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Abstract: Facial attribute editing refers to the task of modifying facial images by altering specific
target facial attributes. Existing approaches typically rely on the combination of generative adversarial
networks and encoder–decoder architectures to tackle this problem. However, current methods may
exhibit limited accuracy when dealing with certain attributes. The primary objective of this research
is to enhance facial image modification based on user-specified target facial attributes, such as hair
color, beard removal, or gender transformation. During the editing process, it is crucial to selectively
modify only the regions relevant to the target attributes while preserving the details of other unrelated
facial attributes. This ensures that the editing results appear more natural and realistic. This study
introduces a novel approach called MAGAN (Combining GRU Structure and Additive Attention
with AGU—Adaptive Gated Units). Moreover, a discriminative attention mechanism is introduced
to automatically identify key regions in the input images that are relevant to facial attributes. This
mechanism concentrates attention on these regions, enhancing the model’s ability to accurately
capture and analyze subtle facial attribute features. The method incorporates external attention
within the convolutional layers of the encoder–decoder architecture, facilitating the modeling of
linear complexity across image regions and implicitly considering correlations among all data samples.
By employing discriminative attention in the discriminator, the model achieves more precise attribute
editing. To evaluate the effectiveness of MAGAN, experiments were conducted on the CelebA dataset.
The average precision of facial attribute generation in images edited by our model stands at 91.83%.
PSNR and SSIM for reconstructed images are 32.52 and 0.957, respectively. In comparison with
existing methodologies (AttGAN, STGAN, MUGAN), noteworthy enhancements have been achieved
in the domain of facial attribute manipulation.

Keywords: facial attribute manipulation; adversarial generative networks; additive attention;
external attention mechanism

1. Introduction

Facial editing refers to the act of altering specific features of a particular countenance,
such as gender, hair color, skin tone, and facial expression. This technology can vividly
reproduce the facial images stored in people’s minds and allow for effortless modifications.
Its applications are extensive in domains like facial beautification [1] and human-computer
interaction [2]. However, in the process of facial editing, some networks tend to focus more
on certain attribute transformations while disregarding the preservation of the original
identity features. This can result in inconsistent identity traits between the reconstructed
image and the original one, and even distortion of facial features during the transformation.
The challenge in current facial attribute editing lies in accurately transferring a given
image from the source attribute domain to the target attribute domain while preserving
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the attribute-independent details. With the continuous development of deep learning,
more and more generative models have been proposed, including GAN [3], VAE [4], and
Diffusion [5] models. These models can transform low-dimensional data by generating high-
dimensional image data, thus making significant progress in the field of face generation
and solving many difficult problems. First of all, GAN has a generator and a discriminator.
The generator is used to generate fake images from random noise, and the discriminator
determines whether the input is a real image or a generated image. The two are constantly
growing stronger in a minimax mutual game. Since the model itself is adversarial, we
need to train two models at the same time, so it is difficult to train, which makes it difficult
to achieve an optimal balance, and it is prone to mode collapse due to its poor training
stability. VAE generates images by converting the original high-dimensional input into
low-dimensional hidden layer encoding through the encoder and reconstructing the data
from the encoding through the decoder. In order to generate images, we can add constraints
to the encoder to force it to generate potential that obeys Gaussian distribution. Simply
sampling it and passing it to the decoder produces a picture, but the resulting image is
blurry. The difference between the diffusion model and generative networks such as VAE
and GAN is that the diffusion model has two main process areas: forward diffusion and
reverse diffusion. In the forward diffusion stage, the image is contaminated by gradually
introducing noise until the image becomes completely random noise. Diffusion models
have recently shown remarkable performance in image generation tasks, but these models
are computationally demanding and training requires very large memory, because all
Markov states need to be in memory at all times for prediction, meaning multiple instances
of large deep networks are in memory at all times. Huang et al. [6] proposed a cooperative
diffusion model that can control face generation and editing through multiple modalities
simultaneously, without retraining single-modal models, and showing superiority in image
quality and conditional consistency. DCFace [7] proposes a dual-conditional face generator
based on the diffusion model, which controls intra- and inter-class variations by combining
subject appearance (ID) and external factor (style) conditions. The author uses a novel patch-
wise style extractor and time-step-dependent ID loss which enables DCFace to consistently
produce facial images of the same subject under different styles with precise control. In
recent years, cutting-edge research [8–10] has been predominantly based on the encoder–
decoder architecture, which extracts the representation of the source image and reconstructs
it guided by the target attribute vector. Moreover, attribute-independent constraints are
incorporated into the facial attribute classifier to ensure accurate attribute transformations.
Among them, refs. [11,12] directly convert the input image into an image with the target
attributes instead of editing the input image within the appropriate attribute regions,
inevitably leading to unnecessary modifications in attribute-unrelated parts. STGAN [10]
introduced selective transfer units, replacing the target attribute vector with the differential
attribute vector as the model’s input. This approach allows STGAN to focus on the
attributes that require modification, greatly improving the quality of image reconstruction
and enhancing the flexibility of attribute transformations. However, it should be noted
that STGAN still does not explicitly consider the attribute editing regions, and is thus
unable to guarantee perfect preservation of content details in attribute-unrelated areas.
MUGAN [13] introduced self-attention layers as a complement to the convolutional layers
in the encoder–decoder, providing assistance for the model’s generation. The self-attention
mechanism helps simulate long-range dependencies between image regions and facilitates
complex geometric constraints for image generation in GANs. However, it is important
to note that its ability to manipulate attributes still falls somewhat short. Additionally,
incorporating self-attention can result in an excessively large model size and prolonged
training time.

