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Abstract: Modeling the interactions among individuals in a group is essential for group activity
recognition (GAR). Various graph neural networks (GNNs) are regarded as popular modeling
methods for GAR, as they can characterize the interaction among individuals at a low computational
cost. The performance of the current GNN-based modeling methods is affected by two factors. Firstly,
their local receptive field in the mapping layer limits their ability to characterize the global interactions
among individuals in spatial–temporal dimensions. Secondly, GNN-based GAR methods do not have
an efficient mechanism to use global activity consistency and individual action consistency. In this
paper, we argue that the global interactions among individuals, as well as the constraints of global
activity and individual action consistencies, are critical to group activity recognition. We propose new
convolutional operations to capture the interactions among individuals from a global perspective. We
use contrastive learning to maximize the global activity consistency and individual action consistency
for more efficient recognition. Comprehensive experiments show that our method achieved better
GAR performance than the state-of-the-art methods on two popular GAR benchmark datasets.

Keywords: group activity recognition; deformable convolutional networks; contrastive learning

1. Introduction

Group activity recognition (GAR) classifies the collective behavior of a group of people
in a short video clip of a specific event based on the individual actions of the group
members and their interactions with each other [1]. Different from deep learning tasks,
such as human activity recognition [2], people tracking [3], and occupancy counting [4],
GAR is unique in its potential to explore critical semantic information from interactions
among individuals and thus widely used in security surveillance, social role understanding,
and sports video analysis.

A big challenge for GAR is to characterize the distinctive property of interactions
among individuals in a group. Almost all early GAR methods [5–7] used hand-crafted
features to describe the interactions among individuals. The performance of these methods
was limited due to their inability to extract semantic features from the video frames.
Machine learning-based, especially deep learning, methods are capable of learning features
at various levels of abstraction from the training data to obtain better performance than
those using hand-crafted features. Among the recent deep learning methods, multi-head
self-attention networks (MHSA)-based methods [8–10] achieved the best performance with
a global receptive field, although not being computationally efficient. Graphs have shown
great success in characterizing the structure of a group and the interactions existing in a
group in recent years. Some state-of-the-art deep learning-based GAR methods used graphs
to learn meaningful features through innovations in interaction modeling and achieved
promising results.
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To characterize the interactions among individuals in the group, many state-of-the-
art deep learning-based GAR methods learn the features of interactions of each person
with others in the neighborhood in each frame and characterize the interactions among
them with graphs. Early graph neural networks (GNNs)-based methods [11,12] are well
suited to model these interactions, but their predefined connectivity is not flexible for
every individual’s interactions with others [13]. The dynamic inference network (DIN) [13]
takes advantage of the deformable convolutional network (DCN) [14] to generate dynamic
convolutional sampling positions and provide a description of group activity that can suit
every individual’s interactions with others in the group. A significant challenge for the
existing GAR methods is that their models only consider the interactions of each person
with their neighbors to characterize their influence on group activity. They do not consider
the influence from other individuals.

Current GNN-based methods usually use mapping layers [11–13], i.e., normal con-
volutional layers with a receptive field of 3× 3 as shown in Figure 1a, or fully connected
layers with a receptive field of 1× 1 in both spatial and temporal dimensions to describe the
interactions of each individual with their neighbors. Each circle in Figure 1 represents the
feature of the state of an individual action in one frame. The horizontal (S) axis represents
the indexes of individuals in the group according to their locations in the x-axis of the
image. The vertical (T) axis represents the indexes of the image frames in the group action
video clip. The red-shaded area represents the local receptive field centered around an
individual for the mapping layer used in the existing methods [11–13]. Although these
approaches [11–13] simplify the computation and reduce the computation cost, they fail to
catch the features of global interaction patterns or the influence from all other individuals
involved in the group activity.
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Figure 1. (a) The local receptive field and (b) global receptive field in both S (spatial) and T (tem-
poral) dimensions that is used as the mapping layers of the existing GNN-based group activity
recognition methods.

To obtain better GAR performance, the distinctive pattern of group activity should
consider the global interactions among individuals, i.e., the interactions among all group
members throughout the video of the entire event. Learning the interaction pattern of a
group activity from a global viewpoint is critical to improving GAR performance. Using
mapping layers with a global receptive field in the spatial–temporal dimensions helps the
network to capture the interactions among all individuals [8–10]. The mapping layer with
the global receptive field (shown in Figure 1b) involves the locations of all members in the
group and all image frames in the event video when computing, and it is computationally
expensive. Characterizing global interactions involved in group activity efficiently remains
an open challenge.

In this paper, we propose a new GNN-based network to recognize group activity in
videos. This new network contains two new convolution layers that focus on characterizing
the global interactions of group activity efficiently while maintaining reasonable compu-
tational requirements. One convolution layer, as shown in Figure 2a, is designed with a
global receptive field in the spatial dimension (S) and a local receptive field in the temporal
dimension (T). The second convolutional layer, as shown in Figure 2b, has a local receptive
field in the spatial dimension (S) and a global receptive field in the temporal dimension (T).
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These two designed convolutional layers allow our new network to use two kinds of global
receptive fields in the spatial and temporal dimensions separately to provide an improved
ability to capture the spatial–temporal individual interactions from a global perspective.
We use these two kinds of convolutional layers in parallel to capture the features of the
group activity in a global sense without significantly increasing the computation cost.
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T

S

T

(a) (b)

Figure 2. The new mapping layers with (a) a global receptive field in S and a local receptive field in T,
and (b) a local receptive field in S and a global receptive field in T.

