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Abstract: V2X communication is susceptible to attenuation and fading caused by external interference.
This interference often leads to bit error and poor quality and stability of the wireless link, and it can
easily disrupt packet transmission. In order to enhance communication reliability, the 3rd Generation
Partnership Project (3GPP) introduced the Hybrid Automatic Repeat Request (HARQ) technology
for both 4G and 5G systems. Nevertheless, it can be improved for poor communication conditions
(e.g., heavy traffic flow, long-distance transmission), especially in advanced or cooperative driving
scenarios. In this paper, we propose an Adaptive Hybrid Automatic Repeat Request (A-HARQ)
scheme that can reduce the average block error rate, the average number of retransmissions, and
the round-trip time (RTT). It adapts the Q-learning model to select the timing and frequency of
retransmission to enhance the transmission reliability. We also design some transmission schemes—K-
repetition, T-delay and [T, K]-overlap—which are used to shorten latency and avoid packet collision.
Compared with the conventional 5G HARQ, our simulation results show that the proposed A-HARQ
scheme decreases the system’s average BLER, the number of retransmissions, and the RTT to 5.55%,
1.55 ms, and 0.97 ms, respectively.

Keywords: hybrid automatic repeat request; reinforcement learning; block error rate; 5G new radio;
vehicle-to-everything

1. Introduction

Advanced vehicle-to-everything (V2X) applications for autonomous vehicles reflect
the functional aspects of vehicular communication technology and influence the perfor-
mance requirements of the communication system. The Society of Automotive Engineers
(SAE) classifies autonomous vehicles into six levels, ranging from lower to higher, based
on whether a human driver or an automation system is primarily responsible for moni-
toring the driving conditions. These levels are: 0—No Automation; 1—Driver Assistance;
2—Partial Automation; 3—Conditional Automation; 4—High Automation; 5—Full Au-
tomation. Based on the 3rd Generation Partnership Project (3GPP) release 17 TS 22.186 [1],
it identifies the business requirements for enhanced V2X scenarios and provides the ex-
pected performance for all levels of autonomous vehicles. With the latest 3GPP release
17 TS 22.186 technique specification, we can gain a clear understanding of the impact of
communication performance at the level of V2X automation.

The 5G New Radio (NR) technique has characteristics of ultra-low latency, super-
strong link capability, and ultra-high broadband, and the performance of the on-board
networking system has been greatly improved. Nevertheless, the wireless channel is
prone to attenuation and fading caused by external interference. This often results in
bit errors of the wireless transmission, poor quality and stability of the wireless link,
and easy damage to data packet transmission. In order to address the issue of bit error
during transmission, the 3rd Generation Partnership Project (3GPP) presented the Hybrid
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Automatic Repeat Request (HARQ) technology for both 4G and 5G systems. Although
the 5G HARQ technique guarantees its reliability and meets the delay requirements for
V2X communication, it does not easily maintain high communication quality in poor
conditions (e.g., heavy traffic flow, long-distance communication). This is particularly true
in advanced driving or cooperative driving for vehicle platooning information exchange,
cooperative collision avoidance, emergency trajectory alignment, cooperative lane change,
sensor information sharing, information exchange between vehicles, etc.

Therefore, it is necessary to explore a more efficient retransmission mechanism for
vehicular transmission in 5G NR-enhanced V2X scenarios. This will improve the reliability
of information transmission and reduce the retransmission delay. Considering transmission
conditions, this study focuses on the retransmission optimization based on the 5G NR
HARQ. In this paper, an Adaptive Hybrid Automatic Repeat Request (A-HARQ) scheme is
proposed to improve the communication quality, which can reduce the average block error
rate, average number of retransmissions, and round-trip time (RTT). The A-HARQ scheme
includes not only the 5G HARQ retransmission mechanism, but also the K-repetition
mechanism, which can shorten the RTT and improve the transmission success rate.

To illustrate our research, we have organized the rest of this paper as follows: In this
section, we provide a brief introduction to the background and motivation. In Section 2,
we discuss the functioning of HARQ and survey some related works. In Section 3, we
state some problems and provide an overview of the system. The proposed Adaptive
Hybrid Automatic Repeat Request (A-HARQ) scheme is studied in Section 4. We evaluate
its performance through simulation and provide detailed descriptions in Section 5. Finally,
we summarize the work presented in this article and discuss future research directions
related to HARQ in the Section 6.

2. Related Works

In practice, packet errors and losses are inevitable due to ubiquitous noise, signal
interference, and channel fading. As an incorrectly decoded message does not bring about
fresh awareness, these packet errors and losses will result in stale information, leading to
uncontrollable residual errors, system instability, and incorrect decisions.

HARQ retransmission, as a standard technique for improving transmission reliability,
has been adopted in various wireless standards [2]. HARQ is a physical-layer mechanism
that employs feedback to transmit at higher target block error rates (BLERs) while achieving
robustness of the transmission by providing retransmissions based on the feedback of
Acknowledgement or Negative Acknowledgement (ACK/NACK). However, the HARQ
procedure poses a bottleneck for achieving the previously mentioned latencies because
conventional HARQ allows retransmissions only upon receiving a NACK. The Base Station
(BS) requires a few time units for detection when it receives the packet for the first time, and
then it issues the feedback. In order to improve the success rate of HARQ retransmission,
more HARQ iterations are needed to enhance the overall HARQ RTT. Hence, optimizing
HARQ to improve the accuracy of information transmission and reduce transmission delay
becomes a critical issue.

A decoder is responsible for a minimum of 60% of the time required for the user
equipment (UE) to receive and process data. Therefore, to fulfill the communication
requirements of time-sensitive applications in V2X, it is feasible to predict the decoding
result before the successful decoding process by the decoder. In their study, the authors
in [3] proposed an Early HARQ (E-HARQ) technique based on decoder result prediction.
The accuracy of ACK/NACK feedback for predicting the uncoded bit error rate and
indicating block errors was estimated, based on the likelihood ratio of information bits, as
approximately 90%. Additionally, the delay is reduced by approximately 50%. However,
early feedback errors can significantly affect the interrupt rates and latency. Authors in [4]
also conducted both early transmission feedback and regular feedback in an attempt to
correct the early incorrect prediction, reducing the influence caused by the inaccurate
estimation. In [5], the authors proposed a new spatially coupled code, which is formed by
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sending a low-density parity block code (LDPC-BC) through block Markov superposition
transmission (BMST) to form the BMST-LDPC code. The BMST-LDPC scheme is integrated
with the Hybrid Automatic Retransmission Request (HARQ) over the block-fading channel,
improving the throughput performance of up to 10% compared with the conventional
HARQ scheme.

