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Abstract: This article presents a type of power injection and free resonance decoupled wireless power
transfer (WPT) system, the double-switch independent power injection and free resonance wireless
power transfer (IPIFR-WPT) system working in CCM. Based on the stroboscopic mapping model, the
theoretical results show that the operation point of the proposed WPT system is determined by itself
instead of the switching control strategy. Specifically, once the voltage on the primary capacitance
does not decrease to the input voltage in the free-resonance process, the diode in series would not
turn on and the system would not switch to the power injection process. Therefore, there is a wide
soft-switching margin to ensure the system operating in soft-switching states. Another characteristic
of the proposed WPT system is the monotonicity between output power and operation cycle, which
presents a simple power control method. And since the soft-switching margin may have intersection
under dynamic coupling coefficient, the proposed system maintains soft-switching states with a fixed
switching strategy and presents advantage to resist the dynamic change of coupling coefficient. All
the characteristics of the proposed WPT system mentioned above have been verified in both theory
and experiment.

Keywords: decouple; wireless power transfer; power injection; soft switching; power control

1. Introduction

The wireless power transfer (WPT) system is mainly based on the principle of electro-
magnetic induction and high-frequency inverter technology to transfer power wirelessly
from a primary coil to one or more moveable secondary coils across air gaps [1]. There
is no direct physical connection between the primary coil and secondary coil and they
are coupled by electromagnetic fields. Hence, WPT technology is an ideal solution for
connector-free, moveable or rotatable devices, especially electric vehicles, robots, portable
devices and even underwater devices [2–6].

Usually, WPT systems including LC, LCL and LCC systems using a variety of compen-
sation networks are fully resonant types, that is, all working modes of the systems are in
resonant state [7–11]. Power injection and system resonance are completed simultaneously.
The fully resonant type WPT system works well under static operation condition. However,
since the primary and secondary coils are not rigidly connected, the coil dynamic offset
and vibration could be caused by environmental impact. By changing the system coupling
coefficient and load resistance during operation, the impedance of the fully resonant type
WPT system will change and the output power and operation efficiency will be greatly
reduced. In order to ensure fully resonant type WPT systems work at the maximum power
operation point or the maximum efficiency operation point under dynamic parameters,
some closed-loop methods have been proposed, such as the impedance compensation
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methods and the frequency tracking methods [12,13]. However, the required operation
points of the fully resonant type WPT system may exist in non-unique solutions, which
brings difficulty for these closed-loop methods [14–16].

The independent power injection and free resonance wireless power transfer
(IPIFR-WPT) system has been proposed, whose processes of power injection and resonance
are decoupled instead of happening at the same time like the fully resonant type [17–19].
Article [17] described the performance of an IPIFR-WPT system with six switches working
in discontinuous current mode (DCM) and put forward the corresponding equivalent linear
models. Similar to the DCM mode of the BUCK circuit, there are three modes in one steady-
state period in the six-switch topology, that is, power injection mode, self-resonance mode
and stop mode. In the stop mode, the current through the primary-side inductor is zero.
Hence, the stop mode has no contribution to transfer power and the power density is not
very high. Then, a new IPIFR-WPT system with six switches working in continuous current
mode (CCM) was proposed [18]. Similar to the CCM mode of the BUCK circuit, there are
two modes in one steady-state period, that is power injection mode and self-resonance
mode. Working in CCM, the current through the primary-side inductor is continuous and
does not remain zero. However, in both articles [17,18], there was no theoretical method to
determine the periods of the linear subsystems.

To simplify the modes and decrease the number of switches, article [19] proposed
another type of IPIFR-WPT system with two switches working in DCM and described the
easy power control method and the wide range of soft-switching operation. But only an
approximate model had been put forward and the calculated result was not totally precise.
As the case when the system parameters changed has not been discussed, the wide range
of soft-switching operation could not be proved fully.

