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Abstract: Topologically associated domains (TADs) represent essential units constituting chromatin’s
intricate three-dimensional spatial organization. TADs are stably present across cell types and species,
and their influence on vital biological processes, such as gene expression, DNA replication, and
chromosomal translocation, underscores their significance. Accordingly, the identification of TADs
within the Hi-C interaction matrix is a key point in three-dimensional genomics. TADs manifest
as contiguous blocks along the diagonal of the Hi-C interaction matrix, which are characterized by
dense interactions within blocks and sparse interactions between blocks. An optimization method is
proposed to enhance Hi-C interaction matrix data using the empirical mode decomposition method,
which requires no prior knowledge and adaptively decomposes Hi-C data into a sum of multiple
eigenmodal functions via exploiting the inherent characteristics of variations in the input Hi-C data.
We identify TADs within the optimized data and compared the results with five commonly used TAD
detection methods, namely the Directionality Index (DI), Interaction Isolation (IS), HiCKey, HiCDB,
and TopDom. The results demonstrate the universality and efficiency of the proposed method,
highlighting its potential as a valuable tool in TAD identification.

Keywords: Hi-C; topologically associated domains; empirical mode decomposition

1. Introduction

With progressive advancements in chromatin conformation capture technologies, re-
searchers have successfully generated comprehensive three-dimensional interaction maps
of all chromatins. These studies have gradually revealed the three-dimensional spatial
organization of chromatin in the nucleus, covering different scales such as chromosome
territories [1], A/B compartments [2] spanning approximately 5 Mb, topologically asso-
ciated domains (TADs) [3] spanning several hundred Kbs, and smaller unified structural
chromatin loops [4] at the genome-wide level. TADs serve as critical regulatory units for
gene expression, facilitating chromatin interactions within specific regions while inhibiting
interactions between different regions. Thus, TADs control the precise range of enhancer
and promoter activities [5] at different scales of chromatin 3D architecture.

TADs have been observed to form within genomic regions spanning approximately
1 Mb in length. These TADs exhibit significantly stronger intra-domain chromatin spatial
interactions than inter-domain chromatin spatial interactions. In particular, the spatial
proximity between two points within TADs is closer than the distance between two points
outside of TADs, even when considering the same linear distance. These structural do-
mains have a significant impact on the regulation of biological functions. Dekker and
Heard [6] extensively characterized TAD structures in different species, which can vary in
size, formation mechanisms, and functional properties across organisms. TADs represent
functionally distinct domains involved in gene regulation. Furthermore, the application
of Hi-C technology in plants has revealed distinct TAD structures in genomic interaction
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mapping studies conducted on rice, maize, tomato, sorghum, and cotton in recent years [7].
TADs serve as the primary functional units within three-dimensional chromatin architec-
ture. The conservation of TAD structures has been observed across cell lines and even
between species, suggesting that TADs maintain their structural integrity independent of
cellular specificity. The boundaries of TADs show enrichment of chromatin-structuring
proteins and correspond closely to the boundaries of replication units during biological
processes. TADs are the fundamental units that constitute the three-dimensional spatial
organization of chromatin, are consistently present in cells across species, and exert signifi-
cant influence and regulation over essential biological processes, such as gene expression,
DNA replication, and chromosomal translocation.

TADs manifest as regions characterized by increased internal interactions, which
are visually represented as square patterns along the diagonal in Hi-C heat maps [8].
These square regions observed on thermograms vary in size and spacing, encompassing
chromatin segments that have robust intra-regional interactions while exhibiting weaker
interactions with neighboring chromatin segments. The boundaries of these square regions
correspond to the boundaries of TADs. Effectively and accurately distinguishing the TAD
structures from the vast amount of data present in Hi-C heat maps during three-dimensional
chromatin structure analysis is a significant and complex challenge.

Based on Hi-C data, several methods have been developed to identify TADs within
chromatin structures. Jesse et al. [3] examined TAD structures in the Hi-C interaction
matrix. They proposed a method to characterize the deviation of chromatin regions from
upstream and downstream interactions. This method uses the Directionality Index (DI) to
characterize each chromatin region and allows for the inference of TAD positions using
a hidden Markov model. Emily et al. [9] used the Interaction Isolation (IS) Index, which
calculates the sum of interaction intensity values within local chromatin regions, to identify
TADs. Through identifying boundaries according to interaction intensity, TAD boundaries
can be determined via locating local extremes after performing a smoothing transformation.
Both methods involve transforming the matrix information into a one-dimensional series
and detecting TAD boundaries based on numerical changes.