In Figure 1, the effects of attribute manipulation, specifically the attribute “Bangs”, are
not pronounced in AttGAN, STGAN, and MUGAN. In the case of “Gender”, the results
generated by AttGAN alter the length of the hair. While we expect STGAN to preserve
the content unrelated to the edited attribute, its generated output modifies the content of
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the beard. Regarding the “Bald” attribute, our editing results outperform those of other
models. To address these issues, we introduce the concept of “external attention” [14] as a
complementary element to the convolutional layers of the encoder–decoder architecture.
While self-attention, which calculates the correlations within the same sample to capture
long-range dependencies, has limitations due to its quadratic computational complexity
and disregard for connections between different samples, the introduction of external atten-
tion, constructed with only two linear layers and two normalization layers, offers a linear
computational complexity and better models the linear complexity across image regions,
while implicitly considering correlations among all data samples. This aids in achieving
complex attribute constraints in generated images, making our model more robust in
attribute decoupling. Moreover, external attention exhibits enhanced attribute decoupling
capabilities, aiding in executing complex attribute constraints in image generation. This
optimization not only significantly reduces training time but also yields better results than
self-attention. To address the limitations of attribute manipulation in the model, we propose
a discriminative attention mechanism that reduces information reduction and amplifies
global dimension interaction features, enhancing the capabilities of the attribute classifier.
This mechanism ensures a “superior” and “more stringent” classification performance,
constraining the generator to produce desired facial attributes and thereby resolving the
shortcomings in attribute manipulation capabilities. Our contributions are as follows:
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Figure 1. The facial editing results from AttGAN, STGAN, MU-GAN, and our approach, with the
given target attributes being Bangs, Gender, and Bald.

(1) Enhanced attribute manipulation while preserving unrelated attributes: The in-
tegration of a novel skip-connection unit with the symmetric U-Net decoder-encoder
architecture has elevated the capability to manipulate facial attributes. This contribution al-
lows for precise attribute modification while preserving the integrity of unrelated attributes,
ensuring that the editing process focuses only on the target attributes.

(2) Reduced model complexity with improved attribute decoupling: The incorporation
of external attention mechanisms has reduced the complexity of the model. Simultane-
ously, this integration has enhanced the attribute decoupling capability, allowing for better
separation and control over different facial attributes. Additionally, the image generation
quality has improved, ensuring more realistic and visually appealing generated images.

(3) Strengthened attribute manipulation and discriminator performance: The proposal
of a discriminative attention mechanism has brought about significant improvements in
attribute manipulation capabilities. This mechanism enhances the discriminator’s ability
to distinguish and analyze facial attributes, thereby boosting the attribute classifier’s
effectiveness. This contributes to better attribute editing results and overall image quality.
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2. Related Work
2.1. Encoder–Decoder Architecture

Hinton and Zemel [15] presented a seminal paper introducing an autoencoder network
consisting of an encoder and a decoder. The encoder can process diverse inputs from CNNs,
RNNs, and more, yielding feature vectors. Leveraging the feature vectors obtained by the
encoder, the decoder generates results that closely resemble the desired output. In a related
vein, Kingma and Welling [4] proposed the concept of variational autoencoders, which
represents a specialized case within the encoder–decoder framework. The encoder learns
the posterior distribution p(z|x), encoding the input image x into latent space variables z.
The decoder extracts new images from the latent vector z and generates novel samples akin
to the input image. Notably, Nie et al. [16] employed a semi-supervised learning approach
based on the VAE model to edit facial attributes in images.

2.2. Generative Adversarial Networks (GAN)

Currently, the majority of facial attribute modification methods are based on GANs.
These models consist of a generator network G and a discriminator network D, engaged in
a minimax game. The goal of the generator is to learn the distribution of the input data
and generate new samples resembling the training samples, while the discriminator learns
how to distinguish real samples from fake ones in the generator’s output. GANs have been
applied in various domains, with image synthesis being their origin and prime target. To
integrate the merits of these two models, some approaches such as [17] have employed
a hybrid model that combines VAEs and GANs. GANs, trained on a set of facial images,
can generate similar facial photos based on input noise vectors. Since the introduction
of GANs, many successful facial image generation models have been proposed. Among
them, PgGAN [18] is an extension of GAN training that allows for more stable training
of generator models capable of producing high-quality large-scale images. It starts from
a very low-resolution image and gradually adds layers to increase the output size of the
generator model and the input size of the discriminator model until the desired image size
is achieved. StyleGAN [19] is an improvement upon the PgGAN architecture, enabling the
control of separate style attributes of the created images by introducing inter-mediate latent
spaces. StyleGAN generates high-resolution and realistic images, but sometimes unnatural
speckles appear in the resulting images. In StyleGAN2 [20], adjustments have been made
to the use of AdaIN, effectively avoiding these speckles.

