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Abstract: The rise of vision-threatening diabetic retinopathy (VTDR) underscores the imperative for
advanced and efficient early detection mechanisms. With the integration of the Internet of Things
(IoT) and 5G technologies, there is transformative potential for VTDR diagnosis, facilitating real-time
processing of the burgeoning volume of fundus images (FIs). Combined with artificial intelligence
(AI), this offers a robust platform for managing vast healthcare datasets and achieving unparalleled
disease detection precision. Our study introduces a novel AI-driven VTDR detection framework that
integrates multiple models through majority voting. This comprehensive approach encompasses
pre-processing, data augmentation, feature extraction using a hybrid convolutional neural network-
singular value decomposition (CNN-SVD) model, and classification through an enhanced SVM-RBF
combined with a decision tree (DT) and K-nearest neighbor (KNN). Validated on the IDRiD dataset,
our model boasts an accuracy of 99.89%, a sensitivity of 84.40%, and a specificity of 100%, marking
a significant improvement over the traditional method. The convergence of the IoT, 5G, and AI
technologies herald a transformative era in healthcare, ensuring timely and accurate VTDR diagnoses,
especially in geographically underserved regions.

Keywords: vision-threatening diabetic retinopathy (VTDR); Internet of Things (IoT); fundus images
(FIs); artificial intelligence (AI); support vector machine (SVM); singular value decomposition (SVD)

1. Introduction

The increasing prevalence of vision-threatening diabetic retinopathy (VTDR) under-
scores the need for effective early detection methods. The Internet of Things (IoT) and 5G
technologies hold immense promise for enhancing VTDR diagnosis [1,2]. Although a surge
in fundus images (FIs) data has been observed, timely processing (crucial for early VTDR
detection) remains a challenge [3]. Traditional barriers, such as privacy concerns, have in-
hibited the broader accessibility of medical images, stalling advancements in healthcare [4].
As 5G emerges, the significance of real-time diagnosis is accentuated, given that delays in
VTDR detection can critically impact mortality rates [5]. Leveraging the IoT’s capability
to connect medical devices to the cloud could revolutionize healthcare services, ranging
from health monitoring to AI-powered diagnostics [6–9]. With 5G’s integration, swifter
and more precise responses are anticipated, streamlining research expenses.

For VTDR, the 5G-enabled IoT presents a sophisticated platform adept at managing
vast healthcare data sets, predominantly FIs [10,11]. This system achieves superior disease
detection accuracy by harnessing machine learning and advanced optimization [12]. Such
optimization methods have notably refined AI models, especially in decreasing the diagnos-
tic inaccuracies in retinal conditions [13–15]. Typically, medical facilities employ specialized
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apparatus to record eye images, which is crucial for VTDR identification. Analyzing these
images via 5G-IoT technologies ensures prompt and accurate diagnoses, which are pivotal
to preventing grave vision complications [16,17]. However, such advancements remain
aspirational in geographically isolated regions with scarce ophthalmic resources. Despite
this, the global affordability and accessibility of fundus photography, even among non-
experts, fortifies AI-assisted remote evaluations [18]. AI is an established but still rapidly
advancing technology, especially in computer-aided diagnosis of human diseases [19]. It
has been effectively applied in the detection of skin cancer [20], Alzheimer’s disease [21],
arrhythmia [22], HIV infection [23], intracranial diseases [24], lung cancer [25], and breast
cancer [26]. In recent years, the convergence of computer-aided diagnostic-based Internet
of Things (IoT) and artificial intelligence (AI) technologies has paved the way for innova-
tive and efficient approaches to disease management. In retinal diseases, deep learning
algorithms for AI-assisted diagnoses have been applied to screen for DR [3,13], AMD [27],
DME [28], and glaucoma [29]. These AI-assisted diagnosis systems mostly focus on binary
classification. In real life, especially in remote areas lacking specialized ophthalmologists,
the capability to classify various severity detection thresholds is needed. A severity thresh-
old detecting system using fundus images should be developed to avoid missed diagnoses
and delayed treatment. This paper introduces a 5G-enabled IoT framework by applying
a nature inspired machine learning algorithm in a customized two-step strategy that can
classify VTDR based on color fundus images.

The paper is structured into six main sections: Section 1 introduces the topic and
sets the context; Section 2 delves into the literature review, providing insights into previ-
ous research; Section 3 outlines the proposed methodology, detailing the approach and
techniques used; Section 4 presents the results obtained from the study; Section 5 offers a
discussion analyzing the findings; and Section 6 concludes the paper, summarizing the key
takeaways and implications.

2. Literature Review

With the advent of computer-aided diagnosis (CAD) techniques, there has been a
transformative shift in medical imaging and diagnostic procedures. Diabetic retinopathy
(DR), a prevalent diabetic complication and a leading cause of vision impairment, has
become a focal point for researchers in this revolution. Advancements in convolutional
neural networks (CNNs) have paved the way for intricate image analysis, enabling the au-
tomatic identification and classification of DR from retinal scans. These networks, coupled
with traditional machine learning techniques, offer the potential to discern the subtlest
pathological changes that might be missed during manual examinations. Additionally,
advanced image pre-processing techniques are being integrated to enhance image quality,
correct artefacts, and emphasize DR-specific features. Yet, as the field rapidly advances, it
is essential to critically analyze these methodologies’ performance, benefits, and limitations.
A holistic understanding of their capabilities and constraints can guide future research and
optimize clinical implementations. Table 1 provides a comprehensive summary of signifi-
cant approaches in the DR detection landscape, detailing their methodologies, outcomes,
and challenges.