The TopDom method [10] considers the relatively weak interactions between TAD
boundaries and adjacent chromatin segments, and uses an adjustable window size to
restrict the range of calculated interaction frequencies. Statistical features of the interaction
frequencies within the window are extracted near the diagonal of the Hi-C interaction
matrix, and the local minimum of the mean interaction strength is identified as a potential
TAD boundary point. The Arrowhead method [4] applies a custom Arrowhead transforma-
tion to the interaction frequency matrix and calculates a custom score based on structural
domain features. Custom scores above a certain threshold are considered potential struc-
tural domain vertices. The TADtree method [11] adopts a top-down strategy, which first
identifies the outer structural domains using a method similar to the DI, and then the
inner substructural domains. Conversely, the CaTCH method [12] adopts a bottom-up
strategy through first using a small window to identify underlying structural domains, and
gradually expanding the window to identify higher-level structural domains. The HiTAD
method [13] further refines topologically related structural domains through globally opti-
mizing chromatin partitioning and identifying hierarchically structured domains based on
this optimization. The SuperTAD method [14] utilizes dynamic programming with polyno-
mial time complexity to compute the coding tree of a Hi-C interaction map, with emphasis
on minimal structural data. The TADBD method [15] employs a Haar diagonal template, a
compact integrogram for acceleration, multi-scale aggregation for template size, statistical
filtering, and alternate input/output options to detect TAD boundaries. Yan et al. [16]
present MrTADFinder, an algorithm based on the network science notion of modularity, to
detect TADs from intra-chromosomal contact maps. The CASPIAN method [17] utilizes
a density-based hierarchical clustering algorithm, based on a distance metric, to cluster
points within the Hi-C interaction matrix. Subsequently, the algorithm determines TAD
boundaries according to the clustering results. Xing et al. [18] present a novel approach,
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HiCKey, to discover hierarchical TAD structures in Hi-C data and conduct cross-sample
comparisons. The HiCDB method [19] identifies TADs boundaries through constructing
a local relative insulation (LRI) metric that converts a two-dimensional Hi-C map into a
one-dimensional vector.

Chromatin interactions within the same TAD show more vigorous intensity than inter-
actions between TADs. Distinct demarcation lines at TAD boundaries are often observed
in the distribution of interactions within upstream or downstream chromatin regions. Re-
searchers have compared different TAD identification methods at different resolutions
using the same dataset and observed differences in metrics such as size, isolation, and
sensitivity. This suggests the importance of selecting appropriate methods based on spe-
cific research objectives or using multiple methods to comprehensively understand Hi-C
data [20–22]. More precise detection methods with improved accuracy and sensitivity are
needed to detect TADs in high-dimensional, sparse, and noisy Hi-C data.

In the remaining sections of this paper, we describe our proposed fusion scheme in
Section 2, including the motivation and discussion of parameter setting. We present the
analysis and results in Section 3. Finally, the conclusions are drawn in Section 4.

2. Methods
2.1. Empirical Mode Decomposition Topologically Associated Domain

Huang et al. [23] introduced the empirical mode decomposition (EMD) method in
their NASA research, which offers advantages of linearizing and smoothing nonlinear and
non-smooth signal data without requiring any prior knowledge. This method adaptively
decomposes complex data into a set of intrinsic mode functions (IMFs) based on the
inherent characteristics of the input dataset itself. The Hilbert transform is then applied to
each IMF to extract the instantaneous frequency and amplitude of each eigenmode function,
thereby capturing their temporal variations. Through combining the information from all
IMFs, a comprehensive time–frequency distribution of non-smooth signals can be obtained.
EMD [23], originally developed for nonlinear and non-smooth signals, posits that each
signal consists of distinct eigenmode functions, each of which exhibits potential linearity or
nonlinearity. Subsequently, researchers have extended the application of EMD to various
domains, including image processing [24–26].

TADs represent contiguous blocks along the diagonal of the Hi-C interaction matrix,
which are characterized by dense intra-block interactions and sparse inter-block interactions.
In this study, we proposed an innovative TAD identification method called the empirical
mode decomposition topologically associated domain (EMTAD) method. The EMTAD
method optimizes Hi-C interaction matrix data using EMD, adaptively decomposes Hi-C
data into multiple eigenmode functions, and then reconstructs the Hi-C interaction matrix.
Through incorporating the EMD technique, the EMTAD method effectively enhances the
structural modes present in Hi-C data, reduces data noise, and provides more precise and
more plausible TAD structures.

To identify TADs, we use Count Index (CI) [27,28], which is consistent with the original
TAD definition. We compared the results of the EMTAD method with five conventional
identification methods, namely the classical DI, IS, HiCKey, HiCDB, and TopDom. Our re-
sults show that the EMTAD method achieves the most favorable TAD identification results.

2.2. Data Preprocessing

The EMTAD method is a method designed to optimize Hi-C data and facilitate the
identification of TADs. First, the Hi-C interaction matrix is normalized using the iterative
correction and eigenvector decomposition (ICE) technique [29], as shown in Figure 1A.
The original Hi-C interaction matrix exhibits significant noise, and regions away from the
diagonal line contain significant interaction data similar to TAD structures. Such noisy data
significantly affect the accuracy and reliability of TAD structure and downstream analyses.
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Figure 1. Heat map of the Hi-C interaction matrix at various treatment stages: (A) raw Hi-C
interaction matrix; (B) ICE normalized interaction matrix; (C) fusion structure data interaction matrix.
(Rao2014-GM12878-DpnII-allreps-filtered-50 kb).

Figure 1B illustrates the effectiveness of ICE normalization in removing noises from the
original Hi-C interaction matrix. At the same time, it enhances the data surrounding TAD
structures along the diagonal, thereby minimizing or correcting biases in the sequencing
data and preventing error amplification. In addition, ICE normalization takes advantage of
the symmetry of the Hi-C interaction matrix, allowing the method to operate only on the
upper triangular portion of the matrix in subsequent steps. This reduction in computational
overhead effectively reduces the memory requirements of the method.