Because the probability of retransmission increases with the increase in the number of
receiving ends, it is challenging to apply the traditional HARQ technique. Authors in [6]
proposed an external-code-based HARQ, in which the receiver only provides feedback on
the number of destroyed code blocks (CBs), while the transmitter utilizes an external code
to generate parity CBs and then employs an internal code to transmit these parity CBs for
retransmission. This scheme can improve the reliability and resource efficiency of the fading
channel and effectively reduce the retransmission rate. Authors in [7] proposed a dynamic
Hybrid Automatic Repeat Request scheme that is different from the traditional HARQ. This
scheme allows for the dynamic adjustment of the maximum retransmission times based
on the last situation. In delay-sensitive applications where channel state information is
unavailable to the sender, the scheme demonstrates improved better performance in terms
of packet error rate and throughput.

In order to achieve the requirement of 10−5 BLER as defined by the Ultra-Reliable Low-
Latency Communication (URLLC) specification, the authors in [8] proposed a sub-code-
based Early HARQ (SC EHARQ) scheme based on the Low-Density Parity Check (LDPC)
subcode. It takes advantage of the LDPC subcode structure to provide faster feedback,
achieving earlier retransmission and exhibiting better false positive energy. This results
in fewer transmission failures compared with when E-HARQ predicts NACK as ACK.
However, choosing the appropriate threshold is a critical issue for its performance. The
authors in [9] improved the SC EHARQ scheme, which was the first exploratory study on
the method for predicting quantitative improvement. It uses machine-learning methods to
predict the decodability of received messages, using more advanced classification methods
to predict decoding results before the final decoder iteration. More complex input features
are utilized to further improve the classification performance, and appropriate methods for
distinguishing between different classifiers are discussed. In [10], the authors conducted a
mathematical analysis of packet errors, retransmissions, and delays related to bandwidth.
They applied the M/G/1 queuing model to the delay analysis. The minimum bandwidth
required was determined, as well as the relationship between the allocated bandwidth
and the total delay, which established the adaptive control of the maximum number of
retransmissions, thereby improving the performance of the URLLC.

As delays exist by nature and play a critical part in affecting the freshness of informa-
tion, the authors in [11] comprehensively considered various types of nontrivial system
delays and derived unified closed-form average Age of Information (AoI) and average
Peak AoI expressions for the HARQ.

In order to support the new URLLC service, which aims to facilitate the transmission
of small packets with strict requirements for latency and reliability, the authors in [12]
proposed a spatiotemporal analytical framework for analyzing contention-based grant-free
(GF) (i.e., configured grant) access schemes. It analyzed three GF access schemes with
HARQ retransmissions, i.e., Reactive, K-repetition, and Proactive. It defined the latent
access failure probability to characterize the URLLC reliability and latency performances.
The results showed that under shorter latency constraints, the Proactive scheme provided
the lowest latent access failure probability, whereas under longer latency constraints, the
K-repetition GF transmission scheme achieved the lowest latent access failure probability.

Although current research has enhanced the HARQ in various aspects, they have not
considered the reasonable spatiotemporal allocation of transmission on limited channel
resources based on real-time wireless conditions. This paper focuses on optimizing the
HARQ scheme by addressing the delay and reliability of information transfer between 5G
NR-V2X UEs. In order to reduce the average number of retransmissions, transmission delay,
and average BLER, and to improve the reliability of information transmission, an Adaptive-
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HARQ transmission scheme is designed. This scheme includes T-delay, K-repetition, and
[T, K]-overlap methods according to the factors that affect wireless conditions. Finally, we
consider the external wireless channel conditions for adopting the Q-learning algorithm,
with optimization based on reinforcement learning for improving the transmission of
HARQ packets.

3. Problem Statement and System Framework
3.1. Problem Statement

The Stop-and-Wait Protocol of HARQ (SW_ARQ) was used to send data as an error
correction technique in the 3GPP LTE protocol standard. In the SW_ARQ, the transmitter
(TX) sends a data frame and stops to wait for the acknowledgment, and then the receiver
uses the 1-bit information for ACK or NACK acknowledgment of the data frame. However,
the stopping method for confirming each transmission results in low throughput. Hence,
the HARQ has been improved in the 5G system to achieve efficient and high-performance
error correction. The MAC layer makes up for the waste of air interface resources of a single
SW_ARQ process by using multiple SW_ARQ processes, without affecting its timelines [13].
The base station assigns the HARQ process number to the indoor terminal to determine
the buffer at the physical layer. The physical layer combines the last decoded failed bit
stream with the current retransmitted bit stream through the soft-combining technique to
enhance the demodulation gain, offering benefits such as reduced latency and improved
the decoding and demodulation gain. However, the disadvantage is that the physical layer
of the receiving terminal requires a relatively large cache to store the bit information that is
not properly decoded.

The complete HARQ procedure requires the MAC layer and the physical layer to
work together. The MAC layer implements the SW_ARQ protocol. If MAC frames need
to be retransmitted as called by the feedback mechanism, it resends the MAC frames
to the receiver (RX). The retransmitted MAC frames will be encoded according to the
redundant version number when encoding at the physical layer. The physical layer stores
the original bits of the empty interface that are not correctly decoded in the buffer. After
the retransmitted data frame is received, it is integrated with the original bit stored in the
buffer and decoded it. The introduction of soft-merge technology effectively reduces the
proportion of error bits caused by channel interference, so that the correct rate of decoding
is improved. The overall probability of decoding and the anti-interference ability are
enhanced.

