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Abstract: Synthetic Aperture Radar (SAR) image target detection is of great significance in civil
surveillance and military reconnaissance. However, there are few publicly released SAR image
datasets of typical non-cooperative targets. Aiming to solve this problem, a fast facet-based SAR
imaging model is proposed to simulate the SAR images of non-cooperative aircraft targets under
different conditions. Combining the iterative physical optics and the Kirchhoff approximation, the
scattering coefficient of each facet on the target and rough surface can be obtained. Then, the radar
echo signal of an aircraft target above a rough surface environment can be generated, and the SAR
images can be simulated under different conditions. Finally, through the simulation experiments,
a dataset of typical non-cooperative targets can be established. Combining the YOLOv5 network
with the convolutional block attention module (CBAM) and another detection head, a SAR image
target detection model based on the established dataset is realized. Compared with other YOLO
series detectors, the simulation results show a significant improvement in precision. Moreover, the
automatic target recognition system presented in this paper can provide a reference for the detection
and recognition of non-cooperative aircraft targets and has great practical application in situational
awareness of battlefield conditions.

Keywords: electromagnetic scattering calculation; SAR image; YOLOv5 network; convolutional
block attention module

1. Introduction

Due to its all-day, all-weather features, Synthetic Aperture Radar (SAR), which can
serve as a persistent surveillance and reconnaissance platform [1,2], has been widely used
in civilian and military fields [3,4], such as geological and ecological surveillance, automatic
driving, target detection, and so forth [5–7]. Effective detection of targets in SAR images
under different conditions is of great significance in the practical applications of SAR
images, especially in civil surveillance and military reconnaissance. However, there are
fewer publicly released SAR image datasets, such as the SAR Ship Detection Dataset (SSDD,
1.16 K images with one category) [8], the Moving and Stationary Target Acquisition and
Recognition (MSTAR, 3671 target chips with 10 classes) [9], than optical datasets such
as Microsoft COCO (328 K images with 80 categories) [10] by the research institutes. In
particular, the image dataset used for SAR aircraft detection is barely open access, which
makes it impossible to train a robust model for non-cooperative target detection [11].

To efficiently detect non-cooperative targets in SAR images, transfer learning has been
widely used in convolutional neural networks (CNN) due to the lack of publicly released
aircraft SAR image datasets for data-driven solutions. By utilizing the existing knowledge
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to learn new knowledge in the target domain, it can achieve a state-of-the-art result. SAR
ship data has been utilized for model pretraining [12]. However, it will be more accurate to
train a target detection model based on SAR images of non-cooperative aircraft.

To obtain a large number of SAR images of non-cooperative aircraft, the computational
electromagnetism method and SAR imaging algorithm are studied in this research. As for
the computation of electromagnetic (EM) scattering and SAR imaging processes, several
facet-based methods have been proposed to reduce the computational burden, especially
for electrically large targets. To estimate the electromagnetic backscattering of electrically
large sea surfaces more accurately, an improved facet-based two-scale model is proposed,
and then SAR imaging of the sea surface is conducted [13]. A facet model for rough
Creamer sea surfaces under high sea states is presented in [14], and based on the scattering
results, SAR images of sea surfaces are simulated under different conditions. For the SAR
image simulation of ship wake, a semi-deterministic facet scattering model is proposed
in [15], which shows good agreement with the experiment results. Extensive pieces of
literature have researched the facet-based scattering model. However, few studies have
researched fast facet-based SAR imaging algorithms for target and environment composite
scenes. Based on the iterative physical optics method and Kirchhoff approximation, which
can obtain the scattering coefficient of each facet, a fast facet-based SAR imaging model is
studied to simulate SAR images of non-cooperative targets under different conditions.

