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Abstract: The technology for human activity recognition has diverse applications within the Internet
of Things spectrum, including medical sensing, security measures, smart home systems, and more.
Predominantly, human activity recognition methods have relied on contact sensors, and some research
uses inertial sensors embedded in smartphones or other devices, which present several limitations.
Additionally, most research has concentrated on recognizing discrete activities, even though activities
in real-life scenarios tend to be continuous. In this paper, we introduce a method to classify continuous
human activities, such as walking, running, squatting, standing, and jumping. Our approach hinges
on the micro-Doppler (MD) features derived from continuous-wave radar signals. We first process
the radar echo signals generated from human activities to produce MD spectrograms. Subsequently,
a bidirectional gate recurrent unit (Bi-GRU) network is employed to train and test these extracted
features. Preliminary results highlight the efficacy of our approach, with an average recognition
accuracy exceeding 90%.

Keywords: continuous activity; doppler; IoT; CW radar; Bi-GRU

1. Introduction

Radar sensors in the context of human monitoring are becoming increasingly pop-
ular, especially in applications such as activity classification in smart homes within the
ambient assisted living framework, the recognition of human gestures in human–computer
interaction, contactless vital sign monitoring, and other fields [1]. In the realm of these
applications, there are generally two distinct categories of sensors that can be utilized,
namely wearable and non-wearable sensors [2].

Wearable sensors are usually attached to the body parts of the monitored subject or are
worn and carried in the pocket [3,4]. It is essential to acknowledge that wearable sensors
face challenges in human activity classification, such that the placement and attachment
of wearable sensors can affect their accuracy and reliability. Therefore, ensuring proper
sensor placement and addressing issues related to sensor displacement or misalignment
are crucial for obtaining accurate and consistent measurements [5,6]. Some research uses
inertial sensors embedded in smartphones or other devices [7]. However, external factors
such as temperature, humidity, magnetic fields, etc., can affect the performance of inertial
sensors. These sensors require calibration to ensure accuracy under varying environmental
conditions. The non-wearable sensors provide distinct advantages and have unique appli-
cations in human activity classification. Unlike wearable sensors, which require physical
contact or attachment, non-wearable sensors can be deployed in the environment, such as
the surrounding infrastructure or objects [8]. These sensors can utilize various technologies,
including vision-based systems [9], depth cameras [10], ambient sensors, or radar [11], to
capture relevant information about human activities. Among the non-wearable sensors,
radar has attracted significant attention due to its insensitivity to light conditions and easy
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integration into the home environment, as modern radar systems can be designed to look
like a normal Wi-Fi router [12,13]. Furthermore, radar sensors may pose fewer privacy
concerns compared to other non-wearable sensors, as they do not collect plain images or
videos of the user and their private environments.

The rich structure of the Doppler is widely used as the input for complex radar-based
solutions in a lot of studies [14,15]. A radar device emits an electromagnetic signal along
a specific line of sight (LOS). The reflection of the targets moving in the LOS contains
information about their speed as a result of the Doppler effect [16]. In addition, separately
moving parts are characterized by their own Doppler signal. Most often, the superposition
of all these Doppler signals is summarized in a so-called micro-Doppler (MD) signature [17].

Numerous studies used Deep Convolution Neural Network (DCNN) to process the
data as images. The work in [18] used a lightweight DCNN for the classification of different
human activities. Comparisons with other neural networks such as MobileNet and ResNet
were provided, demonstrating better performance when the DCNN was used. Some studies
used Generative Adversarial Networks (GANs) to address the need for a large amount of
data for training the neural network model for classification, and it is a significant challenge
to gather a lot of radar data. The work in [19] applied a similar approach to the data of
six human activities, which shows that GANs are an effective tool to generate synthetic
radar data, starting from a relatively small set of such synthetic data, and their best use is
to improve classification performances. Compared to the above methods, we investigate,
in this paper, recurrent neural networks that interpret radar data as a temporal series
and characterize the time-varying nature of a sequence of human activities. We use gate
recurrent unit networks in their bidirectional implementation (Bi-GRU). Gate recurrent
unit (GRU) is a recurrent neural network that can learn temporal dependencies between
samples at separated time steps in a sequential data stream. GRU have been promoted as an
ideal solution for temporally variant data for many applications, ranging from temperature
detection, text and speech detection, up to finance, and the energy field [20–24]. However,
GRU and especially Bi-GRU have been minimally discussed in the literature as stand-
alone tools for radar-based human activity classification and represent an under-explored
approach if compared with the DCNNs mentioned in previous paragraphs.