2.3. Image Translation

Image translation refers to the transformation between images, which, from a more
abstract perspective, involves mapping between different visual domains. For instance, the
task of colorizing black and white images entails a mapping from the “grayscale domain”
to the “color domain”. Models such as Pix2Pix [21], CycleGAN, and StarGAN employ
research approaches that combine machine learning models to achieve facial attribute
editing across single or multiple domains. Designing distinct transformation algorithms for
images in different modes poses a significant challenge when dealing with image conversion
tasks. However, Pix2Pix has accomplished image-to-image translation by utilizing pixel-
to-pixel mapping based on GAN models, thereby demonstrating greater universality
compared with previous image transformation techniques. Nevertheless, training the
Pix2Pix model necessitates a substantial amount of paired data, which can be prohibitively
expensive to acquire. To address this issue, CycleGAN utilizes a cycle-consistent loss
function to achieve image translation between arbitrary pairs of visual domains, employing
unsupervised learning and exhibiting extensive applicability. L2MGAN [22], a cross-
domain image-processing model consisting of three modules, namely, a style encoder,
style transformer, and generator, facilitates style transfer between real and generated
images. The functionality of the style encoder lies in extracting style codes, while the
style transformer factorizes the d-dimensional latent space into two parts, separating
the extracted information into relevant attributes of interest and irrelevant attributes,
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crucial for preserving the unrelated aspects since other attributes should not overwrite all
unrelated information in the input image. PuppetGAN [23], another cross-domain image
processing model, enables style transformation between real and synthetic images. This
model employs a domain-uncertainty encoder (E) to map images from both domains into
a disentangled latent space, where the interested attributes are isolated from other facial
attributes. Furthermore, the model utilizes two distinct decoders, one for the real domain
(GA) and the other for the synthetic domain (GB).

2.4. Facial Attribute Manipulation

Facial attribute editing is a wondrous and imaginative technique that bestows the
power to alter specific attributes of faces in images or videos. It enables the transforma-
tion of facial traces of time, allowing the reversal of years gone by, or the conversion of
masculine vigor into feminine grace, even instantly turning individuals into enviable
celebrities. The methods employed for facial attribute editing can be categorized into
optimization-based approaches (such as CNAI [24] and DFI [25]) and learning-based
approaches (such as [26–28]). Optimization-based methods require individual optimiza-
tion for each test image, incurring significant time costs for model training. Among
the learning-based methods, the prevailing approach is the employment of generative
adversarial networks (GANs), renowned for their fidelity in various image generation
tasks. The early proposed approach, VAE/GAN [29], employed the combination of
GAN and VAE, to learn a latent representation, and a decoder. By modifying the latent
representation, it aimed to obtain the desired attribute information and subsequently
decode it to accomplish the task of attribute editing. Subsequently, AttGAN [8] emerged
as a facial editing framework, built upon the foundations of IcGAN [30] and Fader Net-
works [31]. Unlike the IcGAN and Fader Networks approaches, AttGAN maintains that
excessive constraints on latent attributes limit the capacity of implicit representations,
leading to overly smooth or distorted image generation. Within this framework, the
authors employ attribute classification constraints to ensure accurate attribute variations
in generated images. Similarly, StarGAN [9] enhances attribute editing performance
through the optimization of necessary adversarial, attribute classification, and recon-
struction losses, free from any potential limitations. The performance of STGAN [10] has
been further elevated. In terms of attribute embedding, it employs differential attributes,
providing more information for attribute transfer. To strike a balance between image
generation quality and attribute manipulation, it is necessary to ensure high-quality
generated images while precisely controlling attribute manipulation. This presents a con-
flicting challenge. To address this issue, STGAN draws inspiration from the principles
of GRU [32,33] and introduces STU as a means of attribute embedding. It enables the
transformation of attributes extracted in the encoder, thereby facilitating more accurate
attribute editing. MUGAN [13] presents an alternative model based on a conditional
decoder, wherein the target attribute vector is connected to the innermost representation
of the encoder and fed into the decoder. In this model, the underlying network of the
generator employs a symmetric U-Net structure, where skip connections selectively
transfer decoder-side features to the encoder side using additive attention (AUC) to
preserve attribute-independent details of the input image, thereby enhancing the quality
of the generated images. On the other hand, self-attention complements the convo-
lutional layers by addressing their limitations in capturing long-range dependencies
between pixels and considering global geometric information within these layers. The
discriminator D consists of two sub-networks: Dadv for discriminating between real and
fake images, and Dc for attribute validation within generated images. In this study, we
analyze the limitations of STGAN, AttGAN, and MUGAN and further develop a GAN
that simultaneously improves attribute manipulation capabilities and image quality.
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3. Proposed Method

To address the shortcomings of STGAN and AttGAN in preserving non-edited at-
tributes, the excessive training time of the MUGAN model, and the limited capability
for attribute manipulation, we have put forth a novel and enhanced method for facial
attribute editing. We employ a symmetrical U-Net architecture to construct the generator,
incorporating an additive attention mechanism and a skip connection unit, the AGU, which
combines GRU. Furthermore, we incorporate EA (external attention [14]) to complement
the information in the convolutional layers. In the discriminator’s facial attribute classifi-
cation model, we propose a discriminative attention mechanism (DAM) that accounts for
both spatial and channel dimensions, thereby enhancing the model’s attribute classification
capabilities. Lastly, we present the objective function of the model.