Since TADs typically range in size from about 200 Kb to 2 Mb, interactions beyond
the 2 Mb region can be ignored in the Hi-C interaction matrix. Furthermore, according to
the definition of TADs, interaction values within TAD regions have higher intensity and
lower variability. In contrast, interaction values in the surrounding regions between TADs
have lower intensity and lower variability. Therefore, evaluating the proportion of change
in interaction values and their absolute magnitudes, followed by applying logarithmic
transformations to the matrix, makes it possible to effectively eliminate specific interaction
values that persist within the inter-TAD regions. These interaction values correspond to
biological interactions between two TADs and are not due to experimental errors. However,
for the specific purpose of TAD identification using the EMTAD method, these inter-TAD
interaction values provide unfavorable information and should be removed.

After applying ICE normalization, which includes removing interaction values beyond
the 2 Mb region and excluding interaction values between TADs, the error inherent in the
original Hi-C interaction matrix can be significantly reduced. At the same time, this process
eliminates data that are not relevant for TAD detection. The result is the optimized Hi-C
interaction matrix in Figure 1C that maximally preserves the TADs. This matrix serves as
the basis for subsequent steps involving EMD of the Hi-C matrix and TAD identification.

2.3. Using Information Entropy to Measure IMF Matrix Values

The successful application of image decomposition and feature extraction of compo-
nents using the EMD method in image processing provide valuable insights for identifying
TADs within the Hi-C interaction matrix. In particular, the EMTAD method offers a conve-
nient approach that minimizes the need for explicitly considering TAD structures, including
TAD boundaries. Instead, the method adaptively decomposes complex, high-dimensional,
sparse, and noisy Hi-C data into a set of eigenmode functions known as IMFs. This decom-
position process merges the augmented Hi-C interaction matrix with the IMF set with the
highest information entropy sum. Through iteratively evaluating the information entropy
sum over all IMFs, the set of IMFs with the largest entropy sum is selected for fusion,
resulting in an extended Hi-C interaction matrix.

In the context of TAD identification, the distinctive features of TADs manifest them-
selves as robust intra-domain interactions juxtaposed with weaker inter-domain interac-
tions. Consequently, the boundary region between two TADs serves as a central reference
for partitioning them into separate rectangular blocks. To effectively detect TAD bound-
aries, it is imperative to focus on information that deviates from the surrounding context
within the contact matrix. To quantify the significance of the decomposed IMF matrix, the
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concept of information entropy, as introduced in reference [30], is used. Higher information
entropy values within the IMF matrix indicate greater variations in pixel values between
neighboring regions, suggesting the presence of potential TAD boundaries.

The information entropy of a given i-th IMF (im fi(m)) is formally defined as follows:

Hi =
M

∑
m=1

pimlogpim (1)

where pim = im fi(m)

∑M
m=1 im fi(m)

, im fi(m)(m = 1, 2, . . . , M) is the m-th element of im fi.

As can be seen from Equation (1), an increase in the uncertainty associated with
the pixel values captured within an image corresponds to a proportional increase in the
entropy value.

2.4. Major Steps

As shown in Figure 2, the EMTAD procedure includes the following key steps:
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1. Normalize the input and remove irrelevant interaction values from the Hi-C contact
matrix U.

2. Identify the local maximum points umax(t) and local minimum points umin(t) within
the matrix U via selecting the maximum and minimum values within a 3 × 3 neighborhood.

3. Use the cubic spline functions to connect all extreme points umax(t) and form the
upper envelope emax(t) of the matrix. Similarly, cubic spline functions are used to connect
very small points umin(t) and form the lower envelope emin(t).

4. Calculate the mean of the upper and lower envelopes, denoted as m(t) = [emax(t)+emin(t)]
2 .

5. Subtract the mean m(t) from the matrix U.
6. Evaluate the iterative stopping condition for EMD, where the standard deviation

SD ≤ ε (set ε = 0.3). If the condition is met, proceed to Step 7; otherwise, use the results
from Step 5 and return to Step 3 for further calculation.

7. Obtain the L IMF components m f1~im fL, followed by calculating their respective
information entropy values using Equation (1). The information entropy values of the L
IMF components are then summed.

8. Terminate the EMD process when steps 3 to 6 satisfy the iteration-stopping condition.
The IMF components of all combinations and their corresponding sums of information
entropy values are listed.

9. Determine the set of IMF components with the highest sum of information entropy
values and generate the optimized Hi-C contact matrix V via superposition.

10. Identify the TADs within the Hi-C matrix V based on the CI values.
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2.5. Algorithm

The following Algorithm 1 is the EMTAD algorithm:

Algorithm 1: EMTAD

Input: The initial Hi-C matrix is referred to as matrix U.
Output: The enhanced and optimized Hi-C matrix V .
Procedure:

1. Import the Hi-C matrix U, initialize i = 1.
2. Perform EMD on the matrix U, resulting in the derivation of n IMFs (im fi(m)).
3. for i = 1 to T do
4. Calculate all local maxima points umax(t) and local minima points umin(t) of the

matrix U(t).
5. Use cubic spline functions to connect all identified local maxima points umax(t) to construct

the upper envelope emax(t) of the signal; similarly, use cubic spline functions to connect all
identified local minima points umin(t) to construct the lower envelope emin(t) of the signal.