In summary, to the best of our knowledge so far, very few works in the literature have
investigated the use of GRU networks, let alone Bi-GRUs, for the radar-based classification
of human activities; when these have been used, the data referring to the classes of interest
have been collected as separated radar recordings. However, in this paper, we analyze
continuous sequences of human activities.

The main contributions of this paper are summarized as follows:

• We analyze realistic, continuous sequences of human activities rather than discrete
activities. Within them, different actions can happen at any time, with unconstrained
duration for each activity, and the body parts reposition themselves appropriately in
order to perform the following activity.

• We extract the Doppler feature from continuous-wave (CW) radar data. Then, we
introduce stacked bidirectional GRU networks as a potent deep learning (DL) mecha-
nism for classifying these ongoing human activity sequences. Bi-GRUs are inherently
suitable for such analysis because they can capture both temporal forward and back-
ward correlated information within the radar data. We also shed light on performance
implications stemming from data-processing choices and pivotal hyperparameters.

• We base our analysis on experimental data collected using a CW radar and involving
three participants performing different combinations of five activities. Then, we design
three different permutations, as shown in the table in Section 4.3, to train and test the
model with different humans, which makes it more credible.

The remaining sections of this paper are organized as follows: Section 2 reviews the
related works on human activity classification. Section 3 introduces the system description
and main structure of the proposed radar-based Bi-GRU scheme. In Section 4, the perfor-
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mance of the proposed scheme is evaluated. Section 5 provides conclusions and discusses
future works.

2. Related Works

Radar has been widely used in the field of human activity classification. The Bi-GRU is
a lightweight neural network model, and it is usually suitable for small datasets, akin to our
method. The authors in [25] proposed a deep learning (DL) method, called TRANS-Bi-GRU,
which combines a transformer with a bidirectional gated recurrent unit (Bi-GRU) to effi-
ciently learn and recognize different types of activities with a large dataset. They compared
the proposed scheme with some existing schemes, and the results show that their scheme
significantly outperforms the existing models for activity classification. However, this
approach only used the raw data from the radar directly, without extracting the Doppler
features from the raw data like our proposed scheme, which enables the fine-grained use
of radar data. The authors in [13] proposed a robust fall detection system based on the
frequency-modulated continuous-wave (FMCW) radar. The results show that the accuracy
is over 90% on the test set. However, this scheme only detects the moment of human move-
ment and calculates the range map of the radar signals, which cannot effectively utilize the
data. On the other hand, the authors in [26] proposed an extremely efficient convolutional
neural network (CNN) architecture named Mobile-RadarNet, specially designed for human
activity classification based on micro-Doppler signatures. The experiments on a seven-class
human activity dataset demonstrate that the proposed scheme can achieve high classifica-
tion accuracy. Despite its high classification accuracy, it treats human activities as discrete,
overlooking the continuous nature of most real-world activities. Our methodology, in
contrast, treats continuous activities as a class, mirroring real-world scenarios more closely.

3. Proposed Bi-GRU Algorithm
3.1. System Description and Data Processing

The simplified overview of our proposed method for continuous human activity
classification is illustrated in Figure 1. In the data acquisition part, the echo signals are
recorded by a continuous wave (CW) radar. In the signal processing part, the fast Fourier
transform (FFT) is employed to extract the Doppler features from the CW radar data,
leading to time-Doppler spectra. In the activity classification part, the above time-Doppler
spectra are fed into our proposed network, culminating in the final classification results.

Figure 1. The framework of the proposed Doppler-based Bi-GRU method.