This article is trying to study the characteristics of self-determining operation point
and open-loop adaptability in the double-switch type of IPIFR-WPT system working
in CCM. The main work of this article is to present a theoretical method based on the
stroboscopic mapping to determine the precise operation point of each linear subsystem
when the system achieves a steady state [20]. All the performance can be predicted with the
determined precise operation point. Furthermore, the characteristics of the proposed WPT
system including the self-determining soft-switching operation point and the monotonicity
of power curve about the cycle can all be verified.

In Table 1, the comparison between the proposed system and the similar systems has
been listed. In the CCM operation mode, the proposed system has only four control modes,
which means its control strategy is simpler than the other topologies.

Table 1. The comparison between the proposed system and similar systems.

Reference Number of
Switches

Operation
Mode

Maximum
Efficiency (%)

Number of
Control Modes

[17] 6 DCM 93.6 10

[18] 6 CCM 89.6 10

[19] 2 DCM 88.4 6

the proposed
system 2 CCM 91.6 4

Note that the power injection process and the free-resonance process of the IPIFR-WPT
system are independent. The self-determining soft-switching operation point means that
the IPIFR-WPT system can automatically adjust the real intervals of each process under
both the static and dynamic system parameters, which allows the switching strategy that
has a wide soft-switching margin to let the control process be flexible. And the monotonicity
of power curve about cycle means that the input and output power of the proposed WPT
system can be controlled continuously instead of being limited by the power peak, which
could simplify the power control method.
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2. Mode Analysis and Operation Point Calculating Method
2.1. Mode Analysis

The main circuit diagram of the IPIFR-WPT system is shown in Figure 1. The diode
D0 is used to prevent current backflow. The switch S1 is used to connect the dc voltage
source Edc to the circuit of the primary side. Besides, there is a switch S2 control to access
the resonant capacitor Cp on the primary side. The primary self-inductance Lp with internal
resistance Rp and the secondary self-inductance Ls with internal resistance Rs constitute
the mutual inductance coil, the main power transfer element. Additionally, between the
primary coil and the secondary coil, M is the mutual inductance and k is the coupling
coefficient. Cs is the filter capacitor on the secondary side. In addition, a rectifier bridge in
parallel with a relatively large capacitor C0 in the secondary side to filter a dc output, and
the real load R and the equivalent load RL have the following relationship [21]:

RL =
8R0

π2 (1)
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Figure 2. The double-switch IPIFR-WPT system. (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4. 

Figure 1. The double-switch IPIFR-WPT system.

The operation modes of the proposed system in CCM are shown in Figure 2. On
Figure 2, up, ip, is and uo are the state variables on Cp, Lp, Ls and Cs, respectively. And
i1 is the current across the diode D0. The power injection process only includes Mode 1,
shown in Figure 2a. The self-resonance process consists of Mode 2, Mode 3 and Mode 4,
which are shown in Figure 2b–d, respectively. Since the performance on the primary side
matters the stability of converter directly, only the operation curves of ip and up are shown
in Figure 3. The operation time of power injection process and self-resonance process are
ξ1 and ξ2, respectively.
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Mode 1 [t0, t1]: Mode 1 is the power injection process, which is shown as Figure 2a.
Before t0, the switch S1 has been already turned on and the switch S2 has been turned off.
But before t0, up > Edc and the diode D0 was not conducting, meanwhile the current ip
flowed through the bypass diode D2. At the time t0, up decreases to Edc and the diode D0 is
conducting so that the current ip is commutated from the bypass diode D2 to S1. Meanwhile,
Cp will be isolated from the system and the dc supply Edc will charge the inductor Lp directly.
The primary current ip across Lp is unidirectional to ensure the turning-on of the diode D0,
namely, ip > 0. Note that in mode 1, i1 = ip.

Mode 2 [t1, t2]: Mode 2 in Figure 2b is an incomplete self-resonance process. At t1, the
switch S1 turns off and the switch S2 remains off, but the current ip > 0 so that the current
ip is commutated from the switch S1 to the bypass diode D2 naturally, meanwhile i1 = 0.
Since the operation time of Mode 2 is very short, the current ip will satisfy that ip > 0 during
Mode 2.