We also introduce constraints to further improve the performance of our network,
i.e., global activity consistency and individual action consistency. First, the states of group
activity in each frames should be similar to the states in other frames and have similar
contribution to the recognition of the group activity. In other words, the features of the states
of group activity in each frame in the same event video clip should be similar. The states
of the same “set” (or set the ball) group activity in two frames are shown in Figure 3a,b.
Since the states of the group activity in each frame should not change too much over time,
the features of the states of group activity in each frame should have similar contributions
to the recognition of the group activity. As shown in Figure 3c, each row or each grayed
area represents a feature of the state of group activity in one frame, and all seven grayed
areas should have similar features of the states of the group activity. We call this global
activity consistency. Second, each individual action in the video clip should have similar
contributions to the recognition of the group activity. Two individual actions in the same
“set” group activity are shown in Figure 4a,b. Each corresponding player (each column or
grayed area in Figure 4c) in the same video clip should have similar actions or features of
individual actions. We call this individual action consistency. The consistency of individual
actions also contributes to the recognition of the group activity.

S

T(a)

(b)

(c)

Figure 3. (a,b) Two frames from the “set” group activity. (c) The features of states of group activity
in each frames represented by each row should have similar contribution to the recognition of the
overall group activity.
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Figure 4. (a,b) Two individual actions of the “set” group activity. (c) Features of individual actions
represented by each column should be similar and have similar contributions to the recognition of
the overall group activity.

We use contrastive learning to constrain the semantic contributions from the features
of the states of group activity in each frame and the features of each individual action.
This unique design of combining two one-dimensional global receptive fields allows our
network to obtain global interactions more efficiently.

Our network was evaluated on two widely used datasets, the Volleyball dataset
(VD) [14] and the Collective Activity dataset (CAD) [15]. Experimental results demon-
strate that our network obtained superior classification accuracy with the lowest model
complexity compared with the state-of-the-art networks.

Our contributions are summarized as follows:
(1) We propose a new global individual interaction network (GIIN) to model the

interactions of all people in a group in the spatial–temporal domain. We design new
convolution kernels to characterize the interactions of all people in a group activity from a
global perspective.

(2) To avoid heavy computation when modeling global interactions, our proposed
convolution kernels have two global receptive fields with one in the spatial dimension and
another in the temporal dimension. They are connected in parallel to capture features of
the group activity in a global sense without significantly increasing the computation cost.

(3) We employ the technique of contrastive learning to refine the features of the states
of group activity in each frame and the features of each individual action.

(4) Experimental results show that the proposed network obtained comparable or
better performance in terms of recognition accuracy with the lowest model complexity
compared to the state-of-the-art networks.

2. Related Work
2.1. Group Activity Recognition

Traditional GAR approaches only extract features at low abstract levels and are unable
to represent the interactions among all people within a group activity. Early deep learning
methods for GAR used the hierarchical temporal model to characterize the actions of
individuals. However, it is a big task to accurately identify group activity by focusing only
on the individual actions over time. Interactions among individuals in the entire group
are important for GAR [1]. Recent research in this field attempts to improve the GAR
performance by modeling the interactions in a group more efficiently.

Recent deep learning-based GAR methods [8,10–12,16–20] recognize the activity of a
group in three steps. First, they encode the features of the states of each individual action
in each frame in a video of a specific activity to obtain a feature map [21]. They then use
a graph to describe the interactions among members within the group. The edges of the
graph are obtained based on pre-defined or learnable interactions, and the attributes of
each node are learned from the obtained feature map. Finally, they aggregate the features
at the group level by pooling operations to recognize the group activity. Of these three
steps, characterizing the interactions with an efficient model is important and has not been
addressed successfully. While it has not been explicitly stated, MHSA-based methods [8,12]
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construct a fully connected graph with a spatial–temporal feature map, and then use
self-attention as the weights of edges between pairs of nodes. The biggest challenge of
MHSA-based methods is the high computational cost.

Graph neural networks (GNNs) have shown the ability to model interactions between
nodes. GNN-based methods have attracted the attention of researchers in group activity
recognition in recent years. Interactions among individuals are represented with predefined
node connectivity (e.g., node distances) [11,12]. Computational cost for using predefined
node connectivity is lower than using a fully connected graph, but it cannot be applied to
node-specific interactions on the spatial–temporal feature map [13]. Inspired by the work
of DCN [21,22], Yuan et al. designed a dynamic inference network (DIN) to effectively
generate individual-specific dynamic interaction patterns on spatial–temporal graphs
using random wandering to improve the recognition accuracy with a lower computational
cost [13].

Since the GNN-based approaches use receptive field-confined convolutional or fully
connected layers to characterize the local interactions that exist in a group activity video,
they are not ideal for modeling the global interactions among individuals.

2.2. Contrastive Learning

Contrastive learning has been successively used for unsupervised learning in the
domain of multi-view learning, which captures task-relevant information by maximizing
the mutual information between features from different views [23]. The assumption in
contrastive learning is that task-related information exists mainly in shared information
between different views [24]. Contrastive learning learns the feature representation of a
sample by comparing the data with positive and negative sample pairs in the feature space.
The difficulty in contrastive learning lies in forming positive and negative sample pairs.

Motivated by its success in the field of multi-view learning, we use contrastive learning
for GAR in this paper. Specifically, for the extracted features of the states of group activity
in each frame and the features of each individual action, we learn the global activity
consistency and individual action consistency respectively with contrastive learning to
enable them to capture GAR-related information more efficiently.

3. Method

The framework of our proposed global individual interaction network (GIIN) consists
of three main modules—the feature extraction module, the interaction modeling module,
and the message passing and graph readout module—as shown in Figure 5.
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Figure 5. The framework of GIIN.