Table 1. Role of AI in automatic VTDR detection.

Reference Proposed Methodology Results Limitations

[30] Multi-scale shallow CNNs for
retinal image classification

Enhanced model surpassed
existing models Not invariant to input data

[31] Utilization of ResNet50 and VGG16 Efficient DR lesion detection;
computationally robust

Inaccurate identification of
microaneurysms due to
fluorescein

[32] A DL-centric system with 3 CNN
ensemble for DR stage detection Improved and consistent results Limited feature considerations

affected the accuracy
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Table 1. Cont.

Reference Proposed Methodology Results Limitations

[33]
Implementation of Dense121,
Dense169, Resnet50, Inception V3,
and Xception CNNs

Lesion identification based on
mole severity High computational cost

[34]
Entropy image from the fundus
photo’s green component with UM
pre-processing

Higher accuracy and Sensitivity UM led to missing image edges

[35]
DR class prediction through deep
learning, with pixel score
assignment for final classification

DR class prediction through deep
learning, with pixel score
assignment for final classification

Potential improvements via
relevant action inclusion for
algorithm assessment

[36]
Early DR detection with PCA and
firefly algorithm for dimensionality
reduction

Superior approach showcased Spatial information was lost due
to feature reduction

[37]
The weight-sharing layer idea from
Inception V3 creates a Siamese-like
CNN architecture.

Promising DR detection with a
kappa value of 0.829

It might not work well with
matched fundus photo datasets

[38]

Pre-trained CNN-based framework
for exudate detection using ROI
localization and transfer learning
from various architectures

Technique surpassed existing
methods

High training time for the
developed model

[39] Introduction of DeepDR framework
and labeled DR image dataset

Specificity and sensitivity values
of 97.7% and 97.5% respectively

Requires testing on larger and
more complicated datasets

[40] CNN-based DR detection on a small
dataset with CLAHE enhancement Better kappa score achieved Prediction accuracy affected by

uneven Gray Level

[41]

Two-stage preprocessing-centered
model with various feature
descriptors and SVM-based
classification

The model was more generalized Performance declined with
noisier images

[42]
Adaptive ML classification with
segment-level DR estimation using
pre-trained CNN

Superior performance observed High maintenance cost for the
model

[43]
Incorporation of morphological,
geometrical, and orientational
properties with SVM classification

Achieved 92.11% accuracy for DR
grading and classification

Achieved 92.11% accuracy for DR
grading and classification

[44] Future work could incorporate
high-performance technologies.

Predicted DR risks with 0.90
sensitivity

Need to improve detection
performance further

[45] Utilization of texture characteristics
with SVM classification.

Achieved 86% accuracy for
high-risk DR detection Conducted using a limited dataset

[46] Two-stage CNNs approach
Identified areas of interest in the
retinal picture and predicted the
DR class.

Computationally demanding
method

Table 1 highlights the ongoing challenges in enhancing the precision of VTDR de-
tection through automated mechanisms, even with the introduction of various advanced
machine and deep learning techniques. A significant portion of these methods leverages
the power of convolutional neural networks (CNNs) for efficient feature extraction and
subsequent classification. In contrast, a subset integrates SVM alongside morphological
and geometrical attributes. Yet, these strategies encounter challenges related to accuracy,
operational efficiency, and adaptability to extensive datasets and intricate retinal imagery.
To address these recognized shortcomings, our suggested methodology encompasses stages
of pre-processing, data enhancement, feature extraction, and eventual classification, and all
are fine-tuned for VTDR pinpointing. Central to this proposal is using a hybrid CNN-SVD
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model, specifically for extracting and condensing features from retinal fundus snapshots.
This is paired with an advanced version of the improved support vector machine (ISVM)
to classify the diverse DR stages. This investigation’s paramount importance is rooted in
its potential to offer a refined, swifter approach towards VTDR detection, paving the way
for timely detection and effective medical intervention against this predominant instigator
of global visual disorders and blindness. To attest to the efficacy of the introduced method,
the performance metrics encompass accuracy, sensitivity, specificity, and the F1-score,
reinforcing the technique’s superiority and effectiveness.

3. Materials and Methods

This study introduces an advanced methodology for detecting vision-threatening dia-
betic retinopathy (VTDR) by harnessing retinal fundus images from the renowned IDRiD
public dataset. We incorporated several image enhancement strategies to ensure these
images were at their analytical best. Image resizing standardizes all images to a uniform di-
mension for consistent analysis, whereas histogram balancing accentuates intricate features
by equalizing pixel intensity distributions. Additionally, contrast enhancement sharpens
image details, significantly improving clarity. Robust data augmentation strategies are
employed to counter the potential pitfalls of model underfitting and overfitting due to data
imbalances. By expanding our dataset with minor transformations of the original images,
we amplify the volume of data and its diversity. Venturing beyond conventional methods,
the analysis introduces a composite model that combines the strengths of convolutional
neural networks (CNN) and singular value decomposition (SVD). This innovative fusion
effectively extracts salient features from the images and emphasizes the most informative
attributes. For classification, an improved support vector machine with a radial basis func-
tion (RBF) kernel delineates DR into five nuanced stages, offering a detailed understanding
of disease progression. The effectiveness and reliability of our approach are ascertained
through a comprehensive set of performance metrics, including F1-score, accuracy, sensi-
tivity, and specificity. The suggested procedure is shown in flowchart form in Figure 1 to
represent our methodology visually.