The CW radar is the simplest and most efficient solution in cases where the detection
of the moving object is the only, and outstanding, task [18,27]. Figure 2 shows the Doppler
signature, capturing 40 s during which an individual cycles through five activities: walking,
running, squatting, standing, and jumping. The y-axis in the figure denotes the Doppler
dimension, while the x-axis highlights the time progression. Figure 2 distinctly showcases
the varied Doppler signatures associated with different activities. For example, a nega-
tive frequency shift is observed when the participant squats, indicating movement away
from the radar. Conversely, a positive frequency shift arises when the participant stands,
symbolizing movement toward the radar.
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Figure 2. Doppler signature of a group.

Figure 3 elucidates the core steps of data processing. The captured signals manifest as
a matrix structured by slow and fast time dimensions. Fast time refers to the time domain
of individual pulse signals received by the radar; they are transformed into the fast time
domain for the analysis and processing of each pulse signal. Slow time refers to the longer
time scale in a radar system, involving a sequence of multiple pulse signals received over a
period of time. The slow time domain is used to accumulate and integrate multiple pulse
signals to improve the performance and target detection capability of the radar system. For
data to be used as inputs to the classifier, firstly, a Fast Fourier transform is performed on
each fast time bin of raw data to convert the time domain into a frequency domain to extract
the information of the fast time dimension. To remove static clutter, a Hanning window
is then applied, and then using specific slow time bins where the target is performing
the activities, a 2D Fast Fourier transformation (FFT) is applied to find the Doppler-time
pattern to characterize the micro-Doppler signatures. Each Doppler spectrum time bin is
then manually labeled, setting the stage for model training. Figure 4 is the result after being
given the label of Figure 2 (A1, A2, A3, A4 and A5 in the figure represent walking, running,
squatting, standing, and jumping, respectively).

Figure 3. The main process of the data processing.

3.2. Optimal Parameters for Human Activity Classification

We implemented the neural network using a combination of software tools commonly
employed in deep learning research. The primary components of our software stack
included PyCharm version 2022.2.2 as the integrated development environment (IDE),
Anaconda (Python version 3.9) for package management and environment control, and
TensorFlow version 2.9.1 as the deep learning framework.
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Figure 4. The result after the data processing of Figure 2.

For many sequence modeling tasks, it is helpful to access future and post contexts.
However, the standard GRU network processes the sequence in chronological order, ig-
noring the future context. Bi-GRU networks extend the unidirectional GRU network by
introducing a second layer, in which the hidden connections flow in reverse chronological
order. As a result, the model can take advantage of past and future information. The typical
structure of GRU is shown in Figure 5. As mentioned earlier, GRU consists of an update
and reset gate [1]. In the update gate, GRU computes ‡t at a given time t to solve the
vanishing gradient problem using the following formula:

‡t = sigmoid
(
W‡[yt−1, spectrum bint]

)
. (1)

Figure 5. The structure of the proposed Bi-GRU network.

‡t is the output vector of the update gate, which controls the degree to which the previ-
ous hidden state yt−1 influences the current input spectrum bint. Sigmoid is the activation
function, W‡ is the weight matrix, yt−1 is the previous hidden state, and spectrum bint is the
current input GRU calculates rt at a given time t to illustrate how much past information to
forget. The gate executes the following formula:

rt = sigmoid(Wr[yt−1, spectrum bint ]). (2)
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rt is the reset gate output vector, which determines how much of the previous hidden
state yt−1 should be ignored or reset based on the current input spectrum bint. Wr is the
weight matrix. The current storage content stage is calculated according to the following
formula:

∼
y t = tanh(Wr[yt−1, spectrum bint]). (3)

∼
y t is the new candidate hidden state, which is computed based on the previous hidden

state yt−1 and the current spectrum bint. tanh is the hyperbolic tangent activation function.
Subsequently, the current hidden state, yt, is computed based on the previous hidden state,
current candidate activation, and update gate, using the equation

yt = (1 − ‡t)yt−1 + ‡t
∼
y t. (4)

ot = (W0yt). (5)

yt is the current hidden state at time t, yt−1 is the previous hidden state at time step
t − 1, ot is the output at time step, and W0 is the weight matrix. For many sequence
modeling tasks, it is helpful to access future and post contexts. However, the standard
GRU network processes the sequence in chronological order, ignoring the future context.
Bi-GRU networks extend the unidirectional GRU network by introducing a second layer,
in which the hidden connections flow in reverse chronological order [28]. As a result, the
model can take advantage of past and future information.