We use the feature extraction module to extract the features of states of each individual
action in each frame in the input video and construct a spatial–temporal feature map with
the extracted features. In the interaction modeling module, we arrange the obtained feature
map into a spatial–temporal graph and use our proposed convolutional kernels to extract
the feature from a global perspective and update the interactions among individuals. We
aggregate these features in the message passing and graph readout module and use them
for GAR. We learn the global activity consistency and individual action consistency from
the above features during training to capture more activity-relevant information.
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3.1. Feature Extraction Module

In the feature extraction module as shown in Figure 5, we use ResNet-18 [25] as our
backbone network to extract the features of each frame from the input video first. We crop
the region features of individuals by RoIAlign [26]. We then reduce the channel dimension
of the region features through an embedding layer to obtain the features of the states of
each individual action in each frame. Here, we implement the embedding layer with a
1 × 1 convolution layer. To construct a spatial–temporal feature map X ∈ RC×S×T for the
video, we stack the features of the states of each individual action in one frame from left to
right according to the positions of the individuals in the x-axis of the image. We denote
S as the number of people in each frame, T as the number of frames in the video, and C
as the length of the feature of the state of an individual action in one frame. For frames
that have fewer people than S, we follow the method used in [9,12,13] by replicating the
available features of the states of individual actions along the spatial dimension until the
entire row has features of the states of S individual actions. We repeat the same process for
each frame in the temporal dimension.

3.2. Interaction Modeling

In this module, we first initialize a directed spatial–temporal graph with the feature
map X, and then learn the spatial and temporal interactions in the spatial–temporal graph
by using our proposed convolutional kernels in the T-DCN and S-DCN branches.

To construct a directed spatial–temporal graph based on the feature map of X, we
regard each person in each frame as a node and treat the features of the states of each
individual action in each frame as the attribute of the node. Thus, the constructed spatial–
temporal graph contains S× T nodes, and the size of the attribute of each node is C. The
edges of the graph represent the interaction between two people or nodes. For each node,
we consider it a target node and initialize the corresponding source nodes according to the
index difference in the spatial and temporal terms. We denote the nearest K nodes in the
spatial dimension to each target node as its source nodes and the nearest K nodes in the
temporal dimension as its source nodes so that each node is connected to 2K source nodes
through 2K edges. Thus, the initialized spatial–temporal graph has S× T target nodes with
K× S× T temporal edges and K× S× T spatial edges.

We use the weight of the edge to denote the importance of interaction between a
source node and a target node, and use offset to denote the difference of positions between
the updated source node and the initial source node. We learn the weights and offsets of
spatial edges with the T-DCN branch and the weights and offsets of temporal edges with
the S-DCN branch. Based on the learned offsets, we update the position of each source
node by adding the offset to its initial position, and use weights to update the attribute of
each node.

The constructed spatial–temporal graph characterizes the interactions among individ-
uals in the group. However, the interactions that exist in a group activity are complicated
because each individual (node) is influenced by its neighbors (adjacent nodes) dynam-
ically. Previous methods [11–13] attempted to model the interactions among nodes by
using mapping layers with local receptive fields in spatial–temporal dimensions and gen-
erate the model of individual interactions. Their ability to represent the spatial–temporal
interactions is fairly limited because the local receptive fields can hardly capture global
interaction patterns.

To overcome the above shortcoming, using a convolutional kernel with a larger recep-
tive field is an intuitive approach, as it is more effective in capturing information unique to
different locations. However, it comes with the burden of a larger number of parameters.
We split a single 2-dimensional receptive field into two much simpler receptive fields to
reduce the number of parameters. Specifically, we propose spatial global receptive field
convolutional kernels (SGRF-Conv kernels) and temporal global receptive field convolu-
tional kernels (TGRF-Conv kernels), respectively. The proposed SGRF-Conv kernels have
global receptive fields in the spatial dimension and are grouped in the spatial dimension.
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Similarly, the TGRF-Conv kernels have global receptive fields in the temporal dimension
and are grouped in the temporal dimension.

3.2.1. Operations of SGRF-Conv and TGRF-Conv

Suppose the input X is an order 3 tensor with size C× S× T. C , Sand T denote the
length of the channel, and the spatial and temporal dimensions of the input, respectively.
The SGRF-Conv kernel is an order 3 tensor with size C× S× K, where C, S and K are the
length of the channel, the spatial and the temporal dimensions, respectively. Please note
that the SGRF-Conv kernel has the same length as the input in the spatial dimension to
achieve a global receptive field of the spatial dimension as shown in Figure 2a. We construct
the SGRF-Conv layer with D kernels of SGRF-Conv. We denote all the SGRF-Conv kernels
in the SGRF-Conv layer as H ∈ RD×C×S×K. We use variables 1 ≤ d ≤ D,1 ≤ c ≤ C,
1 ≤ i ≤ S, 1 ≤ u ≤ K and 1 ≤ j ≤ T to index elements in the kernels and the input.

The SGRF-Conv kernel is grouped in the spatial dimension when performing convo-
lutional operations on the input. Figure 6a shows the result of the convolution operation
between the input and the SGRF-Conv kernel. Since the convolution kernel has the same
length as the input in the spatial dimension, it has a global receptive field in the spatial
dimension and effectively reduces the number of parameters. We divide an SGRF-Conv ker-
nel into S groups along the spatial dimension, and each group generates the corresponding
output separately.

For simplicity, we set the stride to 1 and the padding to [K/2] (we use square brackets
to indicate that K/2 is rounded down). The output feature of SGRF-Conv is denoted as A,
A ∈ RD×S×T . The SGRF-Conv operation can be expressed by Equation (1):

ad,i,j =
C

∑
c=1

K

∑
u=1

hd,c,i,uxc,i,j+u+[−K/2], (1)

where xc,i,j+u+[−K/2] is the element of X indexed by c, i, j + u + [−K/2], ad,i,j is the element
of A indexed by d, i, j, and hd,c,i,u is the element of H indexed by d, c, i, u.

…

input output

input

output

…

(a)

(b)

Figure 6. Illustration of the input and output of (a) SGRF-Conv kernel and (b) TGRF-Conv kernel.
We use different colors to indicate that the input values at different spatial or temporal positions are
convolved to obtain the corresponding output values of the same color. The SGRF-Conv kernel slides
the window in the temporal dimension, and the TGRF-Conv kernel slides the window in the spatial
dimension. The size of the output in (a,b) are both S× T.