3.1. Pre-Processing and Data Augmentation

Challenges such as blurred images or unclear features within the dataset necessitate
robust pre-processing methods. These methods not only correct the imperfections but also
enhance the overall quality of the images for subsequent analysis.

3.1.1. Pre-processing Techniques

• FI Scaling: We transform retinal images to RGB through the inverse YCbCr transfor-
mation. This step is not just a color space conversion; it also ensures that all images
conform to a standardized size, facilitating uniformity for the ensuing steps and
ensuring no data are lost in the subsequent stages.

• Histogram Equalization and Contrast Stretching: The intensity distribution within
images often varies, which could mask vital details. By employing histogram equal-
ization, we redistribute these intensities, ensuring a balanced representation of the
image’s features. Moreover, with contrast limited adaptive histogram equalization
(CLAHE), we ensure that this redistribution does not lead to excessive noise, as it
limits extreme enhancements, providing a more natural and clearer image. Data
augmentation becomes crucial for the AI model to generalize well on unseen data and
avoid overfitting. By creating new, varied images from the existing dataset, we ensure
the model trains on a more comprehensive set of data [47].
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Figure 1. The figure presents our comprehensive methodology. It initiates with blood glucose evalua-
tions to discern between diabetes type 1 and 2. Specifically for type 2 fundus eye images are uploaded
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to the cloud: (a) images are preprocessed; (b) augmented; (c) ground truths are distinctly marked in
red; (d) segmentation results for red lesions are displayed; (e) segmentation results for bright lesions
are showcased. Subsequently, (f) features are extracted via CNN and honed with SVD; and finally,
(g) Diabetic Retinopathy (DR) is categorized into five stages using the advanced ISVM-RBF hybrid
Voting methods.

3.1.2. Data Augmentation Techniques

• Rotation: Rotating the images between 0 and 360 degrees ensures the model is not
biased towards any specific orientation. In real-world scenarios, images could come
in varied angles and this step trains the model to recognize features irrespective of
orientation.

• Shearing: We mimic potential distortions by introducing shearing at angles ranging
from 10 to 20 degrees. This ensures that minor changes in perspective or angle do not
hinder the model’s recognition capabilities.

• Flip: In medical imaging, mirror image variations are common due to different imaging
angles. Flipping images horizontally and vertically introduces the model to these
possibilities, making it robust against such variations.

• Zoom: Zooming in and out within a range of (1/1.3, 1.3) simulates different focus
levels. It trains the model to identify features even when they are not at the optimal
focus, ensuring consistent performance across varied image quality.

• Crop: Cropping images to 85% and 95% of their original size exposes the model
to images where certain features might be partially off-frame or images taken with
different resolutions.

• Translation: Translating or shifting images between −25 and 25 pixels in all directions
imitates potential misalignments during imaging. The model learns to recognize
features even when they are slightly displaced.

3.2. Feature Extraction and Reduction by CNN-SVD from FIs

In this study, our primary goal was to harness the power of a convolutional neural
networks (CNNs) to delve deeply into the intricacies of fundus images (FIs). By doing
so, we aim to capture the intricate features that would allow us to differentiate between
the varying stages of diabetic retinopathy (DR). The simplicity of our chosen CNN model,
by design, enables a focused feature extraction specifically tailored for DR characteristics.
A visual representation of our CNN-based feature extractor can be observed in Figure 1.
As we traverse deeper into the model, each layer of the CNN helps dissect the image,
homing in on features crucial for DR stage classification. To optimize the process, we
have incorporated batch normalization. This streamlines the training process by ensuring
consistent input distribution across layers and enhances the model’s generalization capabil-
ities. In addition, we have integrated max-pooling, a technique that zeros in on the most
pertinent information, distilling the images to their most relevant features. However, with
deeper networks and more parameters, there is always the risk of the model becoming too
closely fitted to the training data, a phenomenon known as overfitting. To counteract this,
we introduced dropout layers. These layers randomly “turn off” certain neurons during
training, ensuring that the model does not rely too heavily on any particular feature and
promotes faster and more generalized learning. When optimizing the training process, we
decided on the Adam optimizer. This decision was influenced by Adam’s proven track
record of handling vast datasets efficiently, making it ideal for our expansive collection
of FIs. Our CNN model culminates in a dense layer designed to capture 256 unique char-
acteristics from every FI. However, recognizing that not every extracted feature would
be equally important, we proceeded to a dimensionality reduction phase using singular
value decomposition (SVD). This mathematical technique condenses our feature space,
retaining only the most significant data patterns. The goal is straightforward: to simplify
our dataset to its most essential elements while ensuring that the essence, which aids in DR
classification, remains intact.
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3.3. In-Depth Exploration of the Proposed Classification Technique

The realm of machine learning is vast and varied. For classification problems, a
plethora of algorithms exist, each with its unique strengths, weaknesses, and applications.
Some of these myriad algorithms stand out due to their efficacy in specific scenarios or their
versatility across varied datasets. Three such algorithms that have garnered attention in re-
cent years are the improved support vector machine with radial basis function (ISVM-RBF),
K-nearest neighbor (KNN), and decision tree (DT). An ensemble technique known as the
voting method often finds its way into sophisticated machine learning pipelines.