Figure 1a and Figure 1b respectively depict the downlink transmission process of a
retransmission and double retransmission in a normal HARQ. Assuming the transmission
time interval (TTI) is 0.2 ms, the RTT through the 5G HARQ to complete a retransmission
and double retransmission is 2.4 ms and 3.6 ms, respectively. Note that here, the UE is sent
with a negative time offset relative to the base station (BS) based on the final timing-advance
(TA) settings. After the TX sends the data, physical forward error correction (FEC) reduces
the number of retransmissions by adding redundant information so that the RX can correct
some of the errors. For errors that cannot be corrected by forward error correction, the RX
requests the sender to resend the data through the SW_ARQ mechanism. The RX employs
an error detection code, typically a cyclic redundancy check (CRC), to detect whether the
received packet is wrong. If there is no error, the RX will send a positive ACK to the
sender, and the TX will process this and send the next packet upon receiving the ACK. If
an error occurs, the RX drops the packet and sends a NACK to the TX. Subsequently, the
TX retransmits the same data in turn after receiving the NACK.

In addition, the 5G standard incorporates an asynchronous HARQ for both uplink
and downlink transmissions. This feature enhances the flexibility of scheduling the timing
and resource allocation, particularly in the context of the time-division duplexing (TDD)
mode. Multiple parallel HARQ processes are allowed in the 5G standard, and while one
HARQ process is awaiting an acknowledgment, the sender simultaneously carries out
another HARQ process to transmit data. These aforementioned processes of HARQ form
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a HARQ entity, which integrate the stop protocol together. Additionally, the 3GPP NR
Release-15 [14] supports the K-repetition (Krep) scheme, which allows for a predefined
number of consecutive replicas of the same packet without waiting for feedback.
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On the other hand, there exist numerous factors that exert an influence on the BLER.
The Channel Quality Indication (CQI) is transmitted from the terminal to the BS with
the information measurement. It primarily represents the quality of the downstream
channel. The LTE protocol defines the quality of the channel as CQI and quantizes it into a
sequence of 0–15. The larger the CQI value, the better the channel quality, and the higher
the utilization rate of the modulation coding method. It also means a greater efficiency
and a larger corresponding transmission block, thus providing a higher downstream peak
throughput. The opposite is true for small CQI values.

Distance is another important factor affecting the BLER and transmission latency [15–18].
As the distance between the TX and the RX increases, the Signal-and-Interference-to-Noise
Ratio (SINR) continues to decrease, and the probability of packet loss due to packet collision
also increases [18]. Moreover, the rate of packet loss experiences a rapid increase once the
received signal power reaches its perceived power threshold. In addition, the BLER is also
influenced by various network load factors.

Therefore, based on making full use of these characteristics of the 5G standard and
the above analysis of the factors influencing the communication performance of the 5G
NR-V2X, this study proposes an alternative optimization transmission scheme to address
the issues that arise when the BLER exceeds the threshold.

3.2. System Overview

As a technical document defined by the 3GPP, the BLER is used to estimate the errors of
the physical layer. In this study, the powerful learning ability of Q-learning in reinforcement
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learning is utilized to obtain better communication schemes. The interaction between the
agent and the environment in Q-learning will be determined by the update process of the
Q-Table, which basically employs the TD Bellman Equation. In this study, the sequential
difference method is used to set the Reward Calculator mechanism, and the update of the
Bellman Equation is adopted to obtain the optimal strategy. The Bellman Update Equation
is as in Equation (1):

Q(S, A)← Q(S, A) + α ∗
[
R + γ ∗maxQ

(
S′, A

)
−Q(S, A)

]
, (1)

where α is the learning rate, R is the immediate benefits, and γ is the discount (or atten-
uation) rate. The larger α is, the less the effect of retaining the previous training. And
maxQ(S′, A) is the benefit in memory, and it refers to the maximum utility value in the
action of the next state S′. The agent aims to obtain the maximum reward after choosing
the action in the next state S′, so that the next time in state S, it can continue to get the
reward by choosing the correct action. The larger the value of γ, the greater the role played
by maxQ(S′, A), i.e., the more attention is paid to past experiences. In contrast, the smaller
the γ, the more attention is paid to the immediate benefits R.

Q-learning is a reinforcement learning approach that learns a policy that maximizes
the expected reward through training and feedback. In the Adaptive HARQ Q-learning
model, we design a retransmission program with a Q-learning model to determine the
optimal retransmission time and frequency, thereby enhancing network performance.

The functional component blocks of the adaptive HARQ (A-HARQ) scheme are
depicted in Figure 2, where BLER is the average downlink block error rate, CQI is the
average CQI, Distance is the distance between UEs, and NumRBs is the number of resource
blocks. The A-HARQ scheme takes BLER, CQI, Distance and NumRBs as input linguistic
variables. A state classifier is responsible for classifying the current transmission state
according to the input linguistic variables. The state identity denoted by Si can then
be obtained from the state classifier. The optimal action Ak for Si is inferred from the
ε-greedy strategy. By the action decision, a suitable optimized transmission scheme can
be determined by the A-HARQ scheme. After the reward R(Si, Ak) is generated by the
Reward Calculator based on the system feedback of the transmission result, the Q values
q(Si, Ak) in the Q-Table are updated by the Q-Function Update. Moreover, the learning
rate α of the Q-Table will be adjusted by the Optimizer according to the feedback results of
the system when making online decisions. The detailed design is given as Section 4.1.
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4. The Proposed Adaptive HARQ Q-Learning Model
4.1. Model Description

The major components of the proposed Adaptive HARQ Q-learning model include the
agent, state, action, and reward calculator. The agent serves as a representation of the 5G
NR system, which performs an action according to the Q-Table obtained by reinforcement
learning. The action here refers to when and how many times to transmit or retransmit the
packet. The transmission results will affect the system state. The feedback from the system
will determine the rewards obtained using the reward calculator and the optimization of
the Q-Table. The objective of the proposed Q-learning method is to identify a set that will
optimize the overall cumulative reward. The following is a detailed description of the
model sections.