6. Calculate the average of the upper and lower envelope curves m(t) = [emax(t)+emin(t)]
2 .

7. h(t) = U(t)− m(t).
8. Calculate the total information entropy Hi for the IMFs by summing the probability

distribution of each mode m within the set of IMFs using the formula
Hi = ∑M

m=1 pim log pim.
9. end for
10. Select the combination of IMFs with the highest total information entropy, merge the n IMFs

to obtain the enhanced and optimized Hi-C matrix V.
11. Evaluate the CI for each bin and record it in the Ci List.
12. for Ci in Ci List do
13. If the CI corresponds to a local minimum within the Ci List and Ci < Ct where Ct denotes the

threshold value of Ci
14. The current bin represents a boundary of TADs.
15. end for

2.6. Experimental Implementation Details

To validate the universality and stability of the EMTAD method, a series of experiments
were performed using the EMTAD method to optimize and improve the Hi-C matrix dataset
of five different cell lines, namely GM12878, HMEC, HUVEC, K562, and NHEK. The results
of TAD identification were then compared with five alternative methods, namely the DI, IS,
HiCKey, HiCDB and TopDom. The purpose of these comparative analyses was to evaluate
the effectiveness and reliability of the EMTAD method.

The Hi-C data used in the experiments were obtained from the datasets published
in 2014 by Rao et al. [4]. Specifically, the experiments predominantly used the Hi-C
datasets (accession number GSE63525) available in the NCBI database, which included
seven different resolutions (10 Kb, 25 Kb, 50 Kb, 100 Kb, 250 Kb, 500 Kb, and 1 Mb). These
datasets were derived from five different cell lines, namely GM12878, HMEC, HUVEC,
K562, and NHEK.

The ChIP-seq data used for comparative analyses of results included data on transcrip-
tion factors and various histone modifications. These data were obtained from the database
of the Encyclopedia of DNA Elements (ENCODE) project.

To assess the universality and stability of the EMTAD method, the obtained results
were compared with the recognition results of two classical one-dimensional methods,
namely the DI and IS. In addition, the widely used TopDom method was used for compari-
son due to its higher recognition accuracy. These comparative analyses were performed to
validate the recognition efficiency of the EMTAD method.

The evaluation metrics were used to analyze the results, including the number of
identified TADs, the boundaries delineating recognized TADs, the Silhouette Coefficient,
the mutual information between the six methods (EMTAD, DI, IS, HiCKey, HiCDB, and
TopDom), and the consistency of the recognition results. These metrics were used to
evaluate the performance and reliability of different identification methods.
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The code for the EMTAD method was developed in Python 3.7, while the EMD
module was implemented using the PyEMD package. The experiments were performed on
a computer system consisting of an Intel Xeon W-2123 3.6 GHz CPU, 64G DDR4 2666 RAM,
and an NVIDIA GeForce RTX 2080Ti 11G graphics card. The operating system used for the
experiments was Ubuntu 21.04.

3. Experimental Results

The EMTAD method was performed at seven resolutions (10 Kb, 25 Kb, 50 Kb, 100 Kb,
250 Kb, 500 Kb, and 1 Mb) in five different cell lines, namely GM12878, HMEC, HUVEC,
K562, and NHEK. At the same time, the DI, IS, HiCKey, HiCDB, and TopDom methods
were also applied. Since HiCKey and HiCDB are primarily used for identifying hierarchical
TADs, we take out the outermost hierarchical TAD boundaries of HiCKey and HiCDB in
this experiment for comparison with the recognition results of other methods. All different
methods shared a common goal of detecting TAD boundaries and identifying TADs based
on changes in interaction values within the interaction matrix.

The results showed that the EMTAD method performed better in identifying TADs
compared to the other five methods across all seven resolutions in the five cell lines.
However, minor variations were observed in some data sets, although the overall trend was
consistent with this conclusion. In particular, the GM12878 dataset had higher data quality
and a larger number of reads, making it more suitable for comprehensive data analysis.

3.1. Comprehensive Analysis and Comparisons of Similarity in TADs

In the experiments, six different methods for TAD identification were implemented
in five different cell lines using Hi-C data with different resolutions. The results, shown
in Figure 3A as an illustrative example, revealed that in the GM12878 cell line with a
resolution of 50 Kb, the DI method showed the lowest TAD count, mainly at around 100,
across chromosomes 1 to 22 and X. Conversely, the IS method showed a number of TAD
counts, mainly in the range of 200 to 300, with a peak value reaching 700. The identification
count number of the HiCDB method focuses on a range of 100 to 300, while the HiCKey
method identifies approximately 300 to 400, with peak values exceeding 700. The TopDom
and EMTAD methods yielded TAD counts primarily in the range between 100 and 400,
with similar distributions. However, TopDom showed a higher peak value of 600. Notably,
the EMTAD method showed higher accuracy in its identification results when comparing
the TAD counts.

When comparing the existing methods for identifying TADs as documented in the
literature [20–22], it became clear that the TADs identified using these methods exhibited
inconsistencies in their number and length. Furthermore, the predicted TAD boundaries
generated via these methods showed significant variability in their spatial localization.
To address these issues, a nearest-neighbor voting approach was used to score the TAD
boundaries identified through these different methods. Specifically, a TAD boundary
was assigned a score of one if it was identified using a particular method within a given
resolution interval. Through applying this scoring scheme, a cumulative score ranging from
one to six was assigned to each TAD boundary, with a score of six indicating unanimous
recognition via all six methods. This inter-comparison methodology was used to objectively
evaluate the effectiveness of the different methods in identifying topologically related
structural domains.
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Figure 3. A comparative analysis of six different methods for the identification of TADs: (A) Eval-
uation of the total number of TADs and their distribution patterns. (B) Comparative evaluation
of TAD boundary scores specifically within chromosome 2. (C) Investigation of the DI and IS co-
efficients associated with TAD boundaries. (D) Comparison of profile coefficients associated with
TADs. (E) Evaluation of interaction coefficients associated with TADs. (F) Consistency comparison of
identification results.