After obtaining the SAR image simulation results of non-cooperative targets, a SAR
image dataset can be obtained. Then, target detection and recognition based on the es-
tablished dataset becomes feasible. As for the research on SAR image target detection,
according to a comprehensive review and analysis of current research, the traditional SAR
image target detection methods have limitations in feature extraction and computational
resources, such as the constant false alarm rate (CFAR) method based on the statistical
distribution of background clutter and threshold extraction [16], support vector machine
(SVM) [17], and multi-feature extraction and fusion algorithm [18]. Transfer learning cannot
achieve satisfactory performance for SAR image target detection because of the apparent
discrepancy between optical and SAR images [19]. As a comparison, deep learning, which
is based on convolutional neural networks (CNN), has been widely utilized in target detec-
tion and recognition due to its remarkable performance and accuracy [3], mainly owing to
the massive labeled datasets. In addition, target detection based on deep learning can be
divided into one-stage detectors such as Single Shot MultiBox Detector (SSD) [20], You Only
Look Once (YOLO), and two-stage detectors such as Fast-RCNN [21], Faster-RCNN [22],
and Mask R-CNN. Compared with the two-stage detectors, YOLOv5, a one-stage network
and the latest architecture in the series, can boost efficiency and reduce the complexity of
SAR image detection. To realize multi-target real-time detection for vehicles, aircraft, and
nearshore ships, several methods are proposed based on YOLOv5 [23–25]. Based on the
aforementioned deep learning methods, research on target detection for SAR images has
gradually developed [2].

In this paper, through analyzing the composite EM scattering of ultra-low altitude
targets above the rough surface and processing the radar echo signal, a novel SAR image
data set is constructed based on which the experiment is conducted. Moreover, target
detection and recognition are realized by utilizing an improved YOLO network. To validate
the proposed systematic framework, some experiments were conducted, and the results
showed that the improved YOLO network had better performance in SAR target detection
and recognition.

The rest of this paper is organized as follows: The EM scattering of ultra-low altitude
targets above the rough surface is analyzed in Section 2. Furthermore, based on the
backscattering coefficient of the face, a fast facet-based SAR image simulation method
was proposed. Section 3 presents the original YOLOv5 network and introduces another
detection head, an adaptive and robust edge detection detector, and the convolutional
block attention module to improve the YOLOv5 model for SAR image identification.
Section 4 shows the pretreatment of the dataset, including the construction of the dataset
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and labeling of the images. Then, several experiment examples are presented in Section 5
to demonstrate the feasibility, accuracy, and efficiency of the proposed method. Finally, it
draws a conclusion in Section 6.

2. Electromagnetic Scattering Computation and SAR Imaging Algorithm
2.1. Iterative Physical Optics

Based on the magnetic field integral equation (MFIE) derived from the Stratton-Chu
equation, the surface-induced electric current that meets the error requirements can be
obtained through the iteration and updating of the surface-induced current [26]. As a
result, far-field scattering can be obtained. The principal value integral of the MFIE can be
expressed as:

H(r) = 2Hinc(r) + 2P.V.
∫

S
[J(r)×∇G(r, r′)]dS′, r ∈ S (1)

where G(r, r′) is the free space Green’s function, Hinc denotes the incident magnetic field, r
and r′ are the observation point and source point, respectively.

From (1), Ji can be obtained as:

Ji = 2n̂×Hinc(r) + 2n̂× P.V.
∫

S
[Ji×∇G(r, r′)]dS′, r ∈ S (2)

The zero-order equivalent surface electric current density is [27]:

J0
i =

2Ei
Z

n̂×
(
k̂i × êi

)
exp

(
−jkk̂i · r′

)
(3)

where Z is the surface impedance and k̂i denotes the unit propagation vector of the incident
wave. Classical Jacobi iteration can be utilized to solve (3), and the (k + 1)th iteration of
the current can be given by [28]:

J(k+1)
i = Jinc

i + 2
N

∑
j=1,i 6=j

n̂i × P.V.
∫

S
[J(k)j ×∇G(r, r′)]dS′, r ∈ S (4)

As the iteration process continues, the surface-induced electric current will fully
converge. The iterative procedure will be terminated after the set number of iterations is
reached or the relative error tends to be zero in a finite time [29]. Error convergence can be
defined as:

εn =
‖∆J(n)i ‖2

‖J(n)i ‖2

× 100% (5)

where ∆J(n)i = J(n)i − J(n−1)
i . In general, when the error convergence is less than 3%, the

iteration process can be halted. The geometry of typical targets is shown in Figure 1.
Additionally, fast far-field approximation, which consists of aggregation, translation,

and disaggregation [28], is introduced to reduce operational complexity and time consump-
tion. The fast far-field approximation (FaFFA) consists of aggregation, translation and
disaggregation, is shown in Figure 2. Then, far-field scattering can be obtained utilizing the
physical optics method.