Similarly, suppose the input X is a three-order tensor in size of C× S× T. We design
the TGRF-Conv kernel to be a three-order tensor with size C×K× T, where C , K and T are
the length of the channel, the spatial and the temporal dimensions. The TGRF-Conv kernel
has the same length as the input in the temporal dimension to achieve a global receptive
field of the temporal dimension as shown in Figure 6b. We suppose that a TGRF-Conv layer
contains D kernels of TGRF-Conv. We denote all TGRF-Conv kernels in the TGRF-Conv
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layer as F ∈ RD×C×K×T . We use index variables 1 ≤ d ≤ D, 1 ≤ c ≤ C, 1 ≤ j ≤ T,
1 ≤ v ≤ Kand 1 ≤ i ≤ S to pinpoint a specific element in the kernels and the input.

For simplicity, we set the stride to 1 and padding to [K/2]. Hence, we have output in
E ∈ RD×S×T . The TGRF-Conv operation can be expressed by Equation (2):

ed,i,j =
C

∑
c=1

K

∑
v=1

fd,c,v,jxc,i+v+[−K/2],j, (2)

where xc,i+v+[−K/2],j is the element of X indexed by c, i + v + [−K/2], j, ed,i,j is the element
of E indexed by d, i, j, fd,c,v,j is the element of F indexed by d, c, v, j.

Considering H is equipped with a global receptive field in the spatial dimension and
F has a global receptive field in the temporal dimension, we use H and F to characterize
the global interactions in the spatial–temporal dimensions. Moreover, we use group convo-
lutions to reduce the number of parameters of our convolution kernels while providing
more efficient receptive fields in the spatial–temporal dimensions.

3.2.2. S-DCN and T-DCN

In our method, each branch of S-DCN consists of two parallel SGRF-Conv layers
(Figure 7), which learn the offsets and weights of the temporal edges, respectively. Similarly,
each branch of T-DCN uses two TGRF-Conv layers to learn the offsets and weights of
the spatial edges, respectively. With the offsets and weights of K temporal edges and K
spatial edges of each target node, we can update the spatial–temporal graph and aggregate
the features of each target node. Since the SGRF-Conv and TGRF-Conv operations have
global receptive fields in the spatial dimension and temporal dimension respectively, the
branches of S-DCN and T-DCN can characterize global interactions in the spatial–temporal
dimensions.

SGRF-Conv
layer

SGRF-Conv
layer

Update the temporal 
relationship

TGRF-Conv
layer

TGRF-Conv
layer

Update the spatial 
relationship

(a)

(b)

Figure 7. The structures of the (a) S-DCN and (b) T-DCN.

Since each temporal edge has an offset and a weight, each graph corresponds to
temporal offsets ∆PT ∈ RK×S×T and temporal weights MT ∈ RK×S×T . As is shown in
Figure 7a, to obtain the temporal offset ∆PT and temporal weight M and update the rela-
tionship in the temporal dimension, we use two SGRF-Conv layers, i.e., Hp ∈ RK×C×K×T

and Hm ∈ RK×C×K×T in S-DCN. The elements of ∆PT and MT can be calculated by Equa-
tions (3) and (4):

∆pT
d,i,j =

C

∑
c=1

K

∑
u=1

hp
d,c,i,uxc,i,j+u+[−K/2], (3)
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mT
d,i,j =

C

∑
c=1

K

∑
u=1

hm
d,c,i,uxc,i,j+u+[−K/2], (4)

where d = 1, 2, · · · , K, and K is a hyperparameter and denotes the number of edges for
each node in the temporal dimension. ∆pT

d,i,j is the element of ∆PT indexed by d, i, j,
mT

d,i,j is the element of MT indexed by d, i, j, xc,i,j+u+[−K/2] is the element of X indexed by

c, i, j + u + [−K/2], hp
d,c,i,u is the element of Hp indexed by d, c, i, u, and hm

d,c,i,u is the element
of Hm indexed by d, c, i, u. Please note that Hp and Hm are used to generate the offsets and
weights with the same operation of SGRF-Conv as defined for H (please see Equation (1)).
With the temporal offsets and temporal weights, we can update the temporal relationship
and acquire the feature Y by Equation (5):

y:,i,j =
K

∑
d=1

WTmT
d,i,jx:,i,j+[d−K/2]+∆pT

d,i,j
, (5)

where Y ∈ RC×S×T , WT ∈ RC×C is a learnable weight matrix, y:,i,j is a vector composed of
all elements in Y with temporal dimension i and spatial dimension j, and x:,i,j+[d−K/2]+∆pT

d,i,j

is a vector composed of all elements in X with temporal dimension i and spatial dimension
j + [d− K/2] + ∆pT

d,i,j
. Y represents the feature of group activity to be aggregated in the

temporal dimension and has the global interaction information in the spatial dimension
since it is obtained from the SGRF-Conv operation. Since the index of the position must be
an integer, while the offsets may be floating points, we follow the DCN presented in [22]
and employ bilinear interpolation to generate the features of the source nodes, i.e.,

x:,i,j+[d−K/2]+∆pT
d,i,j

=
T

∑
j=1

S

∑
i=1

x:,i,j max
(

0, 1−
∣∣∣j + [d− K/2] + ∆pT

d,i,j

∣∣∣), (6)

where x:,i,j is a vector composed of all elements in X with temporal dimension i and spatial
dimension j.