As shown in Figure 3B, when the results from Figures A and B are combined, the DI
method detects fewer TAD boundaries. Although the DI method has higher boundary
scores, implying improved accuracy, it may miss many authentic TAD boundaries. In
contrast, the EMTAD method identifies more TAD boundaries while maintaining a high
ratio of boundary scores (scores of four and three). When compared to the TopDom and
IS methods, the EMTAD method effectively filters out low-scoring boundaries, which are
predominantly indicative of potentially weak or false-positive boundaries. Based on these
results, EMTAD demonstrates superior accuracy in identifying TAD boundaries while
effectively mitigating false-positive boundary identifications.

The DI [3] method quantifies the deviation of a chromatin region’s interactions from
upstream or downstream regions. A DI value close to zero indicates a nearly equal fre-
quency of interactions with upstream and downstream regions, suggesting its potential
location at the boundary of a TAD. Similarly, the IS [9] method measures the cumulative
strength of interactions within a given region. Analogous to the DI value, a higher IS value
is generally observed within a TAD, while a region with a significantly low IS value may
indicate a potential TAD boundary. Through normalizing the DI values to the IS values
within the range (0, 1), a scatter plot was constructed to represent the average interaction
values of these two metrics per chromosome. The proximity of the values in the scatter
plot to the upper right corner indicates a closer fit of the average boundary metrics to the
definition of the TAD boundaries. As shown in Figure 3C, specific scatter points of the DI,
HiCDB, and HiCKey metric approach the upper left corner, indicating that the boundary
identification results obtained using the DI, HiCDB, and HiCKey exhibit favorable behavior
in specific chromosomal regions, but perform inadequately in the remaining chromatin
segments. This observation highlights the partial instability of the TAD identification
methods of the DI, HiCDB, and HiCKey. In contrast, the average index of boundaries
identified using the EMTAD method shows a relatively higher concentration, reflecting
the method’s robustness across different chromosomes. In addition, the scatter values of
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the boundaries identified using the EMTAD method are higher than the TopDom and IS
methods, indicating a better agreement with the definition of TAD boundaries. Overall,
the comparative analysis of the EMTAD method with the DI and IS methods highlights its
effectiveness and robustness in accurately identifying TAD boundaries.

Silhouette coefficient [31] is a metric commonly used in traditional machine learning
to evaluate the clustering results of clustering algorithms. In the context of TAD detection,
each genomic bin is treated as a node and the interactions between bins are considered as
edges, which are then used to construct a graph. Subsequently, identifying TADs can be
viewed as a subgraph partitioning problem. This process can be likened to a clustering
procedure, which allows the evaluation of the effectiveness of TAD detection using contour
coefficients. Figure 3D shows that the DI method has a low mean and a large variance,
indicating its inherent instability and suboptimal delineation performance. This result
can be attributed to DI’s limited ability to detect a sufficient number of TAD boundaries,
resulting in the omission of certain true boundaries. From a clustering perspective, the DI
method tends to merge clusters that should be separated, resulting in a lower score. In
contrast, the EMTAD method has a higher contour coefficient score and lower variance
than the other five methods, which is more consistent with the clustering perspective.
Consequently, these results suggest that the EMTAD method achieves a superior quality
regarding TAD recognition.

The CI [27,28] quantifies the amount of variability in the interactions between upstream
and downstream regions of a chromatin region. It is determined by the ratio of the
interactions within each upstream and downstream region to the interactions between
these regions. In the case of a TAD boundary region, a higher CI value indicates greater
variability. As shown in Figure 3E, the average effect of the Interaction Isolation Index (IS)
is lower among the six methods examined. This suggests the presence of a potential margin
of error between the results obtained from the IS method and the actual boundaries of the
TADs. Conversely, the DI method shows the most favorable impact, albeit with a larger
variance, highlighting the inherent instability of the DI method from the perspective of
one-dimensional signals.

The methods of EMTAD and TopDom show superior performance in terms of impact,
indicating the higher quality of TADs identified using these methods. However, the
variance of the EMTAD method is smaller, indicating greater stability compared to the
TopDom method.

To evaluate the consistency of TAD recognition results for a given pair of TADs, the
Measure of Concordance (MoC) can be used. The MoC quantifies the degree of overlap
between two TADs in terms of the number of base pairs, taking into account the overall
size of each TAD [22]. The MoC is a normalized metric that ranges from zero (indicating
complete lack of concordance) to one (indicating complete concordance), with higher values
indicating greater concordance. In Figure 3F, a pairwise comparison was made between
the recognition results obtained using the different methods. The EMTAD method showed
the highest correlation with the results of the other methods. This observation highlights
the significant overlap between the TADs identified using the EMTAD method and those
identified using the other methods. Therefore, the TAD identification achieved using the
EMTAD method can be considered reliable and comprehensive.