Mode 3 [t2, t4]: Mode 3 in Figure 2c is a complete self-resonance process. At the time
t2, the switch S2 turns on to let the capacitor Cp and the inductor Lp connect to each other to
form a resonant network. Since ip > 0, the diode D0 is conducting. If the tube voltage drop
of D2 is ignored, the turning-on process of S2 meets the opening zero voltage switching
(ZVS) condition.

Mode 4 [t4, t5]: Mode 4 in Figure 2d is an incomplete self-resonance process. At the
time t4, the switch S1 turns on meanwhile S2 turns off. Since ip > 0, the current ip remains
conducting in the diode D2 to let the turning-off of S2 meet the ZVS condition. Meanwhile
as up > Edc, the diode D2 is not conducting so that no current flows through the switch
S1. Hence, the turning-on of S1 meets the zero current switching (ZCS) condition. And
the current ip will not be commutated from the diode D2 to the switch S1 until the time t5
where up = Edc.

2.2. Calculating Method of the Operation Point

In the IPIFR-WPT system working in the CCM mode, the processes can be divided
into two independent subsystems including the power injection Σ1 and the self-resonance
Σ2, whose equivalent circuits are shown in Figure 4.
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During the power injection process, which is shown in Figure 4a, the capacitor Cp
is isolated from the system and the dc supply Edc is connected to the system. The power
is injected to the system, meanwhile up remains satisfying up = Edc during the power
injection process.

During the self-resonance process, which is shown in Figure 4b, Edc is isolated from
the system while Lp and Cp are connected to each other to form a resonant network. As
a result, the power will transfer from the primary side to the secondary side during the
self-resonance process.

Let x = [up, ip, is, uo]T and u = [Edc] be the state vector and the input vector of the
system, respectively. And the reference directions of every state have marked been on
Figure 4. According to the Kirchhoff’s voltage and current laws, the equivalent circuit
shown in Figure 4a of the two subsystems Σ1 and Σ2 can be described by the differential
equations as follows:

Σ1: the equation for power injection is

.
x = A1x + B1u (2)

Σ2: the equation for self-resonance is

.
x = A2x (3)

where:

A1 =
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The solution of linear system Σ1 and Σ2 can be expressed as follows:
Σ1: the equation for power injection is

x(t) = Φ1(t)x0 +
∫ t+t0

t0

Φ(t0 + t− τ)B1Edcdτ (4)

Σ2: the equation for self-resonance is

x(t) = Φ2(t)x0 (5)

where x0 = x(t)|t= 0, Φ1(t) = exp{A1t} and Φ2(t) = exp{A2t}.
Note that the integral term in (4) is a zero-input response, whose value is a single

valued function about time. Let Yzi(t) replace this integral term to simplify writing and
Equation (4) can be rewritten as follows:

x(t) = Φ1(t)x0 + Yzi(t) (6)

The iterative relationship of the IPIFR-WPT system in nth operation cycle is shown in
Figure 5. The intervals of subsystems Σ1 and Σ2 are ξ1 and ξ2, respectively. xn is the initial
state variables. After the time spans ξ1 and ξ2 of the two subsystems, an intermediate state
variable xn1 and the terminal state variable xn+1 can be described as follows:

xn1 = Φ1(ξ1)xn + Yzi(ξ1) (7)

xn+1 = Φ2(ξ2)Φ1(ξ1)xn + Φ2(ξ2)Yzi(ξ1) (8)
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Figure 5. The iterative relationship of double-switch IPIFR-WPT system in nth operation cycle.