As shown in Figure 2, the upper section depicts the generator, which bridges the
encoder Genc and the decoder Gdec through the AGU. The generator has the ability to
selectively transform the encoder representation to complement the decoder representation,
thereby enabling editing of the source image based on the given target attribute vector.
The lower section illustrates the discriminator D, which takes both the source image and
the edited image as inputs. The discriminator D consists of two sub-networks, namely
the adversarial discriminator Dadv and the attribute classifier Dc. We apply DAM to the
intermediate features of the discriminator.
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Figure 2. Overview of the MAGAN model.

3.1. Generator

Attention U-Net connection: Figure 3 illustrates the proposed architecture of the
generator, wherein we employ the Attention Guided Unit (AGU) to selectively transfer
attribute-independent representations between the encoder and decoder. By connecting
the encoder and decoder representations through AGU, we aim to enhance image quality
and preserve fine details. AGU, as depicted in Figure 4, is a structural unit that combines
additive attention and GRU. Similarly to other encoder and decoder attention mechanisms,
it facilitates the integration of attribute-related information. The encoder consists of key(k)
and value(v) components, while the decoder consists of the query(q) representation.
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Q is linearly transformed from the decoded features, both K and V are linearly transformed from the
encoding features.

Taking the encoder–decoder layer l as an example, we begin by mapping the image
information representation El/Dl from the preceding encoder/decoder layers through their
respective linear transformations, transforming into two feature spaces, q and K ∈ RC×N ,
denoted as Wq and Wk. Here, N = W × H represents the format reshaped into a vector
(W × H) × (C/2). Let i represent the i-th position in the vector. Linear transformation is
achieved through the utilization of a 1 × 1 convolution, whereby the number of channels is
reduced by half, precisely to c/2, mirroring the input size.

q(Dl
i ) = WT

q Dl
i , k(El

i ) = WT
k el

i (1)

The sum of q(Dl
i ) and k(El

i ) yields the similarity αl
i , which is further processed through

the activation functions ReLU and Sigmoid to compute the attention map α and another
transformation block Wt, denoted as:

αl
i = RELU(q(Dl

i ) + k(El
i )) (2)

αi =
1(

1 + exp
(
−WT

t bl
i
)) (3)

Among these, the attention coefficient αi ∈ [0, 1] is employed to identify salient
regions in the image and trim the representation, allowing only the activations that do not
contain attribute-related information to persist. The output of AGU is the element-wise
multiplication of the encoder representation El

i and attention coefficient αi, denoted as:

Êl =

N

∑
i=1

αl
i E

l
i (4)
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The AGU merges the encoder representation Êl with the decoder representation Dl
i

in a cascaded manner, both possessing identical dimensions, forming the input for the
subsequent upsampling. The complementary nature of the decoder representation is
bolstered through AGU transmission, compensating for the information loss caused by
convolutional downsampling and enriching the intricacies of the image.

A facial attribute model based on GANs, constructed with convolutional layers: Due
to the limited receptive field of the convolutional kernels, these models can only process
information from neighboring pixel regions in the images. As a result, many GAN models
built with CNNs face a common challenge of inadequately meeting global geometric
constraints. Although MUGAN utilizes a self-attention mechanism as a complement to the
convolutional layers in G, effectively modeling dependencies across long-range, spatially
disjoint regions (as seen in the second row of Figure 1, where facial hair is preserved
during the “to female” transformation, unlike in STGAN), it comes with the drawback of
quadratic complexity. This leads to a significant increase in model parameters and training
time. To address this, we introduce external attention as a supplement to the generator’s
convolutional layers. Not only does it reduce training time, but it also achieves the same
effects as self-attention. The details of external attention are illustrated in Figure 5.
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Figure 5. The structure of external attention.

The external attention module employs a concatenation of two cascaded linear layers
and normalization layers to achieve its purpose. In essence, it computes the attention
between the input and external memory unit, denoted as memory M ∈ RS×d. By utilizing
the feature input extracted by preceding CNN layers as G ∈ RC×W×H , the formulation can
be expressed as follows:

A = αi,j = Norm(GMT) (5)

Gout = AM (6)

In this context, the symbol α(i,j) denotes the similarity between the i-th element and
the jth row of matrix M. The memory unit represents a parameter independent of the
input, serving as the collective memory for the entire training dataset. Firstly, M is shared,
allowing for implicit consideration of the interrelationships among different samples.
Secondly, owing to the flexibility of S, we can control its magnitude to make the entire
external attention mechanism adaptable, transforming attention into a complexity of N.