Similarly, to obtain the spatial offsets ∆PS and spatial weights MS, we use two TGRF-
Conv layers, i.e., Fp and Fm in T-DCN as shown in Equations (7) and (8):

∆pS
d,i,j =

C

∑
c=1

K

∑
v=1

f p
d,c,v,jxc,i+v+[−K/2],j, (7)

mS
d,i,j =

C

∑
c=1

K

∑
v=1

f m
d,c,v,jxc,i+v+[−K/2],j, (8)

where Fp ∈ RK×C×K×T and Fm ∈ RK×C×K×T . ∆pS
d,i,j is the element of ∆PS indexed by d, i, j,

mS
d,i,j is the element of MS indexed by d, i, j, xc,i+v+[−K/2],j is the element of X indexed by

c, i + v + [−K/2], j, f p
d,c,v,j is the element of Fp indexed by d, c, v, j, and f m

d,c,v,j is the element
of Fm indexed by d, c, v, j. Then, we can update the spatial relationship and acquire feature
Z ∈ RC×S×T by Equations (9) and (10):

x:,i+[d−K/2]+∆pS
d,i,j ,j

=
T

∑
j=1

S

∑
i=1

x:,i,j max
(

0, 1−
∣∣∣i + [d− K/2] + ∆pS

d,i,j

∣∣∣), (9)

z:,i,j =
K

∑
d=1

WSmS
d,i,jx:,i+[d−K/2]+∆pS

d,i,j ,j
, (10)

where WS ∈ RC×C is a learnable weight matrix different from WT in Equation (5), x:,i,j is
a vector composed of all elements in X with temporal dimension i and spatial dimension



Electronics 2023, 12, 4104 10 of 19

j, x:,i+[d−K/2]+∆pS
d,i,j ,j

is a vector composed of all elements in X with temporal dimension

i + [d− K/2] + ∆pS
d,i,j and spatial dimension j. z:,i,j is a vector composed of all elements

in Z with temporal dimension i and spatial dimension j, and Z represents the feature of
group activity to be aggregated in the spatial dimension and has the global interaction
information in the temporal dimension since it is obtained from TGRF-Conv operation.

As shown in Figure 5, to characterize the interactions efficiently, we split X into G
groups along the channel dimension, and denote the g-th group of X as Xg ∈ R(C/G)×S×T ,
g = 1, 2, · · · , G. Then we initialize the T-DCN and S-DCN branches of G, respectively, and
feed Xg, g = 1, 2, · · · , G into the g-th S-DCN and g-th T-DCN without shared parameters.
We denote the output of the g-th S-DCN as Yg and the output of the g-th T-DCN as Zg.
We can acquire the temporal offsets and temporal weights of Xg by Equations (3) and (4).
We set the size of the learnable weight matrix in Equation (5) to (C/G)× C to ensure
that the channels of Yg are the same size as the original channels. Finally, we sum up Yg,
g = 1, 2, · · · , G to acquire Y. Similarly, we set the size of the learnable weight matrix in
Equation (10) to (C/G)× C to ensure that the channels of the output Zg are the same size
as the original channels. We sum up Zg, g = 1, 2, · · · , G to acquire Z.

The summary of S-DCN and T-DCN is shown in Table 1.

Table 1. Summary of S-DCN and T-DCN.

Parameter
Sharing

Dimension

The Direction of
the Sliding

Window

Dimensions of the
Generated

Aggregation

S-DCN Time Time Time
T-DCN Space Space Space

3.3. Message Passing and Graph Readout Module

In the message passing and graph readout module, we aggregate X, Y and Z to update
the attributes of each node. Specifically, we use the summation–aggregation to update the
features of each target node with X, Y and Z. We use Equation (11) to aggregate Y and Z.
Then we use a 2-layer 1×1 convolution in the feed forward network (FFN) to refine the
aggregated features X̃ as shown in Equation (12):

X̃ = σ[(Y + Z)/2] + X, (11)

˜̃X = Dropout(FFN(X̃) + X̃), (12)

where ˜̃X is the refined feature. Finally, we perform pooling and linear mapping on ˜̃X to

acquire group activity labels
∧

cls. We use the cross entropy to calculate classification loss
Lcls by Equation (13):

Lcls = CrossEntropy(ĉls, cls), (13)

where cls is the ground truth of the group activity.

3.4. Global Activity Consistency and Individual Action Consistency Learning

We use T-DCN branches and S-DCN branches to capture the activity-relevant infor-
mation more efficiently by maximizing the consistency of the features of the states of group
activity in each frame and the consistency of features of individual actions, i.e., the global
activity consistency and individual action consistency. We first construct positive and
negative sample pairs, and then follow the routine of contrast learning [27] to constrain the
similarity of the constructed sample pairs. Supposing that a and b are feature vectors of
two samples, we use Equation (14) to measure the similarity between them,
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Sτ(a, b) = exp
(
〈a, b〉
‖a‖‖b‖

1
τ

)
, (14)

where τ is a hyperparameter. Specifically, suppose there are B samples in each mini-batch
input into GIIN. We denote the feature samples obtained from the S-DCN branches as
Y1, ...Yb, ...YB, where Yb, where Yb represents the feature of the group activity with global
interaction information in the spatial dimension of the b-th video in the mini-batch. Then,
we slice each Yb, b = 1, 2, · · · , B into T slices along the temporal dimension, and denote
them as Yb

:, :, 1, ..., Yb
:, :, j, ..., Yb

:, :, T . Yb
:, :, j represents the features of the states of group activity

of the b-th sample at the j-th frame. Since Yb
:, :, j is obtained from SGRF-Conv, it provides

global interaction information in the spatial dimension. To maximize the consistency of the
features of the states of group activity in each frame, we construct positive and negative
sample pairs at the training stage. As shown in Figure 8a, we consider the features of
the states of group activity learned from the same video as positive sample pairs, and the
features of the states of group activity learned from different videos in the same mini-batch
as the negative sample pairs.

Positive 
pair

Negative 
pair

mini-batch

……

……

……

Positive
pair

Negative
pair

……

mini-batch

(a) (b)

Figure 8. The process of constructing positive and negative sample pairs for consistency learning.
Y1, ...Yb, ...YB and Z1, ...Zb, ...ZB are the features of group activity obtained through the branches of
S-DCN and T-DCN in a mini-batch. (a) The process of constructing positive and negative sample pairs
for global activity consistency learning. We slice Yb, b = 1, 2, · · · , B, along the temporal dimension.
(b) The process of constructing positive and negative sample pairs for individual action consistency
learning. We slice Zb, b = 1, 2, · · · , B along the spatial dimension.