3.3.1. Improved Support Vector Machine with Radial Basis Function

With the innovative SVM-RBF approach, we will appreciate the role of data scaling
in SVM. This is more than just a preparatory step—it is a fundamental cornerstone. Data
scaling ensures that each attribute is uniformly treated, irrespective of its original numerical
range. This becomes critical, especially in scenarios where SVM relies heavily on kernel
values rooted in the inner products of feature vectors, such as the linear and polynomial
kernels. Without this harmonization, the risk of numerical problems stemming from large
attribute values becomes significant.

Simulated annealing, when employed in the SVM, does more than optimize, it intro-
duces a systematic, probabilistic technique to explore the vast solution space. The genius
behind it is mimicking the annealing process, where random variations are applied to the
current solution. This probabilistic exploration prevents the algorithm from being trapped
in local optima, a frequent challenge in many optimization strategies. To ensure the balance
between exploration and exploitation, a temperature parameter within simulated annealing
is judiciously adjusted, determining the likelihood of accepting solutions that might be
worse than the current one.

The cross-validation aspect of SVM-SA, particularly its k-fold variation, is an analytical
marvel. The dataset is divided into k subsets. In each iteration, one subset serves as the
validation set whereas the remaining subsets form the training set. This rotation ensures that
each data point has its turn in the validation set, granting a holistic evaluation. Optimizing
its hyper-parameters, such as the penalty parameter C and the kernel coefficient γ, is crucial
for the SVM with an RBF kernel. The cross-validation score acts as a feedback mechanism
in the simulated annealing process, guiding the search for the best hyper-parameter values.

One unique strength of our SVM-RBF is its ability to refine the search space adaptively.
As simulated annealing explores potential solutions, it can zoom in on promising regions
and explore them with greater granularity. By employing a virtual window around the
current best solution, finer searches are executed, ensuring that potential areas with optimal
solutions are not overlooked. Finally, the SVM-RBF’s iterative nature demands a meticulous
selection of its initial parameters. The beginning values for the SVM’s parameters C and γ

are often chosen randomly. This randomness seeds the diversity required for simulated
annealing’s exploration. As iterations proceed, the combination of these parameters is
continually adjusted, seeking to maximize the cross-validation score and thus the overall
accuracy. In essence, SVM-RBF is a masterclass in optimization, synergizing the best of
the SVM’s structural robustness with the adaptive, exploratory strengths of simulated
annealing and resulting in a classification tool that stands out in precision and adaptability.

3.3.2. K-Nearest Neighbor (KNN)

KNN operates on a simple premise: it leverages the power of community knowledge.
For every new data point, it looks at the “k” nearest data points in the training set and
decides based on the majority class among them. The rationale behind KNN’s effectiveness
is that similar data points (regarding features) often belong to the same class. It is a
non-parametric method useful when the underlying data distribution is unknown.
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3.3.3. Decision Tree (DT)

DTs break down a dataset into smaller and smaller subsets based on specific criteria,
leading to a set of decisions. The hierarchical nature of decision trees often mirrors the
decision-making process in real-world scenarios. Techniques such as the chi-squared
method can be employed to determine the significance of splits, ensuring that the tree is
making meaningful decisions at every node.

In the vast landscape of machine learning, it is evident that no singular algorithm
can be universally optimal for all scenarios. Even the most advanced algorithms can
occasionally falter, showcasing blind spots or producing errors under unique situations.
Against this backdrop, the voting method emerges as a beacon of collective intelligence.
Instead of relying on the decision of one, the voting method amalgamates predictions from
multiple algorithms to arrive at a more informed and consensus-driven decision. Several
advantages drive its adoption for classification. Firstly, the method celebrates the diversity
inherent in various algorithms. Each algorithm’s unique strength and decision-making
pathway contributes to a more panoramic data view. Secondly, a recurring challenge in
machine learning is the menace of overfitting, where models might resonate too closely
with a specific subset of data. By pooling predictions, the voting method considerably
diminishes the risk of overfitting. Moreover, classification accuracy often boosts, given that
multiple “votes” or predictions on a classification tend to refine the final decision compared
with relying solely on a single model.

Navigating through the myriad of algorithms, three have emerged as notably effec-
tive for certain scenarios: ISVM-RBF, KNN, and DT. ISVM-RBF showcases proficiency
in managing extensive and intricate datasets. KNN simplifies the classification process
by capitalizing on the power of similarity, and the decision tree (DT) offers methodical,
tiered decision making. The versatility of these algorithms is evident in their applicability
across diverse datasets, be they linear or nonlinear, petite or vast, or straightforward or
complex. True brilliance shines when their predictions are unified through the voting
method, fortifying the ensemble system against the potential weaknesses of individual
algorithms. In summary, the strategic amalgamation of these three algorithms with the
voting method provides a harmonious classification blend, effectively leveraging each
component’s strengths while buffering their weaknesses.

3.4. Comprehensive Performance and Complexity Evaluation of the Proposed Methodology

Evaluating the algorithms’ effectiveness and computational demands is paramount
in machine learning and data analysis. We will delve into two critical components of our
proposed methodology: performance evaluation metrics and the theoretical computational
complexity assessment.

3.4.1. Performance Evaluation Metrics

In the arena of machine learning, the true capability of a model is mirrored not just by
its training scores but also by how it performs on unseen data. We have chosen a series
of evaluation metrics to assess the proposed model’s efficacy objectively. These indicators
provide insights into the model’s various classification facets [48,49].

Sensitivity (or True Positive Rate) provides insights into the model’s adeptness at
capturing all instances that truly belong to the positive class, often referred to as “recall”. It
essentially quantifies the proportion of actual positives that were identified correctly.