3.2. Discriminator

The discriminator D is composed of two main components, as depicted in Figure 6:
the adversarial discriminator Dadv and the facial attribute classifier Dc. The discriminator
takes both real and fake images as input. What sets our discriminator apart from others is
the application of our proposed discriminative attention mechanism (DAM) to the inter-
mediate feature layers. This mechanism preserves information in terms of channels and
spatial aspects, enhancing the importance of inter-dimensional interactions. By reducing
information reduction and amplifying global interactive representations, the performance
of the deep neural network is improved, allowing the model to achieve superior attribute-
editing capabilities. The main network architecture consists of a feature extractor and two
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independent fully connected layers, denoted as Dadv and Dc, as depicted in the diagram.
The feature extractor, composed of three stacked convolutional layers, serves to extract
informative features from the input image. Subsequently, a discriminative attention mech-
anism is employed to capture crucial features across all three dimensions, yielding the
output features. Instance normalization and leaky ReLU activation functions are applied to
all convolutional layers. Finally, the convolutional neural network backbone is bifurcated
into two branches, each connected to the independent fully connected layers Dadv and
Dc. The Dadv branch discriminates between genuine and counterfeit images, while the
Dc branch verifies the presence of the desired facial attributes in the input image, thus
imposing constraints on the generated facial attributes.
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3.3. Loss Functions

The generator of MAgan is composed of two components, Genc and Gdec. Genc encodes
the input image into a latent representation, while Gdec generates images with the desired
attributes. Given a facial image xa with n binary attribute labels a, the encoder Genc is used
to encode xa into a latent representation. Genc employs three convolutional layers to extract
its latent representation, which is defined as:

Fe = Genc(xa) (7)

Fe = f 1
e f 5

e (8)

where Fe represents the output of the encoder.
Taking the i-th layer of the encoder–decoder as an example, the outputs extracted by

the encoder/decoder at the i-th layer are denoted as f i
E/ f i

D, while f i
in represents the input

representation of the i-th layer in the decoder. Subsequently, we concatenate the innermost
encoder representation f 5

E with the target attribute vector b and pass it to the decoder.
Guided by the attribute vector b, we employ AGU to transfer the encoder representations
to each decoder layer.

f̂ (i−1)
E = AGU( f (i−1)

D , f i−1
E ) (9)

f̂ (i−1)
in = C( f (i−1)

D , f̂ i−1
E ) (10)

f i
D = D( fin

i−1) (11)

Among these, C and D respectively denote the channel concatenation function and
the deconvolutional layer. f (i−1)

E selectively transfers information from the encoder by

incorporating an attention mechanism. This information is then combined with f (i−1)
D

to form the input representation, denoted as fin
i−1, which is used for the subsequent
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transpose convolutional layer. Finally, xα is transformed into a new image xb, with the
desired attributes through the use of Genc and Gdec.

xb̂ = Gdec(Genc(xa), b) = G(xa, b) (12)

Aims to minimize the disparity between generated images and real images, bringing
their distributions closer to that of real images: The introduction of adversarial learning in
our proposed method has significantly enhanced the visual realism of generated images.
WGAN [34] employs the Wasserstein distance as a metric to measure the distance between
the generated image distribution and the real image distribution, thereby enhancing the
quality of image generation. In comparison to conventional GANs, WGAN exhibits greater
stability and the ability to generate higher-quality images. Building upon WGAN, we
represent the adversarial loss between G and Dadv as follows:

min
Dadv

Ladv = −Exa∼Ir D(xa) + Exb̂∼I f
D(xb̂) (13)

min
G

L′adv = −Exb̂∼Ir
D(xa) + Exb̂∼If

D(xb̂) (14)

In the equation, Ir/I f represents the distributions of real and fake image samples,
respectively.

In order to meticulously transform the image xa into an image xb with the desired
facial attribute b, it is imperative to employ the facial attribute classifier Dc to classify the
facial attributes. Subsequently, this classification guides the generator G to enforce attribute
constraints, thus generating images that possess the accurate facial attributes. The attribute
classification loss in this context is defined as follows:

min
Dc

Lcls = Exa∼Ir [L(xa, a)] (15)

L(xa, a) = −
n

∑
i=1

[
ailog

(
Di

a(xa)
)]

+ (1− ai)log(1− Di
c(xa)) (16)

The value of G is:
min

Dc
L′cls = Exb̂∼If

[L(xb̂, b)] (17)

L(xb̂, b) = −
n

∑
i=1

[
bilog

(
Di

c(x
b̂)
)]

+ (1− bi)log(1−Di
c(x

b̂)) (18)

Here, n represents the number of attribute categories and Di
c denotes the predicted

label for the i-th attribute in Dc. L, on the other hand, is the summation of binary cross-
entropy losses for all attributes.

By employing the adversarial and classification loss methods, it fails to guarantee that
only attribute-relevant regions are altered while preserving the intricacies of the attributes.
Hence, Gdec needs to learn, under the condition of the original attribute label “a”, how
to reconstruct the image xa from the latent representation Fenc of Genc. Simultaneously,
the introduction of the L1 norm serves as a measure to assess the similarity between the
generated image xa and the original image xa, thus defining the reconstruction loss.

Lrec = Exa∼Ir ||xa − G(xa, a)||1 (19)

The subscript 1 in this context refers to the L1 norm, which, compared with the L2
norm, has a greater ability to effectively suppress the blurring effect of an image.
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Drawing upon all the aforementioned loss functions, our approach exhibits remarkable
performance in both attribute editing and detail preservation. The objective of G can be
summarized as follows:

min
D

L = Ladv + λ1Lcls (20)

As for G, it represents:

min
G

L′ = L′adv + λ2L′cls + λ3Lrec (21)

where λ1–λ3 denote the hyperparameters of the loss function.

