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Abstract: A fast feedback loop (FFL) based on comparators is proposed in this paper. The FFL improves
the transient response characteristics of the output-capacitorless low-dropout (OCL-LDO) regulator.
When the load current switches between 1 mA and 100 mA with 1 µs edge time, the overshoot and
undershoot are 33 mV and 37 mV, respectively, and recovery time is 1.2 µs and 1.6 µs, respectively.
A damping-factor-control (DFC) frequency compensation circuit is used to ensure the stability of the
OCL-LDO, and the simulation results show that the phase margin exceeds 50 degree in the entire load
variation range. This design is based on 180 nm process, and the area of the chip is 0.068 mm2 (without
pads). A band-gap reference circuit is also designed in this work; its output voltage is 1.2 V and its
temperature coefficient is 7.96 ppm/◦C. The input voltage range of the proposed OCL-LDO is 2.5 V
to 5 V with a linear regulation rate of 0.128 mV/V and a load regulation rate of 0.0017 mV/mA. In
addition, the load range of the proposed OCL-LDO is 0 mA to 100 mA, and the minimum required
external capacitance is 0 F. The power supply rejection ratio (PSRR) is −46 dB @ 1 kHz.

Keywords: transient response; OCL-LDO; damping-factor control; fast feedback loop

1. Introduction

Low-dropout (LDO) voltage regulators play an important role in system-on-chip (SoC)
design, due to its wide output voltage, low noise, high power supply rejection ratio, and
fast load response [1–3]. In the traditional LDO structure, an external output off-chip
capacitor (CL) usually in the µF range is needed to stabilize the output voltage. Usually,
CL requires extra pins, and it is not easy to integrate with other circuit modules due to the
large on-chip area required. Thus, it is difficult to meet the current high-integration design
requirements [4–6]. OCL-LDO has attracted more and more attention because it does not
require additional large capacitors and is easy to integrate with other circuit modules.

Because OCL-LDO cannot compensate the loop through the zero point introduced by
external ESR resistor and capacitor, it is necessary to design a special frequency compensa-
tion module. OCL-LDO has many frequency compensation methods, some commonly used
methods are introduced in references [7–12]. The damping-factor-control (DFC) method
redistributes the zero and pole points of the system by adding a damping control unit in
the circuit. This method is effective for circuits with large capacitance nodes in the system,
and can also improve the transient characteristics of the circuit [13–16]. In addition, the
transient enhancement loop is very important for the OCL-LDO because of its small load
capacitance. Reference [11] proposed a weighted current feedback (WCF) technique that
can improve gain and loop stability. When the current changes from 0 to 50 mA, its recovery
time is 250 ns, but it requires a capacitor of 0.47 µF. Reference [15] proposed an LDO with
an input range of 8 V to 24 V. Through DFC technology, it can maintain the stability of the
loop without external large capacitors. However, its overshoot voltage is 118.8 mV, and its
undershoot voltage is about 140 mV.
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This paper is organized as follows. Section 2 shows the main circuit structure.
Section 3 analyzes the frequency compensation. Section 4 summarizes the simulation
results. Section 5 is the conclusion of this paper.

2. Circuit Implementation

In this work, an OCL-LDO with fast feedback loop is proposed. Figure 1 shows a sim-
plified block diagram of the proposed OCL-LDO. The OCL-LDO includes a fast feedback
loop [17–19], a reference circuit, an error amplifier for comparing the difference between
the feedback and reference voltage, and a DFC provides frequency compensation [20–22].
A detailed circuit of the error amplifier and DFC is shown in Figure 2.
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Figure 1. The proposed OCL-LDO regulator.
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Figure 2. Proposed OCL-LDO with DFC.