We use Equation (15) as the loss function for global activity consistency learning. The
numerator in Equation (15) represents the similarity between the features of two states of
group activity in a positive sample pair, and the sum term in the denominator indicates
the similarity between the features of two states of group activity in the negative sample
pairs. To decrease the loss of global activity consistency learning, we want the similarity for
positive sample pairs as large as possible and the similarity for negative sample pairs as
small as possible:

Lgroup=−
B

∑
b=1

T

∑
j=1

T

∑
r=1∩r 6=j

log
Sτ

(
Yb

:,:,j, Yb
:,:,r

)
Sτ

(
Yb

:,:,j, Yb
:,:,r

)
+

B
∑

a=1∩a 6=b

T
∑

e=1
Sτ

(
Yb

:,:,j, Ya
:,:,e

) (15)

Similar to the global activity consistency learning, suppose there are B samples in
each mini-batch input into GIIN; we denote the feature samples obtained from the T-DCN
branches as Z1, ...Zb, ...ZB, where Zb represents the feature of group activity with global
interaction information in the temporal dimension of the b-th video in the mini-batch. Then,
we slice each Zb, b = 1, 2, · · · , B in the mini-batch into S slices along the spatial dimension,
and denote them as Zb

:, 1, :, ..., Zb
:, i, :, ..., Zb

:, S, :. Z:, i, : represents the feature of individual
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actions of the b-th sample for the i-th person. Since Z:, i, : is obtained from TGRF-Conv,
it provides global interaction information in the temporal dimension. To maximize the
consistency of the features of individual actions, we construct positive and negative sample
pairs at the training stage (Figure 8b). We consider the features of individual actions learned
from the same Zb as positive sample pairs, and the features of individual actions from
different videos in the same batch as negative sample pairs. Then, we use Equation (16) as
the loss for individual action consistency:

Lindividual = −
B

∑
b=1

S

∑
i=1

S

∑
q=1∩q 6=i

log
Sτ

(
Zb

:,i,:, Zb
:,q,:

)
Sτ

(
Zb

:,i,:, Zb
:,q,:

)
+

B
∑

a=1∩a 6=b

T
∑

f=1
Sτ

(
Zb

:,i,:, Za
:, f ,:

) (16)

Finally, we combine all the losses to train our GIIN as shown in Equation (16):

L = Lcls + β(Lgroup + Lindividual) (17)

where β is a hyperparameter. We perform end-to-end training using Equation (17) to
learn effective features with constraints of global activity consistency and individual action
consistency.

Our algorithm is shown in Algorithm 1.

Algorithm 1: GIIN training process

input : Video sample Xinput ∈ RT×H×W×3, bounding box for each sample bbox,
mini-batch size B,feature extraction module fθ ,
interaction modeling module fα,
message passing and graph readout module fγ,
learning rate `, hyperparameters β

output : Well-trained model

Initialize β, fθ , fα, fγ,` ;
while not converge do

Sampled videos X1
input...X

B
input in dataset;

for each sample Xb
input in X1

input...X
B
input do

Extract and stack features: Xb = fθ(Xb
input, bboxb);

Learn weights and offsets for aggregation: Yb, Zb = fα(Xb);
Message passing and graph readout: ˆclsb = fγ(Xb, Yb, Zb);

end
Calculate Lcls as in Equation (13)
Calculate Lgroup and Lindividual as in Equations (16) and (17);
θ ← θ − `θ · ∆θ

(
Lcls + β(Lgroup + Lindividual)

)
;

end

4. Experiment

In this section, we discuss the evaluation performance of our proposed method on two
widely used datasets. We first introduce the datasets and implementation details. Then we
compare the proposed method (GIIN) with the state-of-the-art GAR approaches in terms
of accuracy and computational complexity. We also analyze GIIN from the perspective
of confusion matrices and conduct ablation studies to investigate the effectiveness of the
interaction modeling module and consistency learning constraints.
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4.1. Experiment Settings
4.1.1. Datasets

We carried out experiments on two datasets: the Volleyball dataset (VD) [14] and the
Collective Activity dataset (CAD) [15]. These two datasets are publicly available and widely
used in the research of group activity recognition [11,12]. Other action video datasets,
such as NTU RGB+D [28], Kinetics [29], UCF101 [30], HMDB51 [31], and ActivityNet
[32], are also important, but these datasets were constructed specifically for individual
action recognition. The action videos in these datasets lack interactive information among
individuals and do not include group activity labels. For these reasons, the mainstream
GAR methods and our method cannot be evaluated on these human action datasets.

The Volleyball dataset consists of 3493 training clips and 1337 testing clips trimmed
from 55 volleyball game videos. Each clip sample provides three types of annotations,
including the label of group activity, the coordinates of the bounding box for individuals,
and the labels for individual actions. The labels of group activity consist of right set, right
spike, right pass, right winpoint, le f t set, le f t spike, le f t pass, and le f t winpoint. The labels
of individual actions were not used in our experiments.

The Collective Activity dataset consists of 44 videos. The length of video ranges from
194 to 1814 frames. Each video of the Collective Activity dataset also has three types of
annotations, including the coordinates of the person’s bounding box for the center frame
every ten frames, the group activity labels (crossing, waiting, queuing, walking, and talking)
every ten frames, and the individual action labels. The individual action labels were not
used in our experiments. We followed the routines of [20] to split the data into the training
set and test set. We also followed [8,11,13] to merge the samples of crossing and walking
into moving.

