain 0.6457 0.6751 0.1430 0.8570 0.2506

Image Manual Frangi Frangi network U-net

Figure 3. Segmentation results on the retina dataset.
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Image Manual Frangi Frangi network U-net

Figure 4. Segmentation results on the brain MRI dataset.

Image Manual Frangi Frangi network U-net

Figure 5. Segmentation results on the X-ray coronary artery angiography dataset.

4. Discussion

Both the results obtained in Tables 1–4 and the visualizations in Figures 3–5 prove that
the Frangi neuron fulfills its role as a detector of second-order structures. Both AUC ROC
and other evaluated metrics consistently show that the proposed network based on Frangi
neurons performs better, and, in borderline cases, generally no worse than the stationary
Frangi filter. On the other hand, the qualitative advantage of the obtained segmentations
over the U-net architecture is strongly evident. This is not due to the weakness of this
universal and efficient architecture like U-net, which is a kind of state-of-the-art solution for
segmentation tasks. It is simply due to the fact that model parameter fitting is performed
on the basis of a one-element learning set. It can be said that the proposed network
based on Frangi neurons can be classified among one-shot segmentation approaches. This
reveals the great flexibility of the proposed architecture and may be its advantage over
universal models such as U-net in some specific applications. The results on the retina
set are much worse than, for example, in [47], because the U-net was trained on only one
image (one-shot learning) and not on the full 20-element training set. The limitation on the
size of the training set was intended to show the limitations of the models purely based
on convolutional filters (U-net-like architectures). The Frangi filter performances on all
datasets in not poor as it might be expected. As can be seen in Tables 2 and 3, specificity,
IoU and F1-score factors are quite similar to those of the Frangi network. In the case of the
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Frangi filter, however, the sensitivity value is lower, which means that the filter without
the optimization procedure performs worse in identifying true positive values. On the
other hand, the fact is that the Frangi filter on the tested datasets performs better than the
U-net if this deep neural network is not trained on a sufficiently large dataset. A single
image in the training set is enough for the Frangi network using the Frangi neuron to
optimize its weights to detect the relevant image fragments. Compared to the Frangi filter
alone, the results returned by the network have much stronger contrast. Frangi filtering has
the disadvantage of highlighting the boundaries of an area of solid colour as the location
of second-order structures. This is clearly visible in the retina set (see Figure 3). This
phenomenon cannot be eliminated in a network architecture using only Frangi neurons
because it is a feature of a Hessian-based approach. If the filtered area does not have such
clear boundaries, this effect does not occur as can be seen, for example, in the coronary
artery dataset (see Figure 5). In Figures 3 and 4, the proposed Frangi neuron model might
have bias for segmenting the contour. This is typical behaviour of any method that uses
various types of edge detectors. In practice, if an image is known to have a globally
definable edge separating the area of interest from the background, it is eliminated from the
segmentation process by applying an image mask. Such an edge removal procedure was
also used in [40]. Thus, this area does not affect the physician or clinician’s decision, since
its removal is a well-known practice. For the datasets we considered, a single image was
insufficient for the U-net to produce generalizations of the segmentation process despite the
fact that it uses image augmentation analagous to that of the Frangi network. Trained on a
single image, the U-net either removes too many parts of the image or leaves fractions of the
image that do not contain the desired structures. The ROC AUC of the Frangi network has
the largest (best) values of all tested methods for all datasets. The computation execution
time on the U-net is about 10% faster than on the Frangi net. The Frangi net performs more
than seven times faster than the Frangi filter using the same Σ set. We did not optimize
the speed of the Frangi neuron because we used the available standard Tensorflow and
Keras functions in its implementation, so we assume that its performance can be improved.
In summary, the Frangi neuron met the expectations and is an effective component of the
network performing segmentation of various types of second-order structures. In most
advanced deep neural one-shot network models for image segmentation, the authors use
pretrained models on large and comprehensive image datasets [48,49]. This is an important
limitation because the most popular image databases such as imagenet [48] and COCO [50]
do not contain medical modalities. In contrast, solutions based on Hessian matrix analysis
are immediately ready to detect tubular structures. In medical practice, we often have a
very limited number of medical images presenting the modality of interest to physicians,
on which a particular biological structure can be seen. In such case, even transfer learning
is problematic due to the high complexity of the deep learning model and the shortage of
training data. The remedy might be the use of image augmentation, which we also applied
in this work for the U-net.

5. Conclusions

The neuron proposed in this work is a complex element that allows high-level Hessian-
based image processing. Its adaptive parameters (weights) can be trained using a minimal
amount of training data. In our experiment, we showed that just one image is enough to
optimize the values of the weights. An intuitive application of the Frangi neuron is to use
it in image segmentation process. The Frangi network presented in this paper trained on a
single image proved to be much more effective than the U-net trained on the same dataset.
For the tested datasets, the network achieved the best results as measured by ROC AUC as
the Frangi algorithm runs, however, several times faster than the non-GPU implementation
of Frangi. The Frangi network implementation prepared for this work uses a massive
GPU parallelized algorithm. For this reason, it runs several times faster than the non-GPU
implementation of the Frangi filter. The U-net, on the other hand, runs at a speed on the
GPU comparable to that of the proposed Frangi network. Ultimately, the goal should be
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to have every algorithm that performs image processing implemented multithreaded, if it
can be accelerated in this way. There is nothing preventing the Frangi neuron from being
used as a part of any other network as a processing element for two-dimensional images,
for example, to detect some second-order features in them. We proposed a method for the
detection of second-order features.

Our proposed method has some limitations caused by the implementation. It would
be beneficial to implement the ability to optimize the values in the Σ set. This would allow
us the use of a much smaller set of Σ values which would speed up the computation. We
can manually overcome such problems by re-implementing Tensorflow’s two-dimensional
Gaussian filtering. Tensorflow’s built-in Gaussian filtering requires the float value sigma,
which cannot be a Tensorflow variable. For this reason, sigma is not directly optimized
in the GPU processing pipeline. However, we decided that Tensorflow’s current built-in
implementation of Gaussian filtering is sufficient to demonstrate the effectiveness of the
proposed method. The second limitation is that the Frangi neuron is less flexible compared
to a typical convolutional architecture. The Frangi neuron is designed to detect certain
second-order structures and cannot cope with other types of scenarios. On the other hand,
it is an excellent alternative to convolutional networks, when we have a small number
of training data pieces, which is very common for medical data, where gathering and
manual segmentation of the training set is a difficult (due to small number of available
cases) and expensive task. Frangi neuron is an image processing method that is dedicated
to the segmentation of tubular structures. The most intuitive application is the detection
of various types of bio structures. In practice, a wide variety of blood vessels are often
analyzed [51–53], including those that form tree-like structures (for example, lungs) [54].
Tubular structures also form the intestine [55,56] and trachea [57,58]. We hope that the
Frangi neuron will find its application in the above-mentioned areas.
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