Once the system operates in steady state, the state variables must be periodic, namely,
xn+1 = xn. Equation (8) is a mapping from xn to xn+1, therefore x* = xn = xn+1 can be
described as a fixed point in this mapping, whose equation is presented as follows:

x∗ = [I −Φ2(ξ2)Φ1(ξ1)]
−1Φ2(ξ2)Yzi(ξ1) (9)

Let the operation cycle T be a constant and bring ξ2 = T − ξ1 in (9), then the equation
can be rewritten as follows:

x∗ = [I −Φ2(T − ξ1)Φ1(ξ1)]
−1Φ2(T − ξ1)Yzi(ξ1) (10)

Based on the mode analysis, the boundary β1 and β2 shown in Figure 5 can be
described as follows:

When Σ2 switches to Σ1, the boundary is β1: up = Edc & ip > 0,
When Σ1 switches to Σ2, the boundary is β2: S1 = 0.
The boundary β1 is determined by the value of state variables instead of the actions

of switches. Concretely, before the boundary β1, the system works in the free-resonance
process, since the voltage up is greater than Edc, the resonant current ip flow through the
resonant tank consists of Cp and Lp even the switch S1 has been already turned-on. At the
moment of β1, the voltage up decreases to Edc and the current ip completes commutation
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from D2 to S1. Therefore, the voltage up equals to Edc at the boundary β1 and the equation
can be expressed as follows:

C1[I −Φ2(T − ξ1)Φ1(ξ1)]
−1Φ2(T − ξ1)Yzi(ξ1) = Edc (11)

where, C1 = [1, 0, 0, 0].
Make a new function as follows:

f (ξ1) = C1[I −Φ2(T − ξ1)Φ1(ξ1)]
−1Φ2(T − ξ1)

Yzi(ξ1)

Edc
− 1 (12)

The result of f (ξ1) = 0 will meet the steady-state condition. The parameters of the
IPIFR-WPT system are shown in Table 2 and the operation cycle T = 100 µs.

Table 2. The -parameters of the double-switch IPIFR-WPT system.

Parameter Edc (V) Lp (µH) Cp (µF) Rp (Ω) Ls (µH)

Value 100 660 0.4 0.2 585

Parameter Cs (µF) Rs (Ω) k RL (Ω)

Value 0.4 0.2 0.5 10

The curves of the function f (ξ1) with T = 100 µs are shown in Figure 6. There are
two results of f (ξ1) = 0, that is, ξ1a = 13.09 µs and ξ1b = 36.71 µs. Then, bring ξ1a and ξ1b
into (10) to solve the corresponding fixed point, respectively, and the results are shown in
Table 3.
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Table 3. The fixed point of the double-switch IPIFR-WPT system.

ξ1 (µs)
Fixed Point x*

up (V) ip (A) is (A) uo (V)

13.09 100.0 5.774 3.289 28.72

According to the calculated result of fixed point, for ξ1a = 13.09 µs, up = Edc and
ip = 5.774A > 0 are both satisfied, which means the boundary β1 is meeting and this result
ξ1a = 13.09 µs can be accepted. As for ξ1b = 36.71 µs, up = Edc is satisfied but ip =−2.927A < 0,
which means the boundary β1 is not meeting and this result will be rejected.

Now, the operation point has been solve out and fixed point has been determined.
Furthermore, the continuous solution of state variables in one steady cycle [nT, (n + 1)T]
can be presented as follows:

x(t) =
{

Φ1(t− nT)x∗ + Yzi(t− nT), t ∈ [nT, nT + ξ1]
Φ2(t− nT − ξ1)x∗n1, t ∈ (nT + ξ1, (n + 1)T)

(13)
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Bring ξ1 = 13.09 µs and the corresponding fixed point shown in Table 3 into (13), then
the waveforms of ip(t) and up(t) with can be calculated and plotted in Figure 7. Ξ1 and ξ2 is
the intervals of subsystems Σ1 and Σ2, respectively.
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3. System Characteristics
3.1. The Wide Soft-Switching Margin Characteristic