4.1.1. 5G NR System

In this study, the “NR TDD Symbol-Based Scheduling Performance Evaluation” mod-
ule of the 5G Toolbox of MATLAB R2021a is used as the main system simulation envi-
ronment. Moreover, the visualization function of the BLER in the “NR Cell Performance
Evaluation with Physical Layer Integration” module was invoked to form the simulation
environment of this study [14,19–22]. The former example models a symbol-based schedul-
ing scheme in the TDD mode and evaluates the network performance. Symbol-based
resources schedule shorter transmission durations that span only a few symbols within a
timeslot. In the TDD mode, physical uplink shared channel (PUSCH) and physical down-
link shared channel PDSCH (PDSCH) transmissions are scheduled in the same frequency
band with separation in the time domain. The latter example demonstrates the integration
of a high-fidelity 5G Toolbox™ physical layer in a 5G NR node and models a 5G NR cell
consisting of a set of user equipment (UE) connected to a 5G Base Station (gNB). The NR
stack on the nodes includes radio-link control (RLC), medium-access control (MAC), and
physical (PHY) layers.

To avoid any additional delays caused by Q-learning models in real networks, we
adopt an asynchronous framework that can separate the training process from the decision-
making process of Q-learning. The framework includes two stages: offline training and
online decision, and the detailed design is given in Section 4.2.

4.1.2. State Space

The setting of State space will determine whether the algorithm can converge and
affect the analysis and design of reward. We employ innovative methods to categorize the
data transmitted by 5G NR-V2X by BLER, CQI, Distance and NumRBs.

As is clear from the previous introduction to the HARQ process, the delay in processing
by the receiver decoder has a great impact on the transmission RTT. More NACKs being
returned means that more incorrect data are transmitted. It also means that the more times
that retransmission is needed, the correspondingly greater the delay accumulation of the
receiver decoder. Therefore, reducing the BLER can enhance the reliability of information
transmission and reduce the delay. The BLER can be calculated as in Equation (2):

BLER =
NACK

ACK + NACK
(2)

In addition to the important index of the downlink BLER(BLER), the design state space
also takes the average downlink Channel Quality Indication (CQI), UE distance (Distance),
and the number of resource blocks (NumRBs) into account. They all belong to discrete and
relatively independent data, which together constitute the State space of the Q-learning
model.

When the Distance ranges from 0 to 2000 m, the NumRB value ranges from 0 to 120.
The UE distance is divided by a section every 100 m for a total of 20 sections. The number
of resource blocks is divided into five intervals for a total of 20 intervals. The intervals of
the UE distance (Distance) and the resource block numbers (NumRBs) are arranged and
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combined, and the two state elements of the downlink BLER (BLER) and the downlink
average CQI (CQI) are included to jointly establish the state space. Each divided state
represents a class of transmission scenarios, including all possible transmission scenarios.
Finally, the state space Si, (i = 1, 2, . . . , 400). The state-space table is shown in Table 1.

Table 1. State space.

State BLER CQI Distance NumRBs

S1 . . . . . . [0, 100] [0, 20]
S2 . . . . . . [0, 100] [20, 25]
S3 . . . . . . [0, 100] [25, 30]
. . . . . . . . . . . . . . .

S400 . . . . . . [1900, 2000] [115, 120]

4.1.3. Action Space

A simple and efficient action-space design can reduce the difficulty of convergence and
improve the training speed. The designed action space in this study is Ak, (k = 0, 1, . . . , 8),
giving a total of nine discrete program actions, where A0 is the 5G HARQ transmission
scheme shown in Figure 1, A1 and A2 are T-delay scheme schemes, A3 and A4 are K-
repetition schemes, and A5–A8 are [T, K]-overlap schemes. Details are shown in Table 2,
where A1–A8 correspond to the eight HARQ alternative transmission schemes shown in
Figure 3.

Table 2. Action space.

Action A-HARQ Scheme

A0 5G HARQ scheme
A1 T-delay scheme where T = 1 slot offset
A2 T-delay scheme where T = 2 slot offset
A3 K-repetition scheme where K = 1
A4 K-repetition scheme where K = 2
A5 [T, K]-overlap scheme where [T, K] = [1, 1]
A6 [T, K]-overlap scheme where [T, K] = [1, 2]
A7 [T, K]-overlap scheme where [T, K] = [2, 1]
A8 [T, K]-overlap scheme where [T, K] = [2, 2]

Although a larger number of retransmissions increases the success rate of packet
transmission, the waiting time for the receiver to confirm the NACK signal and retransmit-
ting will greatly affect the delay during retransmission. So, in order to save the time and
resources required for retransmission, we limit the K-repetition scheme up to 3 times, that
is, 1 normal transmission plus 2 consecutive retransmissions. The correct selection of the
designed optimized transmission scheme can avoid the waste caused by the redundancy
of channel resources when the channel quality is good and the long delay and high BLER
caused by repeated retransmission when the channel quality is poor.

For example, when CQI is poor, the probability of information transmission failure is
large. In this case, the information can be sent with the T-delay scheme (delay 1 slot or delay
2 slots) to improve the success rate of the information transmission. Because an appropriate
delay transmission scheme can avoid an environment with poor CQI, there is a greater
probability of reducing the average BLER while releasing more limited channel resources
at the same time. It is worth noting that although it seems that the T-delay scheme will
temporarily waste time, the fact is that, the average number of retransmissions is reduced
because it may avoid interference. Consequently, both the overall transmission time and
the average delay are subsequently reduced.
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When the user is far away, there exists a high probability of information transmission
failure. In this case, the information can be sent with the K-repetition scheme (send 2 or
3 repetitions) to enhance the success rate of the information transmission and reduce the
average transmission delay. Because the appropriate repetition transmission mechanism
can save the waiting time after the receiver confirms the NACK signal when the original
retransmission is required, this reduces the average BLER. It is worth noting that the use of a
continuous repetition transmission mechanism will temporarily borrow channel resources;
however, due to the improvement in the transmission success rate, the original required
number of retransmissions is greatly reduced, and the channel resources will also make up
for it.