We also compared the accuracy of TAD boundaries identified via six different methods
using simulated Hi-C data generated using machine learning methods. We first generate
random TAD boundaries and then populate the matrix with identical random values within
the defined boundaries. This process is iterated while introducing varying amounts of
Gaussian noise into the matrix. As shown in Figure 4, we similarly used six methods to
identify the tad boundaries of the simulated Hi-C data. The results show that the EMTAD
method better detects TAD boundaries when comparing different scales of Gaussian noise.
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Several comparative analyses were performed, including comparisons of the total
number of identified TADs, TAD boundaries, ratios of EMTAD-identified boundaries to DI
and IS coefficients, means, and MI. These analyses collectively demonstrate that the EMTAD
method performs better in accurately identifying TAD structures and boundaries than
the other alternative methods. The results obtained using the EMTAD detection method
consistently show higher stability and reliability, further validating its effectiveness.

3.2. Comparing Positions of TADs Identified Using Data at Different Resolutions

The information theory metric, mutual information (MI) [32], can be used to quantify
the similarity between two clustering results. A higher MI value indicates a higher similarity
between two clustering results. The MI value can exhibit the consistency of results through
measuring the similarity between identification results of two TADs. Multiple experiments
were performed using six different methods on Hi-C data, which were obtained from five
cell lines, namely GM12878, HMEC, HUVEC, K562, and NHEK. The experimental setup
is shown in Figure 5A. Comparative analyses were performed on the GM12878 dataset
across 22 cell lines as well as on the X chromosome. Notably, when considering the results
obtained from data at resolutions of 25 Kb and 50 Kb, at resolutions of 25 Kb and 100 Kb,
and at resolutions of 50 Kb and 100 Kb, the pairwise comparisons consistently showed the
highest degree of similarity in the TADs identified using the EMTAD method.
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In this experiment, the six methods were compared individually using different
sampling depths of 90%, 70%, and 50%. As shown in Figure 5B, the EMTAD method shows
superior validity and consistency in TAD detection using the same comparative indicators.

In conclusion, the metrics mentioned above collectively demonstrate the consistent
and superior boundary detection capabilities of the EMTAD method across different data
resolutions. Furthermore, the EMTAD method shows remarkable robustness when con-
fronted with different data resolutions.

Pairwise comparisons were performed at different resolutions, including 25 Kb vs. 50 Kb,
25 Kb vs. 100 Kb, and 50 Kb vs. 100 Kb. Pairwise comparisons were also performed using
different sampling depths of 90%, 70%, and 50%. As shown in Figure 5C, the results of the
EMTAD method show a significant correlation with the results of the other five methods. This
correlation suggests that the EMTAD method possesses robust generalization and stability,
and thus demonstrates superior robustness.

The comparative analyses of the recognition results of Hi-C data at different resolutions
shows that the EMTAD method consistently outperforms the other five methods, yielding
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slightly higher recognition accuracy. This finding underscores the remarkable adaptability
of the EMTAD method to different resolution settings, as well as its superior generalization
and robustness. In addition, the EMTAD method shows improved accuracy in identifying
TADs, further proving its effectiveness.

3.3. Enrichment Analysis of Transcription Factors and Histone Modifications

The boundaries of TADs show a remarkable enrichment of transcription factors,
including CTCF, RAD21, and SMC3, as well as histone modifications, such as H3K27ac,
H3K4me3, and H3K36me3. These molecular components play critical roles in various
biological processes and exert regulatory effects on DNA expression [3]. To evaluate the
efficacy of the EMTAD method in accurately identifying TAD boundaries, we used the TAD
boundaries and TADs detected at the resolution of 50 Kb in the GM12878 cell line as an
illustrative example. Specifically, we examined the presence of three transcription factors
(CTCF, RAD21, and SMC3) at TAD boundaries while also assessing the enrichment of
histone modifications (H3K27ac, H3K4me2, H3K4me1, H3K4me3, H3K36me3, H3K79me2,
H3K9ac, H3K9me3, H3K27me3, and H4K20me1) within TADs. Comparative analyses using
different methods were performed to evaluate the enrichment patterns of transcription
factors and histone modifications at TAD boundaries and within TADs.

Figure 6A–C show the enriched presence of three transcription factors, namely CTCF,
RAD21, and SMC3, at the boundaries of TADs identified using different methods. Notably,
the average enrichment of the transcription factors at the boundaries of TADs recognized
using the EMTAD method exceeded that of the other five methods. In addition, the bound-
aries identified using the EMTAD and DI methods showed more concentrated average
enrichment curves within the central regions of the boundaries, indicating their improved
accuracy. In contrast, the boundaries identified using the TopDom and IS methods showed
potential dynamics, resulting in lower peak ratios in their interaction curves.
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A comparative analysis of histone modification enrichment within TADs identified
via the six methods was performed. As shown in Figure 6D, the IS and HiCKey methods
showed the lower enrichment of histone modifications within TADs. This observation can
be attributed to their identification of the highest number of TADs, as shown in Figure 3A.
Conversely, the remaining four methods showed more consistent enrichment patterns of
histone modifications within TADs. Among the ten histone modifications examined, the
EMTAD method showed higher enrichment than the other five methods for the majority
of histone modifications, except for the TopDom method, which showed the highest
enrichment for H3K4me2.

An analysis of enrichment for transcription factors and histone modifications within
the identified boundaries and regions of TADs revealed that TADs and TAD boundaries
predicted using the EMTAD method have specific biological functions. Thus, the EMTAD
method demonstrates superior accuracy in detecting TAD structures and boundaries
compared to the other methods, with slightly higher enrichment levels observed in the
identified TAD boundaries and regions. As a result, the TAD detection results obtained
using the EMTAD method are considered more accurate and reliable.