2.1. Reference Circuit

As shown in Figure 3, the reference circuit includes start up, band gap, and reference.
The band-gap circuit is implemented with a conventional self-biasing circuit [23–25]. EN is
the enable signal, which is mainly used to control the opening and closing of the band-gap
reference circuit. When EN is VSS, the PM5 tube is turned on and the NM2 tube is turned
off. The voltage of V2 is pulled up to VDD, and then the entire band-gap reference circuit is
turned off. When the EN signal is VDD, the PM5 tube is turned off and the NM2 tube is
turned on. The Reference circuit operates normally. A start-up module is also added to
the design of the reference circuit, which can accelerate the band-gap reference module to
enter the normal working state and prevent the band-gap reference circuit from entering a
deadlock state. When the power supply voltage is turned on, the voltage of VREF is low.
Because VREF is low, the PM4 tube is turned on and the NM1 tube is turned off. The gate
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voltage V1 of the NM3 tube is pulled up by the PM4 tube, and then the NM3 tube is turned
on. Because the EN signal is high at this time, the NM2 tube is turned on. So, voltage V2
is pulled low and the band-gap reference circuit starts working. When the output of the
band-gap reference circuit is stable, the output voltage VREF is about 1.2 V. The PM4 tube is
closed and the NM1 tube is open. Voltage V1 is pulled low, NM3 is turned off, and then, the
start-up circuit is turned off. Through the above analysis, it can be found that the start-up
circuit is only operating at the initial moment. The simulation results of reference circuit
are shown in Figure 4. According to the simulation results, it can be determined that the
startup time of the entire reference circuit is 7.2 µs.
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Figure 3. Reference circuit.
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Figure 4. Transient simulation results of the reference circuit.

In order to ensure that the currents of PM12 and PM13 are consistent, the resistor
R1 is added. Figure 5 shows the simulation results of the reference circuit at different
temperatures and voltages. According to Figure 5, we can know that the temperature
coefficient of the band-gap reference circuit is 7.96 ppm/◦C. When the input power supply
voltage changes from 2 V to 5 V, the output voltage VREF is 1.204 ± 0.002 V. In order to
keep the voltage of VRB1 and VRB2 constant, R4 and R5 need to use resistors with negative
temperature coefficients.
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Figure 5. Simulation results of the reference circuit at different temperatures.

Taking into account the deviation made by the craft factory, Figure 6 shows the
simulation results of the phase margin and gain at three different process angles where the
three process angles are FF (−40 ◦C), TT (27 ◦C), and SS (80 ◦C). According to the simulation
results in Figure 6, it can be seen that under the three different process angles, the gain of
the reference circuit is about 37 dB and the phase margin is greater than 60 degrees.

- 2 5
0

2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8
- 1 0

0
1 0
2 0
3 0
4 0
5 0

Ph
ase

 (D
egr

ee)  	 	 � � � � � �
 � � � � � � �
 
 
 � � � � �

Lo
op 

Ga
in 

(dB
)

F r e q u e n c y  ( H z )

 	 	 � � � � � �
 � � � � � � �
 
 
 � � � � �

Figure 6. Gain and phase margin of reference circuit under different process angles.

2.2. Error Amplifier and DFC

This OCL-LDO adopts a three-stage structure [26–28]. Figure 2 shows the circuit
implementation of the proposed OCL-LDO. In the first stage, a folded cascode structure
is used for high gain. In the second stage, the drain terminals of NM10 and NM11 are
connected to the same current source, so the gate voltage of NM11 will change opposite
to the gate voltage of NM10. This voltage difference is translated into a 2k-times current
difference through NM12 and NM13. With this design, both the gain of the second stage
and the driving ability can be improved. In this work, the value of k is 10, and the total
gain of the OCL-LDO is 109 dB. Cm1, Cm2, C f 1, and DFC are used to compensate the phase
margin of the loop [29–32].
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2.3. Fast Feedback Loop

As shown in Figure 1, when the output voltage is within the normal range, MNC
and MPC are turned off. The following is an analysis of the working state of the FFL loop
when the load current IL changes sharply. In Figure 7a, when the output voltage VOUT
suddenly becomes low due to the load suddenly becoming high, the comparator controls
MPC to turn on. Then, the output voltage VOUT is pulled up through the conduction of
the MPC tube. In Figure 7b, when the output voltage VOUT suddenly becomes high due
to the load suddenly becoming low, the comparator controls MNC to turn on. Then, the
output voltage VOUT is pulled down through the conduction of the MNC tube. In order
to improve the comparison speed of the comparator, this work proposes a comparator
structure with positive feedback. The detailed circuit is shown in Figure 8. When VIP is
greater than VIN , the voltage V1 will become less than voltage V2. This also means that
the gate voltage of NM5 is greater than the gate voltage of NM4, so NM5 will flow more
charge than NM4.This results in a greater voltage difference between V1 and V2 than before.
In short, NM4 and NM5 form a positive feedback structure. Likewise, PM3 and PM7
also form a positive feedback structure. These two positive feedback structures enable
the comparator to obtain comparison results quickly. As can be seen from Figure 9, the
comparison time of the comparator is 79 ns.
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VGVG VP
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Figure 7. Response of the FFL loop when the output changes. (a) Load current IL suddenly becomes
larger, (b) Load current IL suddenly becomes smaller.
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Figure 8. Comparator schematic.
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Figure 9. Comparator simulation results.