Moreover, when the distance is far and the CQI is poor at the same time, the [T,
K]-overlap scheme of the repetition sent after delay can be selected. The selection of a trans-
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mission scheme cannot focus on a single parameter but needs to comprehensively consider
factors such as the CQI, UE distance, and the number of resource blocks. The 5G HARQ
and eight designed alternatives together constitute the action space Ak, (k = 0, 1, . . . , 8)
of the A-HARQ scheme in this study.

4.1.4. Reward Calculator

The objective of the A-HARQ mechanism is to select the appropriate transmission
scheme for each packet to reduce the entire retransmission in the 5G NR-V2X physical layer.
The objective of Q-learning in the A-HARQ employs a learning model to choose the optimal
scheme that can reduce the average BLER across various transmission environments.

Based on our design, the selection of transmission scheme (A1–A8) is used in the
case that the transmission fails to meet the BLER requirements, while the transmission
scheme of the original 5G HARQ (A0) is used for cases that meet the BLER requirement.
Therefore, it is possible to initially set the maximum tolerable BLER threshold, denoted as
BLERMAX, which can be adjusted as necessary. In our observation, the BLER threshold is
set as BLERMAX = 0.098 in the simulation environment.

The original 5G HARQ BLER parameter is denoted as BLERHARQ, and the proposed
adaptive HARQ BLER parameter is denoted as BLERA-HARQ. The design of the Reward
Calculator is mainly based on whether the BLER is not greater than the BLERMAX.

When the value of the BLERHARQ is smaller than the BLERMAX, two reward rules, RI
and RII, can be selected in the Reward Calculator, which are set as follows:

• The reward rule corresponding to the state that meets the requirements of the BLER,
i.e., BLERHARQ ≤ BLERMAX, is RI, defined as in Equation (3):

RI =

{
10, Action = A0

−100, Action 6= A0
(3)

In this case, choosing the 5G HARQ scheme (A0) will result in a positive reward, while
choosing other optimized transmission schemes (A1–A8) will result in a punishment.

• The reward rule corresponding to the state that does not meet the requirements of the
BLER, i.e., BLERHARQ > BLERMAX, is RII, defined as in Equation (4):

RII =

{
−100, Action = A0

R0 + Rp, Action 6= A0
(4)

In the case of the unsatisfied BLER threshold, the real change in BLER (BLERHARQ
− BLERA-HARQ) after execution of the A-HARQ decision is added as the main basis, and
factors such as distance, CQI, and RB number are also considered. In this case, the selection
of the 5G HARQ scheme (A0) will be punished, whereas the selection of other optimized
transmission schemes (A1–A8) will be rewarded or punished correspondingly according to
the key factor of the BLER change. The reward rule of RII consists of the base reward R0
and the reinforcement reward Rp.

The base reward R0, reflecting the BLER reduction, can be expressed as Equation (5):

R0 =

{
−100, BLERA−HARQ ≥ BLERHARQ

τ(BLERHARQ − BLERAHARQ), BLERA−HARQ < BLERHARQ
, (5)

where τ is the reward coefficient, set at τ = 100. The smaller the BLERA-HARQ after the
A-HARQ scheme, the greater the reward R0.

If the transmission scheme only pursues the goal of reducing the BLER while ignoring
the actual situation of the current network environment quality and available resources,
it will cause a waste of limited time and space resources. Therefore, in the formulation
of the reward function in this study, in addition to reducing the BLER, we also need to
comprehensively consider the quality of the channel, UE distance, and available resource
blocks under various circumstances. Only in this way can we achieve a reasonable allocation



Electronics 2023, 12, 4127 11 of 19

of transmission time slots and limited channel resources, reduce the total transmission time,
and improve the reliability of data transmission. Therefore, the reinforcement reward Rp is
set to help the agent to find the optimal strategy and is defined as in Equation (6):

Rp =

{
0, BLERAHARQ ≥ BLERHARQ

RCQI + RDistance + RRBs, BLERAHARQ < BLERHARQ
, (6)

where RCQI, RDistance, and RRBs are reinforcement reward values corresponding to the CQI,
UE distance, and available resource blocks, respectively. They comprise reward coefficients
and their normalized systems, as shown in Table 3.

Table 3. The weight factor of the parameter.

Action RCQI RDistance RRBs

A1
(

1− CQIi
15

)
∗ 25

(
1− Distancei

2000

)
∗ 10

(
1− RBsi

120

)
∗ 10

A2
(

1− CQIi
15

)
∗ 28

(
1− Distancei

2000

)
∗ 8

(
1− RBsi

120

)
∗ 8

A3 CQIi
15 ∗ 10 Distancei

2000 ∗ 25 RBsi
120 ∗ 10

A4 CQIi
15 ∗ 8 Distancei

2000 ∗ 28 RBsi
120 ∗ 8

A5
(

1− CQIi
15

)
∗ 18 Distancei

2000 ∗ 15
(

1− RBsi
120

)
∗ 10

A6
(

1− CQIi
15

)
∗ 15 Distancei

2000 ∗ 18
(

1− RBsi
120

)
∗ 8

A7
(

1− CQIi
15

)
∗ 15 Distancei

2000 ∗ 10
(

1− RBsi
120

)
∗ 10

A8
(

1− CQIi
15

)
∗ 10 Distancei

2000 ∗ 15
(

1− RBsi
120

)
∗ 8

According to the eight different optimal transmission schemes of A-HARQ, the pro-
portions of the CQI, distance, and available resource blocks are different. For example, the
channel quality is considered more important when the decision is made to use the action
of delay transmission. However, the transmission distance is more important when the
repetition transmission action is chosen. Accordingly, the coefficient weights of the more
focused factors are the largest. On the contrary, the channel quality is an important factor
to consider in the length of the time delay. And the distance is an important consideration
when considering the number of repetitive transmissions. At the same time, the amount
of available resource blocks is another important factor to be considered to postpone the
sending time and/or to reduce the number of repetitive transmissions.

Specifically, for the CQI factor, the worse the CQI is when the T-delay scheme is
selected, the bigger the reward that will be obtained, while the better the CQI is when
the K-repetition scheme is selected, the bigger the reward that will be obtained. And
the opposite is true for the factors of distance and the number of resource blocks. The
greater the distance and the number of resource blocks, the greater the reward of repeated
transmission, while the smaller the distance and number of resource blocks, the greater the
reward of the delayed transmission behavior.