4. Conclusions

We propose a TAD identification method EMTAD, based on EMD which includes
several steps: (1) normalizing the original Hi-C interaction matrix with ICE to account for
biases; (2) removing interaction values larger than 2 Mb and interactions between TADs;
(3) applying EMD to the Hi-C interaction matrix, resulting in N IMFs; (4) calculating the
information entropy for each IMF and identifying the IMF component with the highest sum
of information entropy; (5) reconstructing the matrix using the selected IMF component
to obtain an optimized and improved Hi-C interaction matrix; and (6) performing TAD
identification based on the reconstructed matrix. The source code is available online through
GitHub (https://github.com/ZhaoXuemin/EMDTAD accessed on 10 August 2023).

The results of our EMTAD method were rigorously compared with five established
TAD identification methods, namely DI, IS, HiCKey, HiCDB, and TopDom. The compar-
ison highlights the superior performance of the EMTAD method in terms of enhanced
generalization, stability, and robustness in identifying TAD structures. Considering that
TADs are recognized as crucial regulatory units within the genome, comprising finer sub-
TADs such as chromatin loops and remote interactions, the accurate identification of TADs
poses paramount importance in studying three-dimensional chromatin structures and gene
transcriptional regulation.

Author Contributions: Conceptualization, X.Z. and R.D.; methodology, X.Z. and R.D.; software,
R.D.; validation, X.Z. and R.D.; formal analysis, X.Z. and R.D.; investigation, R.D.; resources, R.D.;
data curation, X.Z. and R.D.; writing—original draft preparation, X.Z. and R.D.; writing—review
and editing, X.Z. and R.D; visualization, X.Z. and R.D.; supervision, S.Y.; project administration, S.Y.;
funding acquisition, S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 61863036 and 72164037).

Data Availability Statement: The datasets used in this paper are publicly available and their links
are provided in the reference section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cremer, T.; Cremer, M. Chromosome Territories. Cold Spring Harb. Perspect. Biol. 2010, 2, a003889. [CrossRef]
2. Lieberman-Aiden, E.; Van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.;

Dorschner, M.O.; et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science 2009, 326, 289–293. [CrossRef]

3. Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological domains in mammalian genomes
identified by analysis of chromatin interactions. Nature 2012, 485, 376–380. [CrossRef]

https://github.com/ZhaoXuemin/EMDTAD
https://doi.org/10.1101/cshperspect.a003889
https://doi.org/10.1126/science.1181369
https://doi.org/10.1038/nature11082


Electronics 2023, 12, 4154 14 of 15

4. Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.;
Lander, E.S.; et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159,
1665–1680. [CrossRef]

5. Nora, E.P.; Lajoie, B.R.; Schulz, E.G.; Giorgetti, L.; Okamoto, I.; Servant, N.; Piolot, T.; Van Berkum, N.L.; Meisig, J.; Sedat, J.; et al.
Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485, 381–385. [CrossRef]

6. Dekker, J.; Heard, E. Structural and functional diversity of topologically associating domains. FEBS Lett. 2015, 589, 2877–2884.
[CrossRef]

7. Dong, Q.L.; Wang, J.B.; Li, X.C.; Gong, L. Progresses in the plant 3D chromatin architecture. Hereditas 2020, 42, 73–86.
8. Acemel, R.D.; Gómez-Skarmeta, J.L. Reprogramming Nuclear Architecture: Just a TAD. Cell Stem Cell 2019, 24, 679–681. [CrossRef]
9. Crane, E.; Bian, Q.; McCord, R.P.; Lajoie, B.R.; Wheeler, B.S.; Ralston, E.J.; Uzawa, S.; Dekker, J.; Meyer, B.J. Condensin-driven

remodelling of X chromosome topology during dosage compensation. Nature 2015, 523, 240–244. [CrossRef]
10. Shin, H.; Shi, Y.; Dai, C.; Tjong, H.; Gong, K.; Alber, F.; Zhou, X.J. TopDom: An efficient and deterministic method for identifying

topological domains in genomes. Nucleic Acids Res. 2016, 44, e70. [CrossRef]
11. Weinreb, C.; Raphael, B.J. Identification of hierarchical chromatin domains. Bioinformatics 2016, 32, 1601–1609. [CrossRef]
12. Zhan, Y.; Mariani, L.; Barozzi, I.; Schulz, E.G.; Blüthgen, N.; Stadler, M.; Tiana, G.; Giorgetti, L. Reciprocal insulation analysis of Hi-

C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
Genome Res. 2017, 27, 479–490. [CrossRef]

13. Wang, X.T.; Cui, W.; Peng, C. HiTAD: Detecting the structural and functional hierarchies of topologically associating domains
from chromatin interactions. Nucleic Acids Res. 2017, 45, e163. [CrossRef]

14. Zhang, Y.W.; Wang, M.B.; Li, S.C. SuperTAD: Robust detection of hierarchical topologically associated domains with optimized
structural information. Genome Biol. 2021, 22, 1–20. [CrossRef]

15. Lyu, H.; Li, L.; Wu, Z.; Wang, T.; Zheng, J.; Wang, H. TADBD: A sensitive and fast method for detection of typologically associated
domain boundaries. BioTechniques 2020, 69, 18–25. [CrossRef]