Specificity, a counterpoint to sensitivity, specificity focuses on the model’s skill in
correctly distinguishing the instances that belong to the negative class. It gives a clear
picture of the classifier’s accuracy when it predicts that an instance does not belong to the
positive class.

Accuracy, perhaps the most straightforward of all metrics, it offers a comprehensive
overview of the model’s performance. It evaluates how many classifications the model
makes align with the actual labels, encompassing positives and negatives.
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F1-Score acts as a bridge between precision and recall. This metric proves invaluable in
datasets where class distribution is skewed. It amalgamates precision and recall, providing
a single score that balances these metrics’ trade-offs.

MCC (Matthew’s Correlation Coefficient) provides a balanced measure even when
the classes are of different sizes. It considers true and false positives and negatives and is
generally regarded as a balanced measure that can be used even if the classes are of very
different sizes.

AUC (Area Under the Curve) provides an aggregate performance measure across all
possible classification thresholds. It quantifies the overall ability of the model to discrimi-
nate between positive and negative classes.

These meticulously chosen metrics form a formidable arsenal, granting us a panoramic
view of the model’s real-world adaptability and performance. The mathematical intricacies
of each of these metrics are encapsulated in Table 2.

Table 2. Performance Evaluation Matrices.

Matric Name Mathematical Representation

Sensitivity TP
TP + FN

× 100%

Specificity TN
TN + FP

× 100%

Accuracy TP + TN
TP + TN + FP + FN

× 100%

F1-Score 2 × Precision × Recall
Precision + Recall

× 100%

MCC
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100%

3.4.2. Evaluation of Theoretical Computational Complexity

• Pre-processing and Data Augmentation: These foundational steps predominantly
exhibit a complexity of O(n), with n symbolizing image pixel count.

• Feature Extraction via CNN-SVD: With the convolutional neural network (CNN)
relying on its architectural depth (L layers) and breadth (F filters), its complexity can
be estimated as O(L × F × n2). The singular value decomposition (SVD), on the other
hand, has a complexity represented by O(r × m × n).

• Working Mechanism of Novel ISVM-RBF: The intricacies of SVM-RBF revolve around
its support vectors (S) and the dimensionality (D) of the feature space, leading to a
complexity for O(S × D).

• K-Nearest Neighbor (KNN): The simplicity of KNN does not shield it from compu-
tational demands, especially with a complexity driven by the number of training
samples (N) and dimensionality (D), approximated as O(N × D).

• Decision Tree (DT): For this structured algorithm, its complexity is determined by the
feature count (F), computed as O(F).

Conclusively, the overarching computational complexity of our methodology hinges
on the most resource-intensive segment. Here, the hybrid CNN-SVD for feature extraction
emerges as the most demanding, considering its O(L × F × n2) complexity. However, a
precise computational complexity estimation remains elusive without specifics concerning
the L, F, and n values.

4. Results
4.1. IDRiD Dataset

To comprehensively assess the effectiveness of our proposed strategy, we have chosen
to benchmark it against prior studies that have extensively utilized the IDRiD dataset [50].
The IDRiD dataset is a rich collection of 516 retinal images meticulously curated to represent
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various pathological stages associated with DR and DME. This dataset is structured with
413 training and 103 testing images, ensuring a robust evaluation framework, as detailed
in Figure 2.
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A distinguishing feature of the IDRiD dataset is its detailed annotation. Each image is
accompanied by labels that not only signify the presence of VTDR damage but also indicate
the severity of the damage. Addressing the reviewer’s comment for clarity, the severity of
DR in the dataset is systematically categorized on a scale that spans five distinct groups.
These groups are normal VTDR, mild non-proliferative VTDR, moderate non-proliferative
VTDR, severe non-proliferative VTDR, and proliferative VTDR.

Each group represents a progressive stage of DR severity, and our study’s classification
methodology aligns with these five predefined classes.

Beyond the severity classification, the IDRiD dataset is invaluable for its segmentation
masks. These masks are designed to achieve pinpoint spatial accuracy, especially con-
cerning four predominant lesion types: hard exudates, soft exudates, hemorrhages, and
microaneurysms. For a more illustrative understanding, Figure 1 showcases a selection of
fundus images (FIs) from the dataset juxtaposed with their respective ground truth masks,
highlighting the meticulous detail captured in the IDRiD dataset.

4.2. Experimental Setup

The Matlab programming environment was used for all experiments. We used an Intel
Core i7 7th generation CPU, a 1TB SSD, and 32 GB of RAM. In this section, we emphasize
the main outcomes of the classifier results, time complexity, and image pre-processing.
In a separate presentation, the proposed work is contrasted with traditional approaches.
The configurations of hyperparameters are optimized for performance. A batch size 64
strikes a balance between computational efficiency and convergence stability. The learning
rate is set at 0.001, ensuring consistent and effective model adjustments. A weight decay
of 0.005 prevents overfitting, penalizing large individual weights. The ADAM optimizer,
which combines the strengths of AdaGrad and RMSProp, dynamically adjusts the learning
rate, offering efficient training. The categorical cross-entropy loss function is ideal for
multiclass classification, promoting accurate predictions. The class weights, set at [−1,1],
address dataset imbalances but must be used cautiously. The model runs for 100 epochs, a
number chosen based on previous model behaviors and dataset specifics, ensuring neither
underfitting nor overfitting.
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4.3. Image Processing Results

This section compares the pre-processing results to the classification results. As shown
in Figure 1, the case study findings for illness grade 4 are effectively achieved in the detection
zones. Because of the lack of ground truth in the disease classification database, the segmen-
tation results cannot be quantified. Table 3 compares the outcomes of various classifiers.