2.2. Kirchhoff Approximation

To analyze the composite electromagnetic scattering of typical ultra-low altitude
targets above the random rough surface, the facet-based iterative Kirchhoff approximation
method is introduced to calculate the scattering of the rough surface [30]. In addition, the
Kirchhoff approximation method is suitable for large, rough surfaces with small incident
angles [31]. Figure 3 shows typical ultra-low altitude targets above the rough surface.
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Based on the Kirchhoff approximation, the induced electric currents J can be ex-
pressed as:

Ji = 2n̂i ×Hinc (6)

where n̂i is the normal vector of the facet on the rough surface, Hinc denotes the incident
magnetic field. According to the magnetic field integral equation, the induced currents J
can be rewritten as:

Ji = 2n̂i ×Hi + 2n̂i × [L(M) + K(J)] (7)



Electronics 2023, 12, 4039 5 of 17

where
L(M) =

x

s
−jωε0

[
M · G

(
r, r′
)
+
(

1/k2
0

)
∇′ ·M · ∇G

(
r, r′
)]

ds′ (8)

K(M) =
x

s
J×∇G

(
r, r′
)
ds′ (9)

where ε0 is the relative dielectric constant and k0 denotes the wave number of free space.
Based on the impedance boundary condition, which can be given as:

M = ZSJ× n̂ (10)

Then, the induced current J can be expressed as:

Ji = 2n̂i ×Hi + 2ZSn̂i × L(J× n̂) + 2n̂i × K(J) (11)

The surface current can be given as:

Jn+1
i = 2n̂i ×Hi + 2ZS

N

∑
j=1,j 6=i

n̂i × [L(Jn
i × n̂) + K(Jn

i )] (12)

where n = 1, 2, · · · , N denote the facet on the rough surface. In general, the rough surface
is meshed into triangular patches to calculate the electromagnetic scattering from the rough
surface. Therefore, the scattering of the facet can be obtained by Kirchhoff approximation.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18 
 

 

Based on the Kirchhoff approximation, the induced electric currents J  can be ex-
pressed as: 

ˆ2 inc
i i= ×J Hn  (6) 

where ˆin  is the normal vector of the facet on the rough surface, incH  denotes the incident 
magnetic field. According to the magnetic field integral equation, the induced currents 
J  can be rewritten as: 

( )ˆ ˆ2 2 ( )i
i i in L K= × + × +  J H M Jn  (7) 

where 

( ) ( ) ( ) ( )2
0 0, 1 / ,

s

L j G k G dsωε  ′ ′ ′ ′= − ⋅ + ∇ ⋅ ⋅∇ M M Mr r r r  (8) 

( ) ( ),
s

K G ds′ ′= ×∇M J r r  (9) 

where 0ε   is the relative dielectric constant and 0k   denotes the wave number of free 
space. Based on the impedance boundary condition, which can be given as: 

ˆSZ= ×M J n  (10) 

 
Figure 3. Typical ultra-low altitude targets above the rough surface. 

Then, the induced current J  can be expressed as: 
( )ˆ ˆˆ ˆ2 2 2 ( )i

i i S i iZ n L n K= × + × × + ×J H J Jn n  (11) 

The surface current can be given as: 

( )1

1,

ˆ ˆ ˆ2 2 ( )
N

n i n n
i i S i i i

j j i
Z L K+

= ≠

 = × + × × + J H J Jn n n  (12) 

where 1,2, ,n N=   denote the facet on the rough surface. In general, the rough surface 
is meshed into triangular patches to calculate the electromagnetic scattering from the 
rough surface. Therefore, the scattering of the facet can be obtained by Kirchhoff approx-
imation. 

  

Figure 3. Typical ultra-low altitude targets above the rough surface.

2.3. SAR Imaging

Synthetic aperture radar, which can be installed on unmanned aerial vehicles (UAV)
and airborne early warning aircraft, is a type of active observation system for object
monitoring and information acquisition [32]. Especially, SAR imaging plays an important
role in the implementation of target detection and identification. In order to obtain the SAR
images, a facet-based SAR image simulation method is proposed [33]. The airborne SAR
imaging system is illustrated in detail in Figure 4.