3. Frequency Compensation

Reference [10] has already mentioned that the DFC method can compensate the phase
margin of the OCL-LDO. The DFC module designed in this work requires fewer tubes and
reference voltages than reference [10]. The small-signal block diagram of the proposed
OCL-LDO main circuit is given in Figure 10. According to the given small signal model,
the loop gain of OCL-LDO under different load current and load capacitance is analyzed.
When CL 6= 0 and IL = 0, the loop gain is Equation (1). When CL 6= 0 and IL 6= 0, the loop
gain is Equation (2). When CL = 0, the loop gain is Equation (3).

-gm1-gm1 gm2gm2 -gm3-gm3

-gm4-gm4

C1C1R1R1 C2C2R2R2

C4C4R4R4

Cm2Cm2
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Cm1Cm1

VOUT
VIN

V1
V2
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Figure 10. Small-signal model of the proposed OCL-LDO.
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where Cp is the gate capacitance of the power tube; gm4 is the transconductance of the
DFC; β is the damping factor; pc is the complex poles; LO is the loop gain of the proposed
OCL-LDO; p1 is the main pole; p2 is the pole introduced by the power tube; z f and p f are
the zero and pole points introduced by the DFC structure, respectively; gm1, gm2, gm3 are
the transconductances of the LDO; R1, R2, and R3 are the output resistances of the LDO;
CL is the output load capacitance; Re is the ESR resistance; and Cm1, Cm2, and C f 1 are the
compensation capacitors.

According to Equation (1) , when CL 6= 0 and IL = 0, z f complements the main pole, ze
complements a pole of pc, and the p f pole is designed outside the unity gain bandwidth.
The specific zero-pole distribution is shown in Figure 11a. According to Equation (2),
when CL 6= 0 and IL 6= 0, z f is used to compensate the main pole, and the p f pole is
designed outside the unity gain bandwidth. The specific zero-pole distribution is shown in
Figure 11b. According to Equation (3), when CL= 0, z f is used to compensate the dominant
pole, the subdominant pole is p f , and the composite pole is located outside the unity gain
bandwidth. The specific zero-pole distribution is shown in Figure 11c. It can be seen from
the above analysis that OCL-LDO can maintain stability under different load capacitances.
Figure 12 shows the simulation results when the load capacitance is 0 F. Figure 13 shows
the simulation results when the load capacitance is 100 pF. Figure 14 shows the simulation
results when the load capacitance is 1 µF. It can be seen that stability is maintained under
all load conditions. Furthermore, in all cases, the minimum phase margin of the loop is
greater than 50 degrees.
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Figure 12. Stability simulation results (CL = 0 F).
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Figure 14. Stability simulation results (CL = 1 µF).

4. Simulation Results

Figure 15 shows the overall layout of the chip. The proposed OCL-LDO was im-
plemented in 180 nm process with an active area of 216 µm × 315 µm (without pads).
The power consumption of the whole chip is 136 µA, and the power consumption of the
OCL-LDO core is 76 µA. The peak current efficiency achieved was 99.89%.

Capacitance

Power tubes

Error amplifier

Reference circuit

EN

LDO_OUT

VSS

VSSVDD

LDO_OUT

VRB_1

VRB_2

VDD VSS

Comparator

Figure 15. Layout of the chip.

Figure 16 shows the line regulation rate of OCL-LDO. When the load is 1 mA and the
input voltage VIN changes from 2.5 V to 5 V, the variation of output voltage is 0.32 mV.
Therefore, the line regulation rate of OLC-LDO is 0.128 mV/V. Figure 17 shows the load
regulation of OCL-LDO. When the load changes from 0 to 100 mA, the variation of output
voltage is 0.17 mV. Therefore, the load regulation rate of OCL-LDO is 0.0017 mV/mA.
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Figure 16. Line regulation rate of OCL-LDO.
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Figure 17. Load regulation of OCL-LDO.