We followed MLST-Former [33] and DIN [13] and used multi-class classification accu-
racy (MCA) and mean per class accuracy (MPCA) to evaluate the classification performance
of the compared models. We used the number of parameters (#Params) and FLOPs to
evaluate the complexity of the compared models. In the test set, we denote the number of
samples in the k-th class as pk, k = 1, 2, · · · , K, where K is the number of classes, and the
number of correctly recognized samples in the k-th class is qk. The calculations of MCA
and MPCA are formulated as Equations (18) and (19):

MCA=

K
∑

k=1
qk

K
∑

k=1
pk

(18)

MPCA =
1
K

K

∑
k=1

qk
pk

(19)

4.1.2. Details of Implementation

The resolutions of the video frame were 720 × 1280 for VD and 480 × 720 for CAD.
We set T = 10 frames per video clip. The maximum number of people (S) in the scene was
set to 12 for the VD and 13 for the CAD. The embedded dimension of the person features
C was set to 128. The SGRF-Conv and TGRF-Conv kernels used by GIIN were initialized
as zero vectors. In the process of graph convolution, we used zero padding to maintain a
fixed number of edges for each node. We followed the routines in [12,13] and initialized
the backbone of the GIIN model with the parameters of [12], and the implementation
of consistent learning was based on the code of CMC [23]. We did not use individual
action labels as supervision for the network training. In the training on both VD and CAD,
we used the Adam optimizer and OneCycleLR [34] scheduler with learning rates from
1× 10−4 to 3× 10−4 and trained 25 epochs. The hyperparameters of Adam were β1 = 0.9,
β2 = 0.999, and ε = 10−7. The hyperparameters of OneCycleLR were div_factor = 3,
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pct_start = 0.3, final_div_factor = 2 and three_phase = True. We used β = 10−6 for VD and
β = 10−4 for CAD. The numbers of edges in the T-DCN and S-DCN were set as K = 3 and
G = 4. We used ResNet-18 as the backbone of the compared methods in the experiments.

4.2. Comparisons with the State-of-the-Art Methods

To demonstrate the improved performance of our method, we compared our method
with the state-of-the-art methods in terms of classification accuracy and complexity on
VD and CAD. Table 2 shows the comparison results on VD between our method and the
non-MHSA-based methods, including GNN-based methods and hierarchical temporal
models, in terms of classification accuracy (MCA and MPCA) and model complexity. All
the compared methods used RGB video clips as input, and the ResNet-18 was used as the
backbone for these methods. To have a fair comparison, we followed the method employed
in [13] and evaluated the number of parameters (i.e., #Params) and FLOPs without counting
the backbone and embedding layer in Table 2. For reference, we also present the number
of parameters and FLOPs for the backbone and the embedding layer: 24.302 M #Params,
676.364 GFLOPs for 720 × 1280 resolution.

Table 2. Comparisons with the non-MHSA-based methods on the VD The number of parameters
and FLOPs of the backbone and the embedding layer are not included. The best result is highlighted
in bold.

Method VD MCA(%) VD MPCA(%) #Params FLOPS

PCTDM [35] 90.3 90.5 26.235 M 6.298 G
ARG [12] 91.1 91.4 25.182 M 5.436 G

HiGCIN [11] 91.4 92.0 1.051 M 184.992 G
SACRF [16] 90.7 91 29.422 M 76.757 G

DIN [13] 93.1 93.3 1.305 M 0.311 G
Ours 93.6 94.2 0.394 M 0.070 G

Table 2 shows that our method achieved the highest MCA and MPCA with the lowest
#Params and FLOPS on the VD using the same backbone and RGB input conditions.
Specifically, compared with the previous GNN-based methods, our method obtained
the highest recognition accuracy. The #Params of our model without the backbone and
the embedding layer is only 30% of DIN [13], and the FLOPS is only 23% of DIN [13].
These results show the efficiency of our GAR method. We attribute the efficiency of our
method to two reasons. On one hand, since the convolutional kernels we used have a
global receptive field and are grouped in the spatial or temporal dimension, our proposed
method characterizes the global interactions among individuals with a limited number of
parameters. On the other hand, activity-relevant information was effectively characterized
by introducing constraints on global activity and individual action consistencies.

In Table 3, we compare the classification performance and model complexity between
our method and the MHSA-based methods on the VD. Since MLST-Former [33] calculated
the #Params and FLOPs of the backbone and embedding layers in a different way, we
recalculated the total #Params and total FLOPs according to MLST-Former [33].

Table 3. Comparisons with the MHSA-based methods on the VD. The number of parameters and
FLOPs for the backbone and the embedding layer are not included. The best result is highlighted
in bold.

Method VD MCA(%) #Params FLOPs Total #Params Total FLOPs

AT [9] 90 5.245 M 1.260 G 29.547 M 677.624 G
GroupFormer 1 [10] 95.7 62.07 M 18.05 G 113.200 M 858.052 G

Dual-AI [8] 94.4 4.29 M 2.81 G 40.308 M 970.308 G
MLST-Former [33] 94.5 2.31 M 1.76 G 38.328 M 969.258 G

Ours 93.6 0.394 M 0.070 G 24.696 M 676.434 G
1 indicates that GroupFormer uses RGB video clip, pose, and optical flow as input.
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The results in Table 3 show that, compared to MHSA-based methods, our method
obtained comparable classification accuracy with significantly lower complexity. Specif-
ically, although our method obtained a slightly lower MCA(0.9%) compared with the
MLST-Former [33], the #Params of our interaction modeling module is only 17.1% of MLST-
Former [33], and the FLOPs is only 3.9% of MLST-Former [33]. The above results show that
our method is efficient compared to the MHSA-based methods.

GroupFormer [10] obtained the best performance in terms of MCA mostly because it
requires the RGB video, optical flow and individual poses. Compared to GroupFormer,
our proposed method only requires input from RGB video clips, and obtained comparable
MCA with only 0.6% parameters and (0.4%) FLOPs of GroupFormer.