The SAR raw signal can be expressed as:

hstrip(x′, y′) =
s

σ(y, r) exp
[
−j 4π

λ
∆ f
f cτ (r

′ − r− ∆R)2
]
·

ω2( y′−y
X ) exp

(
−j 4π

λ ∆R
)
· rect

[
2(r′−r−∆R)

cτ

]
dydr

(13)

where σ(y, r) denotes the backscattering coefficient of the facet, λ presents the wavelength
in the free space, R denotes the slant range between the facet and the platform, ∆ f is the
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bandwidth of the transmitting wave, and ω2( ) is the beam pattern amplitude modification.
c represents the velocity of light in the free space and τ is the radar pulse duration.
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Then, the SAR images of the target and rough surface can be reconstructed by a
two-dimensional fast Fourier transform (FFT). The SAR simulation results for single and
multiple targets can be seen in Figure 5. The range resolution and azimuth resolution are
both 0.3 m.
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The imaging results retain the structural information of the target, and compared with
the SAR imaging method based on scattering center extraction, it achieves super-resolution
imaging. The consumption of memory resources and computation time is less than that of
other super-resolution imaging algorithms. Meanwhile, it is easy to conduct the simulation
process, which is of some reference significance for real-time airborne SAR imaging.

3. Improved YOLOv5 Target Detection Model

In this section, the main idea of YOLOv5 is introduced in detail. YOLOv5 is a state-of-
the-art object detection algorithm that solves object detection as a regression problem [34],
and it meets the application requirements due to its fast recognition speed, high accuracy,
and small model size [35].

3.1. Original YOLOv5

The main network of YOLOv5 consists of five parts: input, backbone, neck, prediction,
and output. The overall network structure of YOLOv5 is shown in Figure 6.
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3.1.1. Input

Data augmentation methods such as the Mosiac method and Cutmix are adopted to
enhance the robustness of the model through randomly scaling, cropping, arranging, and
splicing four or nine pictures [36,37]. As one of the most fundamental applications in the
field of image analysis, the edge detection method is adopted to pre-process the images,
utilizing the semantic and detail features to extract contiguous edge segments for high-level
tasks [17]. Recently, many algorithms have been proposed in the field of edge detection.

3.1.2. Backbone

The raw backbone of YOLOv5 is CSPDarknet53, which contains a cross-stage partial
(CSP) network that is designed for feature extraction. Meanwhile, the spatial pyramid pool-
ing (SPP) structure was introduced to increase the perceptual field and separate contextual
features [17].



Electronics 2023, 12, 4039 8 of 17

3.1.3. Neck

In the neck part, the feature pyramid network (FPN) module and path aggregation
network (PAN) module are introduced [38]. Through the FPN layer, high-level semantic
features can be conveyed from top to bottom utilizing up-sampling [2,16]. On the contrary,
the feature map is down-sampling again for localization feature fusion of diffident layers
through PANet. Therefore, the two networks jointly enhance the capability of feature
fusion, which will ultimately improve the performance of the overall model. The structure
of the FPN and PAN modules is shown in Figure 7.
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3.1.4. Prediction

As shown in the network structure of YOLOv5, the prediction part consists of three
prediction layers with different scales 80× 80, 40× 40, 20× 20, respectively, which are
suitable for detecting different sizes of targets. Non-maximum suppression (NMS) is
adopted to filter the preselector in the process of prediction.

3.2. Improved Method
3.2.1. Small Target Detection

As the UAV aerial images have few pixel features, the detection and recognition model
is required to have a strong ability to detect small targets. At first, a higher resolution
reconstruction method is introduced in this model to increase the detailed information
for target detection and recognition. Through convolution operation, the image feature
information is extracted and nonlinearly mapped into high-dimensional vectors. Then,
the devolution operation is conducted for up-sampling to reconstruct a higher-resolution
image. In addition, before the convolution operation, zero filling is performed to guarantee
the input and output images are the same size.

Moreover, another prediction head (PH) is added to the model to improve the perfor-
mance of small target detection. A low-level and high-resolution feature map is generated
by a low-level fusion layer, through which the feature map is further up-sampled and con-
catenated with the feature map belonging to the low-level backbone networks. Although
the memory and computation costs will increase, the target detection performance for small
targets will improve.