The switching condition for Σ2 switching to Σ1, namely, the boundary β1, is not
determined by the switching actions, which is a remarkable characteristic different from the
other WPT system. In the mode analysis shown in Figure 2, S1 has already been turned-on
in Mode 4 and the system mode will not switch to Mode 1 until the voltage up decreases
to Edc. Hence, the switching strategies are not strictly corresponding to the real operation
points. Holding the switching cycle T = 100 µs unchanged, the curves of three switching
control methods with different pulse widths, which is the simulation results by Matlab
Simulink, are shown in Figure 8.
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Based on the analysis above, once up > Edc and ip > 0 are both satisfied at the moment
of turning-on S1 while turning-off S2, the boundary β1 will meet and the operation point
will be self-determined by the system. In Figure 8a, the maximum duty of S1 has been
taken at the critical position of ip = 0. In Figure 8c, the minimum duty of S1 has been
taken at the boundary position of up = Edc. Hence, once the duty of S1 takes any values in
the margin [D3, D1], the operation points of the double-switch IPIFR-WPT system will be
self-determined to be the same and the waveforms of up(t) and ip(t) are also the same. And
the margin [D3, D1] is called the soft-switching margin.

In the case that the system parameters take the value in Table 2 and T = 100 µs, the soft-
switching margin is [13.09 µs, 29.07 µs], which takes 15.98% of the cycle T. No matter what
value in [13.09 µs, 29.07 µs] has been taken as the duty of S1, the intervals of power injection
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and self-resonance are 13.09 µs and 86.91 µs, respectively, namely, the same operation point
has been determined by the system itself instead of the switching strategies. Hence, there
is a great margin to ensure the system work is steady and the difficulty of control strategies
can be reduced greatly. And note that the value of minimum duty equals to the determined
interval ξ1 of power injection process.

3.2. Self-Determining Soft-Switching Operation Point under Dynamic Coupling Coefficient

Since the switching strategies of the proposed WPT system have a wide soft-switching
margin under static system parameters, the soft-switching margin may have overlapping
parts under different system parameters. Therefore, the operation point could be self-
determined under dynamic system parameters but the same switching strategies. Of all
parameters, the coupling coefficient k is the most prone to change dynamically due to the
relative movement of the coils.

When k changes from 0.3 to 0.6, the curves of soft-switching margin [Dmin, Dmax]
can be plotted as Figure 9 and Mar is defined as the percentage of this margin in cycle T
as follows:

Mar =
Dmax − Dmin

T
× 100% (14)
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Figure 9. Curves of three switching strategies.

When the switching strategies remain in the shadow part between the curves of Dmin
and Dmax on Figure 9, the system will keep working in soft-switching operation state under
dynamic change of k. And the percentage Mar remains above 14.4%, which indicates that
there is a wide soft-switching margin to ensure the system working under dynamic change
of k.

According to Figure 9, if we let k equal to 0.45, 0.50 and 0.55, respectively, meanwhile
the duty of S1 remains as 20%, the system will work in a soft-switching margin under the
three situations. Namely, when k changes from 0.45 to 0.55 dynamically, the switching
strategies keep the same, T = 100 µs and D = 25%.

Then, as shown in Figure 10, the waveforms of i1(t), ip(t) and up(t) are plotted when
k equals to (a) 0.45, (b) 0.50 and (c) 0.55, respectively. The determined intervals ξ1 by the
system itself are (a) 10.09 µs, (b) 13.09 µs and (c) 16.55 µs correspondingly and the boundary
conditions β1 are all meeting in the three figures. Therefore, when the switching strategies
remain the same and the coupling coefficient k changes dynamically, the IPIFR-WPT system
can keep working in soft-switching states by self-determining its operating point.
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3.3. The Monotonicity of Power about Cycle 

Since Equation (13) can solve the time series of the state variables x(t) of the IPIFR-
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3.3. The Monotonicity of Power about Cycle

Since Equation (13) can solve the time series of the state variables x(t) of the IPIFR-
WPT system in one steady-state cycle, it is simple to calculate the input and output power
as follows:

Pin =
Edc
T

∫ ξ1

0
ip(t)dt (15)

Pout =
1

TRL

∫ T

0
u2

o(t)dt (16)