Figure 5 shows a simplified block diagram of the proposed architecture of the Bi-GRU
network. The input to this network is the spectrogram, which contains micro-Doppler
information and is fed into the network as a group of different vectors’ time bin after the
time bin. Our Bi-GRU network is structured in a sequential manner, where the output layer
of one Bi-GRU is connected to the input layer of the next Bi-GRU. This sequential connection
enables the network to capture complex temporal dependencies within the data. Specifically,
the hidden states of the first Bi-GRU layer serve as inputs to the second Bi-GRU, and so
on for subsequent layers. This hierarchical architecture allows the network to learn and
refine features at different levels of abstraction. In terms of training, we employed a holistic
approach by training the entire stacked network from examples, as opposed to training
each Bi-GRU layer separately. This comprehensive training strategy facilitates the learning
of hierarchical representations from the data. Each layer of the network contributes to the
extraction of relevant features, and the subsequent layers build upon these representations,
ultimately leading to the high classification performance reported in our study. To estimate
the influence of different hyper-parameters on the model performance, we will compare
the average accuracy when the learning rate, the number of Bi-GRU layers, and the number
of Bi-GRU neurons are different. We use two targets’ data to train the model and use the
remaining one target’s data to test the model. The results are presented as follows.

(1) number of Bi-GRU layers

Figure 6a presents the average accuracies of the three targets in comparison with four
distinct Bi-GRU layers: one layer, two layers, three layers, and four layers. All Bi-GRU
parameters are set to be identical, except for the number of Bi-GRU layers. As can be
observed, using three Bi-GRU layers results achieves the peak classification accuracy for all
three target datasets, followed by the two Bi-GRU layers. The least average classification
accuracy is found when using one Bi-GRU layer. In conclusion, the average classification
accuracy improves when transitioning from one to three Bi-GRU layers. However, an
increase to four Bi-GRU layers does not yield further gains. This plateau may arise from
the model’s heightened complexity, which might lead to overfitting, meaning the model
over-learns from the training data, capturing noise and unnecessary details. Therefore,
the ability to generalize weakens, affecting the performance on test data. In the end, the
number of Bi-GRU layers is set to three.
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Figure 6. The average accuracy of using two targets’ data to train and using the remaining one
target’s data to test with different model parameters: (a) various Bi-GRU layers, (b) various neurons,
(c) various learning rates.

(2) number of Bi-GRU neurons

It is widely understood that amplifying the number of Bi-GRU neurons augments
the model’s complexity, enabling it to capture more from the training data. However, an
excessively intricate model might not necessarily perform well, especially if it over-learns,
including noise and other irrelevant details, compromising the model’s generalization
capability. Hence, a balanced, appropriate model is more beneficial than an overly complex
model.

Figure 6b presents the average classification accuracies for three distinct Bi-GRU
neuron counts: 32, 64, and 128. All other parameters remain consistent except for the
neuron count. The optimal average classification accuracy emerges with 64 neurons, trailed
by 128 neurons. The least effective configuration utilizes 32 neurons. Given these findings,
the number of Bi-GRU neurons is set to 64.

(3) learning rate

The Adam optimizer is implemented for the model. A crucial hyperparameter to
adjust in the update of the model parameters is the optimizer learning rate, often known as
the step size. In this experiment, we conduct several tests to configure the optimal learning
rate. Figure 6c illustrates the average classification accuracies of the three targets with
four learning rates: 10−1, 10−2, 10−3, and 10−4. The figure shows that the highest average
accuracies of the three targets all occur when learning rate is set to 10−3. To ensure the
model functions optimally on our dataset, we apply a learning rate of 10−3.

4. Experiment and Results
4.1. Measurement Hardware and Its Parameters

The CW radar, supplied by the Innocent Company, works in a 24 GHz industrial,
scientific, and medical (ISM) frequency. The radar sensor has only one transmitter channel
and receiver channel. A summary of the technical details of our test apparatus is presented
in Table 1.