4.2. Q-Learning Model with the 5G NR-V2X System

Referring to the study by [23], we adapt it as our asynchronous framework for the
proposed A-HARQ architecture. Figure 4 illustrates the two primary stages: offline training
and online decision making. From a global perspective, they operate on the same Q-Table.
The offline training stage aims at building a basic Q-Table to provide support for the online
decision stage. The offline training process is completed in advance, and its outcomes
are compiled into the MATLAB logging file. The online decision stage focuses on both
the processes of making the decision on what action will be performed and updating the
Q-Table to help improve future decisions.
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4.2.1. Offline Training

Offline training in Algorithm 1 employs four modules: Collector, Replay Buffer, State
Classifier, and Trainer, as illustrated in Figure 4. This stage aims to obtain a basic rule table,
which is the basis for the online decision. The rule table, named Q-Table, represents the
expected reward of each executable action for all states.

The procedure of Algorithm 1 is presented as follows: Firstly, the state and action
information is imported from the replay buffer, as well as the reward calculator function.
The episode, BLERMAX, learning rate α, and discount factor γ are set respectively, and then
an all-zero Q-Table is initialized. After the initial state is randomly selected, the training
begins, the action is selected according to the ε-greedy strategy, and the corresponding
reward R is obtained according to the reward rule. Then, enter the next state after executing
the current action, obtain the current Q value from the Q-Table and calculate the new Q
value, and then update the Q-Table according to the Bellman Update formula. The training
is performed until the end of the number of iterations. The following section provides a
comprehensive description of each module.

In training, the agent collects data from the environment and stores them in the replay
buffer. To keep the agent from making bad decisions, there is no prior knowledge at the
beginning; the collector collects data from the environment and subsequently stores them
in the replay buffer in the form (BLER, CQI, Distance, NumRBs). The parameters represent
the average downlink block error rate downlink, average channel quality indication, user
distance, and number of resource blocks, respectively.
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Algorithm 1: Offline Training Algorithm for Agent

Then, the State Classifier sorts the data into different categories of the state space.
According to the state division and action design in Section 4.1, 400 states (S1–S400) and
9 actions (A0–A8) are obtained to form the matrix of Q-Table of 400 × 9, as illustrated
in Table 4. The initial Q-Table is initialized with all zeros, and it is filled by conducting
pretraining with the samples collected from the environment.

Table 4. Initial Q-Table.

Q A0 A1 . . . A8

S1 . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . Q(S, A) . . .

S400 . . . . . . . . . . . .

Finally, train the samples and calculate a basic Q-Table, which is also the optimal
action decision table. In order to make the algorithm converge and to maintain a certainly
stability, the learning rate α is set to the middle value of 0.5 and the discount factor γ is
0.8. In order to make the training effect play a greater role, the ε-greedy strategy is set to
select the action. The model explores the system with probability ε to take random action
and with probability ε to exploit the Q-Table. Also, set the attenuation factor to prevent the
energy from being wasted in randomly selecting the non-optimal action after convergence.
The ε decreases from 0.3 to 0.1 as the number of training episodes increases. The ε-greedy
algorithm can ensure that the state of the state space is fully traversed to ensure that the
optimal strategy is finally converged.

4.2.2. Online Decision

In the online decision procedure, the system will utilize the Q-Table obtained during
the offline training stage to execute the selected action, and it will adjust the learning rate α
according to the system feedback. In addition, the system will continue to collect the data
to optimize the Q-Table. The algorithm of the online decision is described in Algorithm
2. The agent first determines the action, and then performs the action within the network.
Next, the system computes the reward R according to Equation (4) or Equation (5) and
provides feedback after performing the action. The records of S, A, R, S′ are saved and
ready to be delivered to the buffer. The parameters represent the state, action, reward, and
next state, respectively. Afterwards, update the Q-Table using Equation (1) based on the
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feedback of the environment. The online decision stage includes two modules: the module
of decision making and the optimizer module, which will be introduced below.

Algorithm 2: Online Decision Algorithm

At the beginning, the agent will initialize the Q-Table in the same way as for the basic
Q-Table that was calculated in the offline training stage. In decision making, we also take
actions with the ε-policy, which is a strategy to weaken the contradiction in reinforcement
learning between exploration and exploitation. The model explores the system with a
probability ε of taking random action and with a probability of 1-ε of exploiting the Q-Table.
After deciding the action, the 5G NR-V2X system will perform information transmissions
according to this action.

The optimizer can adjust the learning rate of the update algorithm according to the
BLER optimization. The BLER feedback from each online training system is utilized to
adapt the learning rate α within a certain range of [0.2, 0.8]. The general idea is that when
the system feedback regarding the BLER optimization effect performed by this action is
satisfactory, the learning rate α increases, while when the BLER optimization effect is more
general, the learning rate α decreases.

5. Performance Evaluation
5.1. Simulation Setup

The procedures for constructing the simulation are described as follows. Set the
channel bandwidth to 5 MHz and the sub-carrier space (SCS) to 15 kHz, as specified in
Section 5.3.2 of the 3GPP TS 38.104 [22]. The simulation employs a lookup table to map the
received signal’s interference-and-noise ratio (SINR) to the CQI index for a 0.1 BLER [19].
The lookup table corresponds to the CQI table as specified in table of 5.2.2.1-3 of the 3GPP
TS 38.214. The complete bandwidth is assumed to be allotted for the PUSCH/PDSCH. The
channel quality is periodically improved or deteriorated by 1 every 0.2 s for all RBs of a
UE. Whether the channel conditions for a particular UE improve or deteriorate is randomly
determined. The initial value of the CQI for each RB and for each UE is given randomly
and is limited by the maximum achievable CQI value corresponding to the distance of the
UE from the gNB. According to the 3GPP TS 38.323, the maximum radio-link control (RLC)
session data unit (SDU) length is 9000 bytes [24]. The complete bandwidth is assumed to
be allocated for the PUSCH or PDSCH. The above data will be used as the offline training
data for this study. Other parameters in this study are set as follows:

• The subcarrier spacing: 15 KHz
• Periodicity (in ms) at which the UL packets are generated by UEs: 30 ms
• Size of the UL packets (in bytes) generated by UEs: 5000 B
• Periodicity (in ms) at which the DL packets are generated for UEs at gNB: 20 ms
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• Size of the DL packets generated (in bytes) for UEs at gNB: 6000 B

We create 4 mobile users in the simulation environment, and an equidistance between
each UE and the base station. According to the state division in Section 4.1.2, after modifying
and debugging the corresponding user Distance and NumRBs environment parameters in
the built simulation environment, the corresponding downlink average CQI and downlink
average BLER are obtained. The above data will be used as the offline training data in this
study, and a total of 400 sets of simulation data will be obtained.