η =
Pout

Pin
× 100% (17)

where ip(t) = [0, 1, 0, 0]x(t) and uo(t) = [0, 0, 0, 1]x(t), η is the efficiency of the whole system.
According to the characteristic of a self-determining operation point, it is illustrated

that the switching strategies of double-switch IPIFR-WPT system has a wide margin to
ensure the soft-switching operation states and the duty of S1 does not determine the
operation point. The operation cycle T can be used to adjust the output power and the
relationship of output power Pout with cycle T is shown in Figure 11.
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system has been built as shown in Figure 13a. The part of the DC voltage source consists of 

the AC voltage regulator and rectifier module (MDQ100A1600V). As shown in Figure 13b, the 

convertor is composed of the MOSFET driver (SI8233), the MOSFET (C2M0045120D), the 

diode D0 (MURF2060) and the microcontroller (STM32F107VC). The values of Lp, Cp, Ls, Cs 
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Figure 11. The relationship of output power Pout with cycle T.

In Figure 11, there is a monotonic relationship between the output power Pout and
cycle T and the linear relationship between Pout and T becomes more obvious when the
coupling coefficients k increase. Hence, it is simple to control the output power by adjusting
the cycle T, namely, the frequency f of the IPIFR-WPT system.

In Figure 12, the corresponding efficiency η has been plotted and the efficiency η

has few decreases with the increases of cycle T. Therefore, the efficiency η maintains few
changes when the system control the output power by adjusting frequency.
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4. Experimental Verification
4.1. Experimental Devices

Based on the main circuit of the double-switch IPIFR-WPT system, the experimental
system has been built as shown in Figure 13a. The part of the DC voltage source consists of
the AC voltage regulator and rectifier module (MDQ100A1600V). As shown in Figure 13b,
the convertor is composed of the MOSFET driver (SI8233), the MOSFET (C2M0045120D),
the diode D0 (MURF2060) and the microcontroller (STM32F107VC). The values of Lp,
Cp, Ls, Cs and RL are selected as Table 2. And the oscilloscope and power analyzer are
RTB2004 (Ronde & Schwarz, Munich, Germany) and WT500 (Yokogawa, Musashino,
Japan), respectively.
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The relationship between the coupling coefficient k and the distance d of the coils are
shown in Figure 14. With the increases of the distance d from 5 cm to 20 cm, the coupling
coefficient k decreases from 0.64 to 0.12. Notice, in the follow-up experiments, the coupling
coefficient k is always changed via changing the distance of the coils.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

Rectifier
bridge Convertor

pL

sL

pC

Oscilloscope

Power analyzer

AC voltage 
regulator

sC
LR

 

(a) 

0D

pC

Microcontroller

MOSFET Driver

MOSFET

pL

dcE

 

(b) 

Figure 13. Experiment devices. (a) Experimental System. (b) MOSFET convertor. 

The relationship between the coupling coefficient k and the distance d of the coils are 

shown in Figure 14. With the increases of the distance d from 5 cm to 20 cm, the coupling 

coefficient k decreases from 0.64 to 0.12. Notice, in the follow-up experiments, the coupling 

coefficient k is always changed via changing the distance of the coils. 

4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

( )d cm  

Figure 14. The relationship between k and d. 

4.2. Self-Determining Soft-Switching Operation Point 

It can be observed from the experiment that there is always a wide soft-switching 

margin under dynamic coupling coefficient k. Once the duty of S1 maintains in the soft-

switching margin, the IPIFR-WPT system will work in the soft-switching states. 

Figure 14. The relationship between k and d.