4.2. Experiment Scenario Setup and Data Collection

Data were collected from three participants, aged between 23 and 31, on the sixth floor
of the Hwado Office Building at Kwangwoon University. Table 2 provides the primary
physical attributes of these participants. The radar was positioned at a height of 0.8 m, with
a distance of 3 m from the participant. Figure 7 depicts the layout of the environment and
radar setup.
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Table 1. Configuration parameters of CW radar.

Parameters Values

Radar type CW (1 − Tx and 1 − Rx)
CW Frequency 24,000 MHz

Sampling period 0.0004 s
Number of samples 128

Sampling time 0.0512 s
Velocity resolution 0.122 m/s

Low-pass filter (theoretical) 1250 Hz
Low-pass filter (current hardware) 915 Hz

High-pass filter (theoretical) 19.53 Hz
High-pass filter (current hardware) 20 Hz

Table 2. Main physical parameters of participants.

No. Gender Age (yr) Weight (kg) Height (cm)

1 Man 26 81 177
2 Man 23 60 177
3 Man 31 72 170

Figure 7. Experiment environment.

Based on the purpose of detecting human activities in disasters, we designed several
activities commonly used in disasters. The data include five human activities as shown in
Figure 8: walk (A1), run (A2), squat (A3), stand (A4), and jump (A5). While each activity is
presented as a distinct action, they were executed in a continuous sequence. Most research
collects discrete activity. For example, the participant performs a single activity during
one collection. However, we collected continuous activity. The participant performs five
different activities continuously during one collection because activities in real-life scenarios
tend to be continuous. Upon activating the radar, participants carried out all five activities
in random order without constraints. Each data collection session lasted 40 s, during which
participants completed all five activities. People can perform the five activities in a random
order and the speed of the activity also depends on the participant. One important point
is that the participant must perform all five activities in the 40s collection time, and each
activity can only be performed one time. Such a session is termed a “group”, and every
participant undertakes 20 groups. With three participants, this totaled 60 groups within a
singular experimental setup. Each group was segmented into 200 bins, each lasting 0.2 s.
Each bin was labeled according to the activity conducted during that time. Subsequently,
these bins were inputted into the model group by group.
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Figure 8. Pictorial list of activities; these five activities were performed in random continuous
sequences.

4.3. Training and Testing Set Composition

Sixty distinct groups were gathered in total. To bolster the credibility of our results,
data from two targets (or 40 groups) were used for training, while data from the third
target (20 groups) were allocated for testing. Table 3 lists all the permutation combinations
considered. The target we mentioned in Table 3 refers to the participant in our experiment.

Table 3. All permutations of the train and test sets.

No. Train Set Test Set

1 2nd target, 3rd target 1st target
2 1st target, 3rd target 2nd target
3 1st target, 2nd target 3rd target

4.4. Performance Analysis

Figure 9 shows an example result of a group; the blue line is the actual activity of
the participant, and the red line is the participant’s activity that the model predicts. The
accuracy of the group is determined by comparing the blue line and the orange line. The
accuracy of each activity is determined by comparing the blue line and orange line in
each activity in the group. Many papers use the data of the same target to train and test.
However, when they use the same target’s data to train and test, this means that the model
already learns the feature of the test target. Therefore, it cannot show that the model has a
good generalization ability. In our experiment, we use different targets to train and test to
let the results be more persuasive.

Figure 10 shows the accuracy of each group when we use two targets’ data to train
the model and use the remaining one target’s data to test the model. It is obviously shown
in Figure 10 that many accuracy rates exceed 95% and most accuracy rates exceed 90%,
especially in Figure 10b,c. However, not all test groups maintain this high level of accuracy
due to the inherent challenges of detecting intricately designed activities within this dataset.
For instance, the 17th group in Figure 10a has an accuracy of approximately 78%. This
variability can be attributed to the fact that the same activity, when performed by the same
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target, might exhibit slight differences across different targets. Consequently, Doppler
features might vary between participants, leading to occasional inconsistencies in the
model’s predictions.