4. Experiments
4.1. Dataset and Preprocessing

We employed the CelebA dataset [35] to evaluate the proposed MAGAN. The CelebA
dataset possesses numerous instances, wide diversity, and rich annotations, comprising
202,599 facial images from 10,177 distinct identities. Each image is additionally annotated
with 40 binary attributes. The 12 attributes including MUGAN, AttGAN, and STGAN, in-
cluding bald, bangs, black hair, blond hair, brown hair, bushy eyebrows, eyeglasses, gender,
open mouth, mustache, pale skin, and age were selected in this experiment. We centered
and resized the CelebA source images, originally 178× 218 in size, to 128 × 128 dimensions.
The CelebA dataset was divided into training and testing sets, with the training set consist-
ing of 182,637 images, and the testing set containing 19,962 images. We also used the face
dataset in LFW to verify the generalization ability of the model. LFW (Labelled Faces in
the Wild) is a public benchmark dataset for face recognition tasks. The dataset contains
13,233 portrait images from different sources on the Internet.

4.2. Implementation Details

The proposed method is compared with AttGAN, STGAN, and MUGAN, all of which
were trained and evaluated using multi-attribute models under the same setting. The
models involved in the experiment were trained on a workstation equipped with an
RTX2080ti GPU. All experiments were conducted in the PyTorch 1.10.1 environment, with
CUDA 10.2 and CuDNN 8.2.2. The number of training iterations, or epochs, was set to 200.
The model employed the Adam optimizer (β1 = 0.5, β2 = 0.999) for optimization, with an
initial rate of 0.0002. The learning rate was reduced to 1/10 of its value every 33 epochs.
During training, for each generator update, we performed 10 discriminator updates. The
weights of the objective function were set as follows: λ1 = 3, λ2 = 10, λ3 = 100.

4.3. Results

We compared the proposed method with two state-of-the-art methods and their
variants, (i.e., AttGAN, STGAN, and MUGAN). As depicted in Figure 7, it is shown
that the proposed method achieved superior enhancement of geometric constraints when
manipulating visually prominent attributes such as bangs, eyeglasses, and mustaches.

Furthermore, as shown in Figure 8, each column represents a different attribute opera-
tion, totaling nine items. Each row showcases the qualitative outcomes of the comparative
methods, with the source image positioned at the far left of each row. It can be observed
that AttGAN, STGAN, and MUGAN achieved reasonable performance in attributes such
as eyebrows and pale. However, when it comes to action of “adding bangs”, these methods
presented blurred and hazy states, failing to effectively incorporate the fringe attribute.
STGAN attempts to enhance its performance by modifying the structure of the generator,
yet it occasionally lacks clarity when adding the eyeglasses attribute. AttGAN, on the other
hand, introduces some artifacts in certain attributes like “bangs”. MUGAN struggles to
accurately edit the gender attribute, as its result do not distinctly differentiate between
genders. In contrast, the proposed method successfully transformed local attributes such
as eyeglasses and global attributes like gender and age.
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Figure 8. Facial attribute editing results on the CelebA dataset, where the rows from top to bottom
correspond to image generation by MAGAN, AttGAN, StarGAN, and MUGAN.

For the attributes “blond” and ”bald”, AttGAN, STGAN, and MUGAN tended to
manipulate irrelevant regions, resulting in image blurring. As illustrated in Figure 9, the
first column representing the transformation to bald and the last column depicting the
hair transformation to blond showed that the proposed model achieved more natural and
well-edited images compared with other methods.
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Figure 9. Comparative editing results across various attributes with respect to competing methods.

Finally, in order to help evaluate the robustness, generalization ability, and applicability
of the model, and to understand the performance and limitations of the model more
comprehensively, we use different datasets to test the model, using the LFW dataset to
test our model and other comparative models. As shown in Figure 10, we can see that our
face editing effect is still better than that of the other models. In the figure, AttGAN and
MUGAN perform poorly in the bald attributes, with artifacts and distortions appearing.
AttGAN and STGAN have insignificant editing effects in some attributes, such as bangs
and beard. When editing global attributes, such as gender and age, our method generated
images of significantly better quality than the others.
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4.4. Evaluation

In the task of facial attribute editing, the primary evaluation focuses on the authenticity
of the generated images and the accuracy of facial attribute manipulation. To assess the
transformation from the source domain to the target domain, we employ the accuracy
of attribute operation as a metric. The peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) are introduced to evaluate the quality of reconstructed images.
Two metrics, FID [36] and image fusion quality AG [37] are introduced to evaluate the
quality of image generation. To evaluate attribute operation accuracy, we train a deep
attribute classification model using STGAN on the training set of the CelebA dataset.
The trained model achieves an accuracy of 94.7% when tested on the 12 attributes of the
test set. It is employed to measure the classification accuracy of the edited attributes, as
depicted in Figure 11. It can be observed that the attribute classification accuracy (except
the “male”) surpasses that of other models. Notably, there is a significant improvement in
the generation accuracy for attributes such as bangs, black hair, blond hair, and mustache.
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Figure 11. AttGAN, STGAN, MUGAN, and MAGAN’s precision in attribute generation, encompass-
ing a total of 12 facial attributes.

As shown in Table 1, the average accuracy of attribute classification stands at 91.83%,
achieving a substantial improvement compared with AttGAN’s 71.16%, STGAN’s 84.67%,
and MUGAN’s 87.78%. This signifies a remarkable enhancement in the model’s ability
to manipulate attributes upon the incorporation of AGU and the discriminative attention
mechanism.