The principle of the offline training and the online decision-making algorithm is
basically the same. However, the initial Q-Tables of the two are different, and the learning
rate in the online decision-making algorithm will be adjusted according to the system
feedback. The initial state of each learning sets the random state selection strategy, so that
all states have the possibility of traversing it. The Q-Table is updated according to the
ε-greedy strategy, and when the set number of training times of end convergence is reached,
the agent will stop training.

Each state space in this study is an independent simulation experiment. The process
of training is not a sequential accumulation of continuous actions and feedback, but each
training iteration is relatively independent. The state selection process is shown in Figure 5.
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According to the Monte Carlo algorithm, the agent should be able to traverse 9 actions
in 400 states to ensure the effectiveness of the algorithm, so the training episodes should
meet at least 3600 times. Secondly, in accordance with the principle of Markov chains, it is
expected that increasing the number of training times will result in more obvious signs of
convergence. In order to make the agent more certain about the choice of the best strategy,
the termination condition for the offline training is set at 100,000 training iterations.

5.2. Performance Analysis

This section presents an analysis of the performance evaluation of the proposed
A-HARQ scheme. The evaluation encompasses simulations conducted within a hetero-
geneous network environment. The assessment is performed in terms of the BLER, re-
transmission times, and RTT. The simulation results of the proposed A-HARQ scheme
are compared with that of the 5G HARQ scheme. This part only analyzes the results of
selecting the optimal transmission scheme for the state that does not meet the requirements
of the BLER (i.e., actions A1–A8), because the state that meets the requirements of the BLER
maintains the transmission scheme of 5G HARQ (i.e., action A0).

This study guides agents to optimize effective information by calculating rewards
according to the feedback of system BLER changes after performing actions and adjusting
learning rate strategies. The design of the reward mechanism can overcome the problem of
sparse returns and can converge. By utilizing the available prior knowledge data for offline
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training, a convergent basic Q-Table is derived. After tens of thousands of times of training,
the agent learns the action strategy that can obtain the biggest reward, and the training data
in each state will have an obvious tendency to converge to a certain action. Through the
offline training simulation, the optimal Q-Table is obtained, and the action corresponding
to the maximum Q value in each state is the optimal action. Figure 6 illustrates the ultimate
optimal information transmission scheme corresponding to states S1 to S400, respectively.
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According to the final optimal action table, an online decision is made, and perfor-
mance analysis is conducted on the entire sample space, which consists of 400 states.
Figure 7 illustrates the downlink average BLER performance of the A-HARQ scheme and
the 5G HARQ scheme. The simulation results demonstrate that the BLER performance
of the proposed Adaptive Hybrid Automatic Retransmission Request Technical Solution
(A-HARQ) is significantly better than that of the 5G HARQ. The A-HARQ scheme achieved
a reduction in the maximum BLER from 11.48% to 10.22% compared with the HARQ
scheme. The overall downlink average BLER decreased by 4.8 percentage points from
10.35% to 5.55%, which also means that the average information transmission accuracy
performance increased by 46.41%.

Figure 8 depicts the performance comparison of RTT and retransmission times between
the A-HARQ scheme and the HARQ scheme. The simulation results demonstrate that
that the A-HARQ scheme enables a reduction in the RTT and retransmission instances
compared with the HARQ scheme, as shown in Figure 8. The final RTT is shortened
by 35.23% and 56.82%, respectively, on average, i.e., from 2.4 ms and 3.6 ms to 1.55 ms,
respectively. The average reduction in the number of retransmissions is 2.31% and 51.16%
for the first and second cases, respectively. Specifically, the number of retransmissions
decreased from 1 to 0.97 for the first case, and from 2 to 0.97 for the second case.
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6. Conclusions

In this paper, we examine the communication performance of a 5G NR-V2X within an
asynchronous framework that combines offline training and online decision making with a
Q-learning model. In order to mitigate the waste caused by redundant channel resources
when the channel quality is good and the high delay and large BLERs caused by repeated
retransmissions when the channel quality is poor, the T-delay scheme, K-repetition scheme
and [T, K]-overlap scheme including 8 optimal transmission schemes are designed. In
this study, the A-HARQ mechanism is realized through the decision-making ability of
Q-learning’s optimal learning model. The proposed A-HARQ for environmental awareness
aims to optimize the utilization of limited channel resources and adaptively select the most
appropriate actions based on the current system state. Finally, this approach enables the
highest effective utilization of existing resources and channel quality and achieves the
purpose of reducing the average BLER, average retransmission times, and RTT. In future
studies, we will explore the utilization of neural networks to optimize the design of reward
mechanisms, with the aim of achieving greater perfection.

Author Contributions: Conceptualization, M.-H.Y. and S.J.; methodology, M.-H.Y. and S.-Y.L.; soft-
ware, M.-H.Y., S.J. and S.-Y.L.; validation, M.-H.Y. and S.-Y.L.; formal analysis, M.-H.Y.; investigation,
M.-H.Y. and S.J.; resources, S.-Y.L.; data curation, M.-H.Y. and S.J.; writing—original draft preparation,
M.-H.Y.; writing—review and editing, S.-Y.L.; visualization, M.-H.Y.; supervision, S.-Y.L.; project
administration, S.-Y.L.; funding acquisition, S.-Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created during the study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. 3GPP (3rd Generation Partnership Project). Enhancement of 3GPP Support for V2X Scenarios, 3GPP TS 22.186, v17.0.0; 3GPP:

Valbonne, France, 2022.
2. Vangelista, L.; Centenaro, M. Performance Evaluation of HARQ Schemes for the Internet of Things. Computers 2018, 7, 48.