4.2. Self-Determining Soft-Switching Operation Point

It can be observed from the experiment that there is always a wide soft-switching
margin under dynamic coupling coefficient k. Once the duty of S1 maintains in the soft-
switching margin, the IPIFR-WPT system will work in the soft-switching states.
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The curves of soft-switching margins with respect to the relative distance d of coils
is shown in Figure 15. Notice, at the operation points P1, P2 and P3, the distances of the
coils are 6 cm, 7 cm and 9 cm, respectively, but the duty of S1 is the same, 20%. And the
waveforms working at P1, P2 and P3 are shown in Figure 16.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

The curves of soft-switching margins with respect to the relative distance d of coils is 

shown in Figure 15. Notice, at the operation points P1, P2 and P3, the distances of the coils 

are 6 cm, 7 cm and 9 cm, respectively, but the duty of S1 is the same, 20%. And the wave-

forms working at P1, P2 and P3 are shown in Figure 16. 

(cm)d

D
ut

y
(%

)

5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

50

Soft-Switching Margin

minD

maxD

2P 3P1P

 

Figure 15. The curves of soft-switching margins with respect to the d. 

When d equals to (a) 6 cm, (b) 7 cm and (c) 9 cm, respectively, the corresponding 

waveforms of vgs1(t), i1(t) and ip(t) are shown in Figure 16. The determined intervals ξ1 by 

the system itself are (a) 16.2 µs, (b) 12.8 µs and (c) 7.6 µs, respectively. Therefore, when 

the switching strategies remains the same and the relative distance d of coils changes dy-

namically, the IPIFR-WPT system can keep working in soft-switching states by self-deter-

mining its operating point, which operates the same as the theoretical results. 

1gev

1i

pi
1 16 μs.2 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 83 μs.8 

20μs

μs100T 

μs100T 

 

1gev

1i

pi
1 12 μs.8 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 87 μs.2 

20μs

μs100T 

μs100T 

 

(a) (b) 

1gev

1i

pi
1 μs7.6 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 92 μs.4 

20μs

μs100T 

μs100T 

 

(c) 

Figure 16. The waveforms under different d and the same duty. (a) d = 6 cm, (b) d = 7 cm, (c) d = 9 cm. 

Figure 15. The curves of soft-switching margins with respect to the d.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

The curves of soft-switching margins with respect to the relative distance d of coils is 

shown in Figure 15. Notice, at the operation points P1, P2 and P3, the distances of the coils 

are 6 cm, 7 cm and 9 cm, respectively, but the duty of S1 is the same, 20%. And the wave-

forms working at P1, P2 and P3 are shown in Figure 16. 

(cm)d

D
ut

y
(%

)

5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

50

Soft-Switching Margin

minD

maxD

2P 3P1P

 

Figure 15. The curves of soft-switching margins with respect to the d. 

When d equals to (a) 6 cm, (b) 7 cm and (c) 9 cm, respectively, the corresponding 

waveforms of vgs1(t), i1(t) and ip(t) are shown in Figure 16. The determined intervals ξ1 by 

the system itself are (a) 16.2 µs, (b) 12.8 µs and (c) 7.6 µs, respectively. Therefore, when 

the switching strategies remains the same and the relative distance d of coils changes dy-

namically, the IPIFR-WPT system can keep working in soft-switching states by self-deter-

mining its operating point, which operates the same as the theoretical results. 

1gev

1i

pi
1 16 μs.2 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 83 μs.8 

20μs

μs100T 

μs100T 

 

1gev

1i

pi
1 12 μs.8 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 87 μs.2 

20μs

μs100T 

μs100T 

 

(a) (b) 

1gev

1i

pi
1 μs7.6 

(20 V div)

(5A div)

(5A div)

μs(20 div )t

2 92 μs.4 

20μs

μs100T 

μs100T 

 

(c) 

Figure 16. The waveforms under different d and the same duty. (a) d = 6 cm, (b) d = 7 cm, (c) d = 9 cm. Figure 16. The waveforms under different d and the same duty. (a) d = 6 cm, (b) d = 7 cm, (c) d = 9 cm.