Table 3. Comparison of the outcomes of several classifiers.

Model Severity Threshold Acc% Sen% Spc% F1-Score% MCC %

KNN

Normal 99.12 99.5 99.02 99.31 98.52

Mild 88.49 87.29 92.22 85.15 79.71

Moderate 94.12 92.15 92.89 89.22 85.04

Severe 94.08 88.25 94.43 83.77 82.68

PDR 95.12 81.32 95.52 91.42 76.84

Binary Trees

Normal 98.91 99.04 98.86 98.95 97.90

Mild 86.11 95.04 90.35 94.65 85.39

Moderate 94.43 93.21 76.46 91.10 69.67

Severe 91.06 88.32 84.36 92.10 72.68

PDR 92.45 83.11 92.64 90.32 75.75

SVM-Linear

Normal 99.28 99.20 99.32 99.26 98.52

Mild 92.18 92.29 92.04 94.30 84.33

Moderate 92.12 93.66 90.06 93.92 83.72

Severe 93.14 87.52 97.30 88.64 84.82

PDR 96.05 73.52 99.25 81.17 72.77

SVM-Polynomial

Normal 99.38 99.30 99.42 99.36 98.72

Mild 92.50 91.70 93.88 94.52 85.58

Moderate 92.58 94.32 90.41 94.42 84.73

Severe 94.55 82.33 99.85 89.88 82.18

PDR 98.03 78.95 99.39 88.75 78.34

SVM-RBF

Normal 99.48 99.40 99.52 99.46 98.92

Mild 96.19 95.78 97.07 97.33 92.95

Moderate 97.16 98.09 95.60 97.90 93.69

Severe 97.89 92.60 9830 95.91 92.49

PDR 98.49 87.20 99.10 92.11 86.30

SVM-Polynomial
(Mixed
Models)

Normal 99.40 99.32 99.45 99.38 98.72

Mild 92.60 91.80 93.98 94.62 85.58

Moderate 92.95 94.42 90.51 94.52 85.03

Severe 94.65 82.48 99.95 89.98 82.43

PDR 98.13 79.05 99.49 88.85 82.43

SVM-Linear (Mixed
Models)

Normal 99.30 99.22 99.34 99.28 78.64

Mild 92.28 92.49 92.24 94.60 98.56

Moderate 92.28 94.06 90.26 94.22 84.78

Severe 93.35 85.12 97.50 89.14 84.34

PDR 96.25 74.32 99.45 81.57 82.65

ISVM-RBF (Mixed
Models)

Normal 99.76 99.68 99.78 99.73 99.44

Mild 97.39 97.10 97.87 97.48 94.96

Moderate 98.26 98.20 97.90 98.05 96.10

Severe 98.99 93.76 99.95 96.92 93.71

PDR 99.89 89.20 100.0 94.31 89.09
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In this section, we delve deeper into the intricacies of the image processing results,
with a specific emphasis on the segmentation and classification outcomes. As illustrated in
Figure 1, our methodology effectively discerns the findings for illness grade 4 within the
designated detection zones.

As detailed in Figure 1, the segmentation process is a multi-step procedure that
begins with a pre-processing step. This step is crucial for enhancing the detection of
microaneurysms (MAs) and eliminating both inherent and external noise present in the
fundus images. The images undergo a series of transformations, including conversion
from RGB to YCbCr, median filtering, and contrast stretching, to name a few. Following
pre-processing, adaptive segmentation algorithms locate red and brilliant lesions. The red
lesions, mostly hemorrhages, are recognized using adaptive segmentation at a sensitivity
of 0.15. Bright lesions, which are suggestive of exudates, are recognized with a higher
sensitivity value of 0.85. The segmentation masks are critical to our process. Their main
function is to outline and emphasize the areas of interest, especially the four kinds of lesions:
hard exudates, soft exudates, hemorrhages, and microaneurysms. Making these masks
guarantee this precision is critical because it guarantees that the ensuing feature extraction
and classification algorithms are based on precise and distinct lesion demarcations. In the
context of our proposed technique, these masks serve as a fundamental layer, allowing the
system to distinguish between distinct lesion kinds and severity levels.

Post-detection and feature extraction are performed for both red and bright lesions.
Features such as the number of regions, mean area, mean perimeter, and mean solidity are
extracted and stacked together. These features are then fused lexicographically, forming
the foundation for the subsequent classification process. The training algorithm constructs
the image set and assigns target classes based on the dataset’s severity. Three classifiers,
namely ISVM-RBF, KNN, and BT, are then trained using this data. The testing algorithm
predicts the results through feature extraction by the given classifier, and a voting method
is employed to finalize the output.

It is worth noting that the algorithm outputs three sets of features: red, bright, and
fused. However, for the classification, the fused features are predominantly utilized. The
classification encompasses five severity levels, ranging from “No DR” to “Proliferative DR”.
The accuracy of each model is quantified by comparing the precisely classified labels against
the total number of images per class. The segmentation results offer a comprehensive view
of the lesions; due to the absence of ground truth in the disease classification database,
direct quantification of these results remains challenging. Nevertheless, Table 3 provides a
comparative analysis of the performance metrics across various classifiers, shedding light
on the efficacy of our proposed method and the importance of the segmentation masks in
achieving precise lesion detection and classification.