Table 1. Comparative analysis showcasing the average accuracy for 12 facial attributes and the results
of reconstruction quality.

Method Average Accuracy PSNR/SSIM

AttGAN 71.16% 20.65/0.801
STGAN 84.67% 30.67/0.927

MUGAN 87.78% 31.58/0.934
MAGAN 91.83% 32.52/0.957

For evaluating the reconstruction results, we employ peak signal-to-noise ratio and
structural similarity (PSNR/SSIM) as evaluation metrics. PSNR is a metric that assesses the
quality of reconstructed images by calculating the mean squared error between the original
and reconstructed images, expressed in a logarithmic scale. A higher value indicates a
smaller disparity between the reconstructed and original images, indicating higher image
quality. On the other hand, SSIM comprehensively considers the structural and pixel-level
similarity of images, yielding a result between 0 and 1. A value closer to 1 indicates a higher
similarity between the reconstructed and original images, indicating better image quality.
As shown in Table 1, we observed that the generator, incorporating external attention,
preserved more image information. The proposed model achieved higher quality image
reconstruction compared with STGAN, AttGAN, and MUGAN. Table 2 shows the average
accuracy and reconstruction quality results of 12 facial attributes generated by each method
in the LFW dataset. It can be seen that in the LFW dataset that both the average accuracy
of facial attributes and the reconstruction quality results are better than the others. The
performance of the CelebA dataset is poor. This is due to the quality of the dataset. Most of
the faces in LFW pictures are not frontal, and the picture pixels are blurred. However, even
so, our method still has the best effect compared with other methods.
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Table 2. Comparative analysis showcasing the average accuracy for 12 facial attributes and the results
of reconstruction quality in the LFW dataset.

Method Average Accuracy PSNR/SSIM

AttGAN 70.59% 19.35/0.755
STGAN 82.84% 29.95/0.903

MUGAN 85.98% 30.37/0.916
MAGAN 89.32% 31.28/0.933

In terms of visual quality and preventing undesired variations, we employed the
Fréchet Inception Distance (FID), which is a metric to assess the quality of images generated
by Generative Adversarial Networks (GANs). It is used to measure the discrepancy
between generated and original images, aiding in the refinement of GAN models and
producing generated images that closely resemble the original images. Initially, we divided
the CelebA test set into two subsets, Test set A and Test set B. Test set A serves as the
source images for attribute editing, while Test set B contains a set of distinct source images.
Subsequently, we compared the two image groups (test set A0, derived from test set A’s
synthetic image set, and test set B, the original image set) to mitigate the impact of input-
output similarity when measuring FID scores. Note that we made some modifications to
each image (e.g., male to female/female to male), thereby making the evaluation based on
FID scores meaningful. The results are depicted in Figure 12. The FID metric assesses the
similarity between two sets of images based on the statistical similarity of their computer
vision features. A lower score indicates a greater similarity in statistical properties between
the image sets. The optimal score is 0.0, indicating complete identity between the two. It
can be observed that, except for the attributes of bald, bangs, and mustache, the proposed
model achieved lower FID scores compared with the other models.
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Figure 12. FID scores depicting the image quality of attribute generation for AttGAN, STGAN,
MUGAN, and MAGAN.

The FID metric quantifies the generated images by measuring the distance between
feature vectors of the generated images and original images. However, when it comes to
facial attribute editing, there are limitations in using the FID metric for evaluation since
there is no reference to original edited images. The AG metric, on the other hand, is
employed to assess the clarity of fused images based on the average gradient value. A
higher average gradient indicates higher image clarity and better fusion quality. Evaluating
12 attributes, as depicted in Figure 13, it shows that the AG scores of the proposed model
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are higher than those of other models. This indicates that the proposed model is capable of
generating higher-quality edited images.
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Figure 13. We evaluated the AG metrics for twelve attributes, including AttGAN, STGAN, MUGAN,
and MAGAN.

4.5. Ablation Study

To analyze the effects of these modules, we constructed several variants of MAGAN
under the similar experimental settings but with following updates: (1) Change0–based
on our proposed model; (2) Change1–excluding the external attention mechanism while
retaining the AGU module and DAM; (3) Change2–removing the discriminative attention
mechanism (DAM) while keeping the others intact; and (4) Change3–eliminating the AGU
module while retaining the other two components. These variants were trained and tested
on the same CelebA dataset, and the same evaluation metrics were used. Figure 14 shows
the attribute classification accuracy of different variants of MAGAN.
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4.5.1. Effect of AGU Structure

Firstly, the editing results between our complete model, Change0, and the model
without AGU, Change3, are depicted in Figure 15. Comparing the generated results of
Change0 and Change3, the images generated by Change3 exhibit a greater degree of
blurriness, particularly in the bald attribute. One possible reason for this phenomenon is
that the model fails to capture the contextual relationships among facial features during the
generation process, resulting in a confusion between skin tone and background images,
thus causing image blurring. The inclusion of AGU enables a focus on crucial facial features,
distinguishing between the face and the background, thereby achieving a more natural
appearance in the generated faces.
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4.5.2. Effect of an External Attention Mechanism

As shown in Figures 15 and 16 and Table 3, the inclusion of the external attention
mechanism enhances the attribute classification accuracy. Figure 17 and Table 4 showed
that the generator, equipped with external attention, achieved a superior perceptual quality
in reconstructing images, as evidenced by the improved PSNR and SSIM values. It indicates
that FID scores are consistently higher when the external attention mechanism is absent,
suggesting a slight degradation in the quality of generated images. Moreover, the average
AG results for Change0 surpass those of Change1 AG, underscoring that the introduction
of external attention leads to improved clarity and fusion quality. The incorporation of
external attention into the generator not only reduces model parameters but also elevates
the overall image generation quality of the model.