When d equals to (a) 6 cm, (b) 7 cm and (c) 9 cm, respectively, the corresponding
waveforms of vgs1(t), i1(t) and ip(t) are shown in Figure 16. The determined intervals ξ1
by the system itself are (a) 16.2 µs, (b) 12.8 µs and (c) 7.6 µs, respectively. Therefore, when
the switching strategies remains the same and the relative distance d of coils changes
dynamically, the IPIFR-WPT system can keep working in soft-switching states by self-
determining its operating point, which operates the same as the theoretical results.
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As shown in Figure 17, taking a fixed working cycle T = 100 µs, the curves of soft-
switching margins with respect to the change in equivalent load resistance RL are plotted.
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As shown in Figure 17, when the equivalent load resistance RL increases from 5 Ω
to 20 Ω, although the soft switching range is somewhat narrowed, it can maintain a soft
switching margin of nearly 13% or more. And in Figure 17, when the load resistance RL
undergoes dynamic changes within the range of 5 Ω to 20 Ω, the soft switching duty cycle
range of the proposed WPT system still has a large overlap range, which makes the system
have an adaptive ability to resist dynamic changes in load resistance RL.

In Figure 18, the equivalent load resistance RL is plotted when taking 10 Ω, 15 Ω, and
20 Ω and using the same switching strategy (D1 = 25.0 µs and T = 100 µs). The waveform
of the power supply current i1 and the current ip on the primary inductor. As shown in
Figure 18, regardless of the values of RL being 10 Ω, 15 Ω, and 20 Ω, the system can meet the
boundary conditions under the same switching strategy β2 (up = Edc and ip > 0), meaning
that the system can still operate at its respective soft switching operating points, therefore
the system can resist dynamic changes in load resistance RL over a large range.
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4.3. The Monotonicity of Output Power about Cycle

According to the analysis above, the output power shows monotonicity with respect
to cycle T. The experimental curves are shown in Figure 19, when the distances d are
(a) 6 cm, (b) 8 cm and (c) 10 cm, respectively, the output power increases from (a) 106 W,
(b) 54 W, (c) 26 W to (a) 530 W, (b) 537 W, (c) 597 W monotonously with the rise of cycle T
from 100 µs to 130 µs, which is pretty close to the calculated results in Figure 11.
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The corresponding efficiencies η are recorded and plotted in Figure 20. The efficiency
of the system maintains more than 80% when the coils distance less than 10 cm and achieves
90% under 6 cm coils distance.
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5. Conclusions

This article presents a double-switch IPIFR-WPT system working in CCM, whose
operation modes can be decoupled as two independent processes, the power injection
and the free resonance. Different from the fully resonant type of WPT system, the power
injection process and the resonance process do not proceed simultaneously. Instead, for
the proposed WPT system, the intervals ξ1 and ξ2 of the two processes are independent
and the power injects into the system only in the time of the interval ξ1. It can be known
from the theoretical analysis that the operation point of the proposed WPT system is not
determined by the switching control strategy, hence there is a wide soft-switching margin
to ensure the system operating in soft-switching states. Since the power injected into the
system increases monotonously with respect to operation cycle T, thus the output power
can be controlled simply by adjusting cycle T. The characteristic of a self-determining soft-
switching operation point has been proved in both theory and experiment. Under a fixed
switching control strategy, the system maintains soft-switching states without adjusting
the switching strategy when the coupling coefficient k rises from 0.4 to 0.6 theoretically or
when the relative coils distance d varies from 6 cm to 9 cm experimentally. Hence IPIFR
system has a great advantage to resist the dynamic change of coupling coefficient and is
more suitable for the reality situation where the environmental factors would cause the
movement of coils.

As for the monotonicity of the power curve about cycle T, the output power rises
from 106 W to 597 W with the increases of T from 100 µs to 130 µs at 10 cm coils distance
meanwhile the efficiency almost maintains a constant (80%) and several curves with
different coil distances present the monotonicity of output power about the cycle. Hence,
the simple method for the IPIFR system to control the output power flexibly is adjusting
the operation cycle under a constant coils distance d. Furthermore, if the coupling of the
coils becomes stronger, the efficiency of the IPIFR system will rise. Concretely, when the
coils distance changes from 10 cm to 6 cm, the average efficiency rises from 80% to 91%.
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