We compared our proposed method with the state-of-the-art methods in terms of
MCA and MPCA on the CAD. As shown in Table 4, our method achieved the highest
MCA and MPCA on CAD. Specifically, the MCA of our method is 1.2% higher than
GroupFormer [10], even though it requires RGB video clips, optical flow, and individual
pose as input. Compared with MLST-Former [33], which obtained the highest MCA among
all the previous methods, our method performed 0.7% better in terms of MCA. Compared
with Dual-AI [8], which achieved the highest MPCA among all the previous methods, our
method performed 0.6% better in terms of MPCA.

The above results show the improved performance of our method on the CAD. We
attribute the highest recognition accuracy of our method to the proposed S-DCN and
T-DCN branches and the consistency learning constraints based on global activity and
individual action consistencies.

Table 4. Comparisons with the state-of-the-art methods on CAD. "-" indicates that the original paper
does not provide a result. The best result is highlighted in bold.

Method CAD MCA(%) CAD MPCA(%)

CERN [36] 87.2 88.3
SSU [37] 85.4 -

PCTDM [35] - 92.2
stagNet [20] - 89.1

ARG [12] 91.0 -
HiGCIN [11] 93.4 93.0

PRL [38] - 93.8
AT [9] 92.8 -

TCE+STBiP [17] 95.1 -
DIN [13] - 95.9

GroupFormer 1 [10] 96.3 -
Dual-AI [8] - 96.5

MLST-Former [33] 96.8 -
Ours 97.5 97.1

1 indicates that GroupFormer uses RGB video clip, pose, and optical flow as input.

4.3. Confusion Analysis and Experimental Curves

Figure 9a,b show the confusion matrices of our proposed method on the VD and CAD,
respectively. As shown in Figure 9a, GIIN achieved over 90% recognition accuracy for all
classes on VD except right set. In particular, the recognition accuracy of GIIN for right
winpoint and le f t winpoint exceeded 97%. The above results show that GIIN can well
distinguish different activities, especially left and right activities. Misclassified cases were
mainly from the samples for set, pass and spike, which may be because individuals who
provide critical clues for these three types of group activities show highly similar actions.
As shown in Figure 9b, GIIN achieved over 90% recognition accuracy for all classes on CAD.
In particular, the recognition accuracy of GIIN in terms of moving, queuing and talking
was above 98%. Since the difference between waiting and queueing is the movement of
the human body in the temporal dimension, it is important to effectively characterize
temporal interactions from a global perspective. The above result suggests that our method
achieved accurate recognition by effectively modeling temporal interactions from a global
perspective. Our misclassification mainly occurred when identifying waiting and moving,
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which most likely resulted from the two types of activities being similar and the temporal
dynamic of the samples being too short [17].

(a) (b)

Figure 9. The confusion matrix for (a) VD and (b) CAD.

The classification loss curves in training and classification performance curves in
testing are included to show the loss and the network performance for different epochs.
Figure 10a,d show that the classification losses converge to a lower level after 15 epochs on
VD and 20 epochs on CAD, while the performance of our method gradually improves until
it is convergent after 15 epochs on VD and 20 epochs on CAD, as shown in Figure 10b,c,e,f.
Because we initialized the backbone of our proposed method with the parameters pre-
trained on [12], our model converges fairly quickly.

(a) (b) (c)

(d) (e) (f)

Figure 10. The classification loss curves in training and the classification performance curves in
testing. (a,d) are the classification loss curves in training on VD and CAD respectively. (b,c) are
the MCA and MPCA curves on VD in testing, while (e,f) are the MCA and MPCA curves on CAD
in testing.
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4.4. Ablation Studies

We performed ablation experiments on VD and CAD to validate the effectiveness of
the interaction modeling module and consistency learning constraints. We used MCA and
MPCA as evaluation metrics. We constructed three networks for the ablation experiments,
namely the base model, GIIN w/o contrast, and GIIN. The base model includes the feature
extraction module, the pooling layer, and the classification layers in the graph readout
module. We used the experimental results of the base model as the baseline performance.
The network of GIIN w/o contrast contains the feature extraction module, interaction
modeling module, and message passing and graph readout module but does not contain
consistency learning. The network of GIIN is shown in Figure 5, and contains the feature
extraction module, interaction modeling module, message passing and graph readout
module, and global activity and individual action consistencies learning.

The experiment results on VD and CAD are shown in Table 5. Compared with the
base model, GIIN w/o contrast improves MCA by 0.9% and MPCA by 1.0% on the VD, and
improves MCA by 2.7% and MPCA by 4.4% on the CAD. The results show the efficiency of
our proposed S-DCN and T-DCN in GAR. Compared with the GIIN w/o contrast, GIIN
improves MCA by 1.5% and MPCA by 1.5% on the VD, and improves MCA by 1.3% and
MPCA by 2% on the CAD. Since GIIN only adds the constraints of consistency learning
compared with GIIN w/o contrast, we attribute the above results to the constraints on
global activity and individual action consistencies, which help the network effectively
capture the information for the GAR task.

Table 5. Comparisons with the state-of-the-art methods on the VD and CAD in terms of MCA and
MPCA. The best result is highlighted in bold.

Model VD MCA (%) VD MPCA (%) CAD MCA (%) CAD MPCA (%)

Base Model 91.2 91.7 93.5 90.7
GIIN w/o Contrast 92.1 92.7 96.2 95.1

GIIN 93.6 94.2 97.5 97.1

5. Conclusions

In this paper, we propose a global individual interaction network based on global in-
teraction modeling and the constraints of global activity and individual action consistencies.
Our method addresses the problem that previous GNN-based GAR methods character-
ize the interactions locally with mapping layers using local receptive fields. We design
SGRF-Conv and TGRF-Conv convolutions to provide global receptive fields in the spatial
and temporal dimensions efficiently. At the same time, we construct constraints of global
activity and individual action consistencies based on contrastive learning to characterize
GAR features. Experimental results show that, compared with the state-of-the-art methods,
the proposed method obtained better performance in terms of MCA and MPCA, and with
a lower computational cost.
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