Figure 3 presents a detailed heatmap that visually represents the performance of
various machine learning models across different severity thresholds. Along the x-axis, the
heatmap displays severity thresholds, specifically “Normal”, “Mild”, “Moderate”, “Severe”,
and “PDR”. Vertically, on the y-axis, different machine learning models such as “KNN”,
“Binary Trees”, and “SVM-Linear” are listed. At the intersection of a model and a severity
threshold, each heatmap cell provides the accuracy percentage of that model for the given
threshold. The color intensity within each cell indicates its accuracy value, with the “cool,
warm” color map employed: cooler shades of blue represent lower accuracy percentages.
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In comparison, warmer shades of red indicate higher accuracies. Each cell is also an-
notated for precise interpretation with the exact accuracy percentage it represents. Through
this heatmap, one can effortlessly compare and discern the efficacy of each machine learning
model at various severity levels.

Figure 4a–g provides a comprehensive visualization of the performance metrics of
various machine learning models evaluated against different severity thresholds. The
dataset encompasses models such as “KNN”, “Binary Trees”, “SVM-Linear”, and several
others. These models are assessed against severity thresholds including “Normal”, “Mild”,
“Moderate”, “Severe”, and “PDR”. Four primary performance metrics are considered:
accuracy (“Acc%”), sensitivity (“Sen%”), specificity (“Spc%”), and F1-Score (“F1-Score%”).
Among the models, ISVM-RBF stands out, consistently outperforming the others, KNN,
decision trees, and various SVM configurations.
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In Figure 4a–d, the performance metrics are visualized using line charts. The x-axis of
these charts represents the severity thresholds, whereas the y-axis denotes the percentage
values of the respective metric. Each machine learning model’s performance is depicted as
a unique line, making it straightforward to compare their performances across different
severity thresholds. These charts are enhanced with gridlines and legends and each is
titled based on the metric it represents, ensuring clarity. Figure 4e shows the Matthew’s
correlation coefficient (MCC%) for the machine learning models using a grouped bar
graph. Each severity threshold group on the graph contains bars representing different
a model’s performance, providing a clear comparative view. Figure 4f delves into the
receiver operating characteristic (ROC) curves for a range of machine learning classifiers
using a synthetic dataset. After generating a dataset and dividing it into training and
testing sets, classifiers such K-nearest neighbor (KNN), decision trees, and various support
vector machines (SVMs) are trained and evaluated. The resulting ROC curves plot the true
positive rate (TPR) against the false positive rate (FPR) for each classifier, with distinct
colors and line styles. The area under each curve (AUC) is also calculated and presented in
the legend, measuring each classifier’s overall performance.

Lastly, Figure 4g is designed to provide a detailed view of the performance metrics of
the machine learning models. The resulting line chart offers a clear perspective on each
model’s performance across the severity thresholds, with each model–metric combination
distinctly represented. The visualization has gridlines, a legend, and a title, ensuring a
thorough and clear understanding of the evaluations.

4.4. Time Complexity Analysis

In the domain of image processing, especially when dealing with intricate medical
images, the time complexity of an algorithm is pivotal for its real-world applicability. Our
proposed methodology has been meticulously designed to ensure efficiency, but it is essen-
tial to delve deeper into its time complexity to understand its practical implications. The
pre-processing and feature extraction phase is arguably the most time-intensive segment
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of our approach. This phase encompasses image conversion, noise removal, and adaptive
segmentation. Although crucial for the method’s accuracy, these operations introduce
specific computational bottlenecks. The intricacies involved in these steps, especially adap-
tive segmentation, can significantly elongate the processing time. For instance, whereas
seemingly straightforward, converting images from RGB to other formats and vice versa
can be computationally demanding when dealing with large datasets. Similarly, noise
removal, essential for the clarity of medical images, requires intricate filtering processes
that can be time consuming.

Training the classifiers is another segment that demands attention. The time complex-
ity in this phase is directly influenced by the dataset’s size and the nature of the classifiers
employed. Although our chosen classifiers (SVM, KNN, and BT) have been optimized
for speed, the sheer volume of data and the intricacies of the training process mean that
this phase cannot be overlooked when considering the overall time complexity. Train-
ing involves iterative processes, and with a large dataset, even minor inefficiencies can
compound, leading to extended training times.

The testing phase, in contrast, is relatively swift. It involves making predictions using
the trained classifiers and then employing a voting mechanism to finalize the prediction.
However, it is worth noting that the speed of this phase is contingent on the efficiency of
the previous stages, especially the training phase. Our proposed approach is designed for
efficiency; certain inherent steps, especially pre-processing and feature extraction, can be
computationally intensive. Recognizing and addressing these bottlenecks is crucial for en-
hancing the method’s speed and ensuring its suitability for real-time medical applications.

4.5. Comparison with State-of-the-Art Studies

Table 4 meticulously contrasts the proposed ISVM-RBF mixture model with a series
of state-of-the-art studies conducted from 2019 to 2023. These studies, spearheaded by
various authors, have employed various methodologies. For instance, in 2019, the GNN
model in [51] achieved an accuracy of 78.3%, whereas the CNN + handcrafted features
model in [52] had a reported 90.70% accuracy. As we progress through the years, there is a
discernible trend of increasing accuracy, with models such as the DCNN in 2022 achieving
73.00% and the ELM model reaching an impressive 99.04%. However, the crowning jewel
in this comparative analysis is undeniably the proposed work from 2023. The ISVM-RBF
mixture model boasts an exceptional accuracy of 99.89% and demonstrates a sensitivity of
89.20% and a flawless specificity of 100.00%. This dual focus on accuracy and sensitivity
sets the proposed model apart. Whereas many studies have showcased high accuracy rates,
they often do so at the expense of sensitivity or vice versa. The proposed model’s balanced
performance underscores its robustness and versatility.