Figure 18 shows the measured load transient responses of the OCL-LDO regulator.
When IL changes from 1 mA to 100 mA with an edge time of 1 µs, the undershoot is 37 mV
and the overshoot is 33 mV. The recovery time for the overshoot voltage is 1.2 µs and the
recovery time for the undershoot voltage is 1.6 µs. When the output load IL changes from
0 to 100 mA with an edge time of 100 ps, the undershoot is 1.7 V and the overshoot is
1.4V. The recovery time for the overshoot voltage is 0.7 µs, and the recovery time for the
undershoot voltage is 2.5 µs. It can be seen that when the load changes drastically, thanks to
the proposed FFL fast feedback loop, the transient response time of the proposed OCL-LDO
does not increase significantly. There is even smaller recovery time of the output overshoots.
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Figure 18. Transient responses of the OCL-LDO.

A performance comparison between the proposed OCL-LDO regulator and other
reported LDO regulators is shown in Table 1. Compared with others works, the proposed
circuit is stable with or without a large external capacitor. Due to the high gain of the
proposed OCL-LDO, its load regulation and line regulation are better than other works. Its
gain is 109 dB, load regulation is 0.0017 mV/mA, and line regulation is 0.128 mV/V. The
change of the output voltage of the proposed circuit is small, and its undershoot voltage
and overshoot voltage are 37 mV and 33 mV, respectively, and the recovery time is 1.6 µs. To
compare various regulators implemented in different technologies, a comparison method
based on FOM is adopted. Its calculation method is Equation (4) [6,12].

Table 1. Comparison with some advanced LDOs.

Reference [30] [17] [11] [31] [29] [27] This Work

Year 2022 2023 2014 2020 2012 2019 2023

Technology (nm) 350 500 65 180 350 180 180

Chip size (mm2) 0.077 0.29 0.013 0.15 0.4 0.18 0.068

VIN (V) 2.7∼3.3 5.2–20 0.75∼1.2 70 1.2∼1.5 3.3 2.5–5

VOUT (V) 2.5 5 0.6 66 1 2.8 1.8

IQ (µA) 66 244 15.9–478 288 45 32 76

IOUT (max)(mA) 100 100 50 100 50 100 100

IOUT (min)(mA) 0.01 0.22 0 0 1 0 0

Line regulation (mV/V) 0.8 0.88 4 90 N/A 5.7 0.128

Load regulation (mV/mA) 0.06 0.22 0.18 1.7 N/A 0.028 0.0017

CT (min)(pF) 14 5 474.1 6 41 1,000,100 9

(on-chip capacitance) (pF) 14 5 4.1 6 41 100 9

∆VOUT (mV) 255 70 113 2480 70 640 37

PSRR (dB) −41 (10 kHz) −49 (100 kHz) −51 (1 kHz) N/A N/A N/A −46 (1 kHz)

Setting time (µs) 0.7 2 0.25 1.63 4 52 1.6 (99%)

Edge time ∆t (µs) 0.4 1 0.1 0.3 1 0.1 1

Edge time ratio K 4 10 1 3 10 1 10

FOM (V×pF/A) 9.43 8.5 102.4 128.56 51.7 204,820.5 2.531
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FOM = K(
∆VOUTCT × IQ

∆IOUT
2 ) (4)

where K is the edge time ratio and is defined as:

K =
∆t used in the measurement

the smallest ∆t among the designs f or comparison
(5)

From Table 1, the proposed OCL-LDO regulator design achieves a comparable or
better FOM with the other reported LDO regulators.

5. Conclusions

OCL-LDOs are attracting more and more attention because of their convenience for
integration with other circuit modules. However, OCL-LDOs usually have poor transient
characteristics. This work proposes a comparator-based transient enhanced OCL-LDO.
Due to the fast response speed of the comparator, the transient characteristics of the OCL-
LDO can be greatly improved. The overshoot and undershoot voltages of the proposed
OCL-LDO are 33 mV and 37 mV, respectively, and the recovery time are 1.2 µs and 1.6 µs,
respectively. Through the DFC frequency compensation technology, it can be ensured
that the output of the OCL-LDO remains stable within the load variation range of 0 mA
to 100 mA. The phase margin of the proposed OCL-LDO can be greater than 50 degrees
under different current loads and capacitive loads. The proposed OCL-LDO integrates a
band-gap reference, which can make its output temperature invariant and more reliable for
integration with other modules.
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