Figure 9. Ground truth in blue, and the predicted outcome in red.

Figure 10. The accuracy of each group when we use two targets’ data to train and use the remaining
one target’s data to test: (a) use the data of 2nd target and 3rd target to train, and use the data of 1st
target to test; (b) use the data of 1st target and 3rd target to train, and use the data of 2nd target to
test; (c) use the data of 1st target and 2nd target to train, and use the data of 3rd target to test.

Beyond group-wise accuracy, we also evaluated the accuracy for each distinct activity
within every group to verify the experiment’s authenticity. Figure 11 shows an example
about how to calculate the accuracy of each activity. On the one hand, the model sometimes
cannot predict the correct activity like the first circle on the figure, which results in 0%
accuracy; on the other hand, the model can sometimes predict the correct activity but
cannot predict the duration of the activity correctly, such as the third circle on the figure,
which results in 71.8% accuracy. In the next section, we will introduce the results of the
accuracy of each activity in every group.

Figure 12 presents the accuracy of individual activities across groups, using two targets’
data for training and the remaining one target’s data for testing. From Figure 12, we can
see that the best result is Figure 12c, followed by Figure 12b, and most of the accuracies in
both are over 90%. Then, there is Figure 12a, in which most of the accuracies are over 80%.
From Figures 10 and 12, we can see that the model behaves well when using the data of the
second target and third target to test, and the model behaves less well when the data of the
first were used for testing.
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Figure 11. Example of how to calculate the accuracy of each activity.

Figure 12. Accuracy of each activity in each group when we use two targets’ data to train and use the
remaining one target’s data to test: (a) use the data of 2nd target and 3rd target to train, and use the
data of 1st target to test; (b) use the data of 1st target and 3rd target to train, and use the data of 2nd
target to test; (c) use the data of 1st target and 2nd target to train, and use the data of 3rd target to test
target to test.

Figure 13 illustrates a violin plot of the accuracy for five distinct activities across
different targets. The mean accuracies for the activities walk and run consistently surpass
95%, except for the walk activity in Figure 13b. This high accuracy can be attributed
to the extended duration of walking and running relative to other activities, allowing
the model to glean more characteristic features from these two activities. In contrast,
the average accuracies for the squat activity are approximately 90% in Figure 13b,c but
drop to approximately 80% in Figure 13a. The jump and stand activities yield mean
accuracies of approximately 85% in Figure 13b,c. However, these values significantly dip to
approximately 65% in Figure 13a. One potential explanation is the inherent variability in
the way different targets perform the same activity, leading to inconsistent accuracy when
different targets’ data are used for training and testing, as observed in the jump and stand
activities within Figure 13a.
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Figure 13. Violin plot of the accuracy of five activities for different targets: (a) use the data of 2nd
target and 3rd target to train, and use the data of 1st target to test; (b) use the data of 1st target and
3rd target to train, and use the data of 2nd target to test; (c) use the data of 1st target and 2nd target to
train, and use the data of 3rd target to test.

4.5. Performance Comparison

To evaluate the performance of the proposed scheme, we compared the average
accuracy of the group for the three participants with different deep learning models, as
shown in Figure 14. As the figure indicates, the Bi-GRU approach consistently achieves
average accuracies exceeding 0.9 for all participants, succeeded by the Bi-LSTM model,
which yields average accuracies over 0.9 for the second and third targets. The worst is
the LSTM scheme, in which the average accuracy for first target is approximately 0.88, the
accuracy for the second target is approximately 0.77, and the accuracy for the third target is
only approximately 0.72. Conversely, the Bi-GRU scheme achieves the best performance.

Figure 14. Average accuracy of the three targets when using different models.

5. Conclusions and Future Work

This paper introduces a Bi-GRU model geared toward continuous human activity
classification, leveraging the Doppler feature extracted from CW radar data. Our emphasis
is on continuous human activities, as opposed to discrete ones, given the inherently contin-
uous nature of real-world human actions. Going forward, we aspire to achieve real-time
continuous human activity classification, fostering applications such as monitoring human
activities during emergencies or disasters.
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