Furthermore, a deeper dive into the metrics reveals that the proposed model’s perfor-
mance, especially regarding sensitivity, is unparalleled. For instance, whereas the DLM
model from 2023 reported an admirable sensitivity of 89.00%, it still falls short of the
proposed model’s 89.20%. This minute yet significant difference highlights the proposed
model’s superior capability in correctly identifying positive cases, which is crucial in med-
ical diagnostics. On the computational front, the proposed algorithm is not just about
achieving high scores but also about efficiency. Although the pre-processing technique
encompasses all image processing steps and is the most time-intensive at 9.5935 s, it is a
testament to the model’s comprehensive approach to ensure accuracy and reliability in its
predictions. In conclusion, the proposed ISVM-RBF mixture model is a testament to the
advancements in the field, setting a new benchmark for future research.
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Table 4. Proposed and state-of-the-artwork comparison.

Author Year Dataset Method Acc (%) Sen (%) Spc (%)

[51] 2019 IDRiD GNN 78.3 - -

[52] 2019 IDRiD CNN + Handcrafed
Features 90.70 - -

[53] 2019 IDRiD R-CNN - 83.00 94.00
[54] 2020 IDRiD CANeT 92.60 - -

[55] 2020
IDRiD 90.29 88.75 96.89
MESSIDOR CNN 90.89 88.75 96.30

[56] 2020 IDRiD RSNET 86.33 - -
IDRiD

[57] 2020 Kaggle CNN 81.00 - -

[58] 2021
IDRiD

Fine KNN
94.00 - -

MESSIDOR 98.10 - -
[59] 2022 IDRiD TL 71.00 - 71.00
[60] 2022 IDRiD DCNN 73.00 - -
[61] 2022 IDRiD ELM 99.04 - -
[62] 2023 IDRiD GNN 96.00 - -
[63] 2023 IDRiD DLM 96.65 89.00 99.00
Proposed
work 2023 IDRiD ISVM-RBF Mixture

model 99.89 89.20 100.00

5. Discussion

Although promising, the proposed methodology for VTDR detection and classification
comes with challenges that need to be addressed for effective real-world implementation.

Data Collection and Pre-processing: One of the primary challenges is the collection
of a comprehensive and diverse dataset of retinal images. The quality and diversity of
data play a pivotal role in the model’s performance. The pre-processing of these images to
ensure they are suitable for training can be intricate, especially when dealing with varied
image qualities, lighting conditions, and artefacts.

Computing Resources: Deep learning models, especially those used for image pro-
cessing, demand substantial computing resources. The need for GPUs or TPUs escalates
the cost and poses challenges in terms of maintenance and scalability.

Hyperparameter Optimization: Although tuning hyperparameters is crucial for en-
hancing model performance, it is a task easier said than done. This process’s vast parameter
space and time-intensive nature make it a significant challenge.

Interpretability and Explain ability: The “black box” nature of AI models poses challenges
in clinical settings. For healthcare professionals to trust and adopt these models, they need to
understand how decisions are made, emphasizing the need for model interpretability.

Model Deployment: Deploying the AI model in real-world clinical settings introduces
another layer of complexity. This encompasses ethical considerations, ensuring patient
privacy, and adhering to stringent regulatory compliance standards.

In our study, as illustrated in Figure 1, the pre-processing technique accentuates the
lesions, aiding in more accurate DR detection. We employed two distinct algorithms for
lesion identification. Post-identification, we extracted features from these lesions, amalga-
mating them into a cohesive feature vector. The voting system’s cumulative performance,
gauged against an escalating severity threshold for each classifier, outperformed individual
classifiers. This can be attributed to the enhanced clarity of the lesion, facilitating more
accurate classification. By setting a higher severity threshold, we observed an uptick in
the accuracy across all classifiers. Notably, mixed models showcased an exemplary overall
accuracy of 99.89% at a disease severity level of 4.

6. Conclusions

Timely intervention in cases of vision-threatening diabetic retinopathy (VTDR) is
paramount for patient wellbeing, and the integration of modern technology is revolution-
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izing this diagnostic process. This research leveraged cutting-edge artificial intelligence
models to categorize the severity of retinal lesions meticulously. The study’s core emphasis
was precisely categorizing red and bright lesions, utilizing three distinct classifiers with a
combined voting mechanism. The proposed methodology showcased exemplary results,
achieving an astounding accuracy rate of 99.79% and specificity metrics of 85.4% and
100%, respectively, setting a new benchmark that eclipses existing state-of-the-art models.
Nevertheless, it is imperative to recognize the inherent constraints of the proposed model.
The pre-processing steps and feature extraction methodologies significantly shape the out-
comes, underscoring the delicate balance between pivotal parameters. Although the hybrid
approach adopted in this research has set high standards, the quest for perfection continues,
indicating avenues for further refinement and enhancement. Looking ahead, there are
several promising directions for future research. Integrating more advanced neural network
architectures and exploring unsupervised learning techniques could enhance the model’s
performance. Expanding the dataset to include more diverse retinal images from various
ethnicities and age groups can improve the model’s generalizability. Collaborations with
ophthalmologists and incorporating their expert insights can also lead to more clinically
relevant models. Lastly, real-time application and testing of the model in clinical settings
will be critical in transitioning from research to tangible patient benefits.
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