[CrossRef]
3. Berardinelli, G.; Khosravirad, S.R.; Pedersen, K.I.; Frederiksen, F.; Mogensen, P. Enabling Early HARQ Feedback in 5G Networks.

In Proceedings of the IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5.
4. AlMarshed, S.; Triantafyllopoulou, D.; Moessner, K. Supervised Learning for Enhanced Early HARQ Feedback Prediction in

URLLC. In Proceedings of the IEEE International Conference on Communication, Networks and Satellite, Batam, Indonesia,
17–18 December 2020; pp. 26–31.

5. Wang, Q.; Cai, S.; Lin, W.; Zhao, S.; Chen, L.; Ma, X. Spatially Coupled LDPC Codes via Partial Superposition and Their
Application to HARQ. IEEE Trans. Veh. Technol. 2021, 70, 3493–3504. [CrossRef]

6. Yeo, J.; Bang, J.; Ji, H.; Kim, Y.; Lee, J. Outer Code-Based HARQ Retransmission for Multicast/Broadcast Services in 5G. In
Proceedings of the IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019;
pp. 1–5.

7. Shirvanimoghaddam, M.; Khayami, H.; Li, Y.; Vucetic, B. Dynamic HARQ with Guaranteed Delay. In Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6.

8. Goektepe, B.; Faehse, S.; Thiele, L.; Schierl, T.; Hellge, C. Subcode-Based Early HARQ for 5G. In Proceedings of the IEEE
International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

9. Strodthoff, N.; Göktepe, B.; Schierl, T.; Samek, W.; Hellge, C. Machine Learning for Early HARQ Feedback Prediction in 5G. In
Proceedings of the IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

10. Jang, H.; Kim, J.; Yoo, W.; Chung, J.-M. URLLC Mode Optimal Resource Allocation to Support HARQ in 5G Wireless Networks.
IEEE Access 2020, 8, 126797–126804. [CrossRef]

11. Li, A.; Wu, S.; Jiao, J.; Zhang, N.; Zhang, Q. Age of Information with Hybrid-ARQ: A Unified Explicit Result. IEEE Trans. Commun.
2022, 70, 7899–7914. [CrossRef]

12. Liu, Y.; Deng, Y.; Elkashlan, M.; Nallanathan, A.; Karagiannidis, G.K. Analyzing Grant-Free Access for URLLC Service. IEEE J. Sel.
Areas Commun. 2021, 39, 741–755. [CrossRef]

13. Fei, Z.; Teng, G. Research on an improved HARQ method based on 5g HARQ. Chang. Inf. Commun. 2023, 36, 210–212.

https://doi.org/10.3390/computers7040048
https://doi.org/10.1109/TVT.2021.3065052
https://doi.org/10.1109/ACCESS.2020.3007902
https://doi.org/10.1109/TCOMM.2022.3217574
https://doi.org/10.1109/JSAC.2020.3018822


Electronics 2023, 12, 4127 19 of 19

14. 3GPP (3rd Generation Partnership Project). 5G; NR; Physical Layer Procedures for Data, 3GPP TS 38.214, v15.9.0; 3GPP: Valbonne,
France, 2020.

15. Hua, G.D.; Li, J.H.; Wang, Z.; Li, N.; Wang, Z. LTE-V2X Test Based on PC5/Uu Mode. Automot. Digest 2022, 08, 24–30.
16. Wang, W.L.; Shi, S.H.; Zhang, H.B.; Cai, L. Research on Key Communication Technologies for Vehicle-Road Co-ordination. J.

Highw. Transp. Sci. Technol. (Appl. Technol. Ed.) 2020, 16, 311–315.
17. Lin, J.X.; Zheng, L.; Zong, Y.; Wang, Z.J. Port vehicle-road coordination based on dedicated short-range communication. J.

Shanghai Inst. Shipp. Transp. Sci. 2021, 44, 56–62.
18. Han, W.; Wang, Y.H.; Qin, D. Application of URLLC Technology in Electric Vehicles. Electr. Meas. Instrum. 2021, 58, 81–86.
19. 3GPP (3rd Generation Partnership Project). NR; Medium Access Control (MAC) Protocol Specification, 3GPP TS 38.321, v15.6.0; 3GPP:

Valbonne, France, 2019.
20. 3GPP (3rd Generation Partnership Project). NR; Radio Link Control (RLC) Protocol Specification, 3GPP TS 38.322, v15.5.0; 3GPP:

Valbonne, France, 2019.
21. 3GPP (3rd Generation Partnership Project). NR; Radio Resource Control (RRC) Protocol Specification, 3GPP TS 38.331, v15.6.0; 3GPP:

Valbonne, France, 2019.
22. 3GPP (3rd Generation Partnership Project). NR; Base Station (BS) Radio Transmission and Reception, 3GPP TS 38.104, v16.0.0; 3GPP:

Valbonne, France, 2019.
23. Zhong, L.; Ji, X.; Wang, Z.; Qin, J.; Muntean, G.-M. A Q-Learning Driven Energy-Aware Multipath Transmission Solution for 5G

Media Services. IEEE Trans. Broadcast. 2022, 68, 559–571. [CrossRef]
24. 3GPP (3rd Generation Partnership Project). NR; Packet Data Convergence Protocol (PDCP) Specification, 3GPP TS 38.323, v16.2.0;

3GPP: Valbonne, France, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TBC.2022.3147098

	Introduction 
	Related Works 
	Problem Statement and System Framework 
	Problem Statement 
	System Overview 

	The Proposed Adaptive HARQ Q-Learning Model 
	Model Description 
	5G NR System 
	State Space 
	Action Space 
	Reward Calculator 

	Q-Learning Model with the 5G NR-V2X System 
	Offline Training 
	Online Decision 


	Performance Evaluation 
	Simulation Setup 
	Performance Analysis 

	Conclusions 
	References