Table 3. The average accuracy of twelve facial attributes in the MAGAN variants.

Method Average Accuracy

Change3 89.78%
Change2 88.17%
Change1 91.05%
Change0 91.83%

Table 4. Mean attribute generation and image reconstruction results for different variants.

Method Average AG PSNR/SSIM

Change3 10.84 31.74/0.946
Change2 10.68 31.58/0.934
Change1 10.89 31.942/0.951
Change0 11.03 32.52/0.957
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4.5.3. Effect of DAM

As depicted in Figures 14 and 16, the proposed model suffered from a noticeable
decline in its facial editing attribute capability, particularly in the bald and eyeglasses
attributes, without DAM. PSNR/SSIM in Table 4 indicate that the inclusion of DAM
yielded improvements in the model’s reconstruction performance. The average AG score
increases after integrating DAM (as shown in Figure 16). Change0 achieved a lower score
than Change2, suggesting that the incorporation of DAM strengthens the discriminator,
elevating the model’s demand for image authenticity. Furthermore, to demonstrate the
generalizability of our proposed attention mechanism, we have applied it to AttGAN
and STGAN, as shown in Figures 17 and 18. When AttGAN and STGAN incorporate
our proposed attention mechanism, their attribute editing capabilities are significantly
enhanced. By comparing the visibly perceptible attribute changes, it is evident that the
models exhibit stronger attribute editing capabilities. As depicted in Figure 19, the DAM
enhances the model’s constraint capability in attribute classification. Hence, our proposed
discriminator attention mechanism has the potential to improve the model’s attribute
editing capability.
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5. Conclusions

In this paper, we propose the integration of GRU and an additive attention mecha-
nism within the generator of a facial attribute editing model, giving rise to a formidable
skip-connection unit named AGU. Through experimental validation, this fusion model
has showcased remarkable performance. The uniqueness of AGU lies in its ability to
harness both the sequence modeling prowess of GRU and the crucial weight allocation
characteristics of the additive attention mechanism. GRU effectively captures long-term de-
pendencies in input sequences through its gating mechanism, making it adept at handling
temporal data in the generator. On the other hand, the additive attention mechanism allows
AGU to focus its attention on the most relevant parts of the input sequence, providing the
generator with more accurate contextual information. Experimental results demonstrate a
significant performance improvement by AGU in facial attribute editing tasks. Compared
with traditional generators, AGU-generated images exhibit enhanced detail, clarity, and
naturalness, ensuring facial integrity and consistency. This substantiates the effectiveness
and practicality of AGU as a skip-connection unit in facial-attribute editing tasks. In addi-
tion, a discerning attention mechanism has been proposed to optimize the intermediate
feature layers of the discriminator, enhancing its capacity to capture crucial features across
three dimensions. This augmentation improves the discriminator’s ability to locate spatial
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regions and specifically identify areas associated with specified attributes. Consequently, it
enables effective control over facial edits, restricting them to regions relevant to the desig-
nated target attribute. This enhancement elevates the facial attribute editing capabilities
of the model while enhancing the performance of the discriminator, resulting in the gen-
eration of more authentic images. We have employed external attention on the generator,
addressing the issues of excessive model parameters and prolonged training time, while
also enhancing the quality of generated images. Through qualitative and quantitative
analyses, we have compared the performance of STGAN, AttGAN, and MUGAN. The
proposed method demonstrates superior performance in most target attributes compared
with these three methods, achieving significant improvements in certain attributes. In
terms of model performance, we use two datasets, CelebA and LFW, for comparison. It can
be seen that our method performs well in different datasets, indicating that our model has
high robustness and no overfitting, convergence, or underfitting.

Although our method has achieved good results in face editing, it has certain limita-
tions. First, when the background color is similar to the skin color, when adding bangs,
although the generated bangs have obvious features, the they are not realistic, as shown
in Figure 8. This may be because the model does not have strong enough context aware-
ness. Due to limitations of hardware resources, we currently only choose to add external
attention in layers 2 and 4. Theoretically, it would be better if external attention were
introduced to all layers. Our next work is to add different layers of external attention, and
increase the number, to analyze and compare the effect on the model. In the future, as
hardware and software resources become increasingly abundant, we will also consider
using more complex and effective attention mechanisms to improve the face editing model.
Finally, the method we proposed uses a variety of attention mechanisms to supplement
convolution information. Although the external attention mechanism has greatly reduced
the complexity of the model, the number of parameters of the entire model is still too
large and the training time is too long. In the future, we will consider using some new
convolutional modules to reduce redundant information between features in convolutional
neural networks, thereby compressing the number of model parameters and improving
its performance.
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