16. Yan, K.K.; Lou, S.; Gerstein, M. MrTADFinder: A network modularity based approach to identify topologically associating
domains in multiple resolutions. PLoS Comput. Biol. 2017, 13, e1005647. [CrossRef]

17. Gong, H.; Yang, Y.; Zhang, X.; Li, M.; Zhang, S.; Chen, Y. CASPIAN: A method to identify chromatin topological associated
domains based on spatial density cluster. Comput. Struct. Biotechnol. J. 2022, 20, 4816–4824. [CrossRef]

18. Xing, H.; Wu, Y.; Zhang, M.Q.; Chen, Y. Deciphering hierarchical organization of topologically associated domains through
change-point testing. BMC Bioinform. 2021, 22, 183. [CrossRef]

19. Chen, F.; Li, G.; Zhang, M.Q.; Chen, Y. HiCDB: A sensitive and robust method for detecting contact domain boundaries. Nucleic
Acids Res. 2018, 46, 11239–11250. [CrossRef]

20. Forcato, M.; Nicoletti, C.; Pal, K.; Livi, C.M.; Ferrari, F.; Bicciato, S. Comparison of computational methods for Hi-C data analysis.
Nat. Methods 2017, 14, 679–685. [CrossRef]

21. Dali, R.; Blanchette, M. A critical assessment of topologically associating domain prediction tools. Nucleic Acids Res. 2017, 45,
2994–3005. [CrossRef] [PubMed]

22. Zufferey, M.; Tavernari, D.; Oricchio, E.; Ciriello, G. Comparison of computational methods for the identification of topologically
associating domains. Genome Biol. 2018, 19, 217. [CrossRef] [PubMed]

23. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

24. Chunming, H.; Huadong, G.; Changlin, W.; Dian, F. A novel method to reduce speckle in SAR images. Int. J. Remote Sens. 2002,
23, 5095–5101. [CrossRef]

25. Liu, Z.; Peng, S. Directional EMD and its application to texture segmentation. Sci. China Ser. F 2005, 48, 354–365.
26. Hariharan, H.; Koschan, A.; Abidi, B.; Gribok, A.; Abidi, M. Fusion of visible and infrared images using empirical mode

decomposition to improve face recognition. In Proceedings of the 2006 International Conference on Image Processing, Atlanta,
GA, USA, 8–11 October 2006; pp. 2049–2052.

27. Van Bortle, K.; Nichols, M.H.; Li, L.; Ong, C.-T.; Takenaka, N.; Qin, Z.S.; Corces, V.G. Insulator function and topological domain
border strength scale with architectural protein occupancy. Genome Biol. 2014, 15, R82. [CrossRef]

28. Alekseyenko, A.A.; Walsh, E.M.; Wang, X.; Grayson, A.R.; Hsi, P.T.; Kharchenko, P.V.; Kuroda, M.I.; French, C.A. The oncogenic
BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015, 29, 1507–1523.
[CrossRef]

29. Imakaev, M.; Fudenberg, G.; McCord, R.P.; Naumova, N.; Goloborodko, A.; Lajoie, B.R.; Dekker, J.; Mirny, L. Iterative correction
of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 2012, 9, 999–1003. [CrossRef]

30. Zachary, J.M. An Information Theoretic Approach to Content Based Image Retrieval; Louisiana State University and Agricultural &
Mechanical College: Baton Rouge, LA, USA, 2000.

https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1038/nature11049
https://doi.org/10.1016/j.febslet.2015.08.044
https://doi.org/10.1016/j.stem.2019.04.007
https://doi.org/10.1038/nature14450
https://doi.org/10.1093/nar/gkv1505
https://doi.org/10.1093/bioinformatics/btv485
https://doi.org/10.1101/gr.212803.116
https://doi.org/10.1093/nar/gkx735
https://doi.org/10.1186/s13059-020-02234-6
https://doi.org/10.2144/btn-2019-0165
https://doi.org/10.1371/journal.pcbi.1005647
https://doi.org/10.1016/j.csbj.2022.08.059
https://doi.org/10.1186/s12859-021-04113-8
https://doi.org/10.1093/nar/gky789
https://doi.org/10.1038/nmeth.4325
https://doi.org/10.1093/nar/gkx145
https://www.ncbi.nlm.nih.gov/pubmed/28334773
https://doi.org/10.1186/s13059-018-1596-9
https://www.ncbi.nlm.nih.gov/pubmed/30526631
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1080/01431160210153110
https://doi.org/10.1186/gb-2014-15-5-r82
https://doi.org/10.1101/gad.267583.115
https://doi.org/10.1038/nmeth.2148


Electronics 2023, 12, 4154 15 of 15

31. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

32. Lee, D.I.; Roy, S. GRiNCH: Simultaneous smoothing and detection of topological units of genome organization from sparse
chromatin contact count matrices with matrix factorization. Genome Biol. 2021, 22, 164. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1186/s13059-021-02378-z

	Introduction 
	Methods 
	Empirical Mode Decomposition Topologically Associated Domain 
	Data Preprocessing 
	Using Information Entropy to Measure IMF Matrix Values 
	Major Steps 
	Algorithm 
	Experimental Implementation Details 

	Experimental Results 
	Comprehensive Analysis and Comparisons of Similarity in TADs 
	Comparing Positions of TADs Identified Using Data at Different Resolutions 
	Enrichment Analysis of Transcription Factors and Histone Modifications 

	Conclusions 
	References