In this paper, an adaptive and robust edge detection detector was adopted to extract
the edge contours of the SAR images. The suspicious targets in the SAR image are extracted
by edge detection using the Canny operator. The target centers extracted by edge detection
are used as the initial cluster centers, and all targets extracted are clustered with the k-
means method. The clustering results are recognized as aircraft candidates, which are
discriminated by a YOLOv5 network afterward to obtain the final detection results. The
input image and the edge detection result are shown in Figure 8. The experimental results
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have demonstrated that this method can generate a semantically meaningful contour
without significant discontinuities. However, some scattered noisy details were noticed in
the edge detection result.
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Figure 8. Original image and the edge detection result: (a) Original image; (b) Edge detection result.

3.2.2. Convolutional Block Attention Module

As is well known, the attention mechanisms of the human eyeball and brain are vitally
important in human perception. Up until now, several researchers have made attempts to
introduce the attention module into the large-scale target detection model to improve the
performance of the deep learning model in target detection and recognition tasks. In this
paper, a Convolutional Block Attention Module (CBAM) that contains both channel and
spatial attention modules is introduced into the original YOLOv5 architecture.

On the one hand, channel attention focuses on what to pay attention to. When the
spatial information is aggregated through average pooling and maximum pooling, two
different spatial descriptors can be obtained. Through the shared multilayer perceptron,
the output feature vectors can be merged, and the channel attention map Mc can be
produced by:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(AvgPool(F))) (14)

where σ( ) denotes the sigmoid function, MLP presents the multilayer perceptron weights,
and F is the input feature.

On the other hand, different from the channel attention mentioned above, spatial
attention focuses on where to pay attention. At first, average pooling and maximum
pooling operations are applied along the channel axis to aggregate channel information
features, and then a 2D spatial attention map Ms can be obtained by concatenating them.

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

(15)

where σ( ) denotes the sigmoid function and f 7×7 present a 7× 7 convolution operation.
By combining the channel and spatial attention modules, the composite module can

focus on what and where to pay attention, respectively. According to the previous literature,
the results of sequential arrangement are substantially better than parallel arrangement. As
for the sequential process, experiment results with different attention arrangement orders
show that channel-first attention performs at a higher level than spatial-first attention [39].
The diagrams of the channel and spatial attention modules are shown in Figure 9.
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4. Pretreatment of the SAR Image

In this section, the SAR image dataset includes two kinds of military targets. All
experiments are conducted on a WorkStation with an Intel (R) Xeon (R) Silver 4110 CPU
@2.1 GHz (32 CPUs). The GPU version is NVIDIA Quadro P5000 3503 MB, the simulation
platform is Pytorch 1.8.2 with CUDA 10.2 on Python 3.8.8, and the operating system is
Windows 7.

4.1. Dataset Construction

According to the facet-based SAR imaging model mentioned above, SAR images
are simulated and obtained under different conditions. It contains different numbers
of targets, such as single targets and multiple targets with different target orientations
30◦, 45◦, 60◦, 75◦, and 90◦, and different positional relationships, such as parallel distri-
bution and tandem distribution between multiple targets. As a result, the SAR images
have diverse target types and relative position relationships in the dataset, which meets the
requirements for detection and recognition. Moreover, the original dataset was adapted
to increase the robustness of the model through brightness and contrast adjustment, bit
depth conversion [36], and horizontal and vertical mirroring. Table 1 shows the detailed
distribution of the raw dataset.

Table 1. SAR image information for the dataset.

Polarization
Target Type

Fighter Missile

HH 550 450
HV 550 450
VH 550 450
VV 550 450
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As shown in Figure 10, the targets have traits such as wide distribution, and dispersive
position. The length and width distribution of the labels is shown in Figure 10b. It can be
seen that the small and medium-sized targets account for a large proportion, which can
strengthen the robustness of the proposed method [40].
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4.2. Labelling the SAR Images

Before the training process, the SAR image data needs to be preprocessed, manually
labeled, and framed utilizing the image annotation tool labelImg [17] as shown in Figure 11.
The dots indicate the coordinate points of the box in which the target is located, with
the missile target in the red box and the fighter in the green box. Then make a dataset
concerning the COCO dataset format, generating the TXT file [2]. Moreover, the images
without targets were deleted. As a result, an experiment dataset with about 1000 targets
was established. In addition, the dataset is divided into a training set and a test set in the
ratio of 8:2.
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5. Results and Discussion
5.1. Model Training

Initial training was conducted utilizing pre-trained weights for YOLOv5s on the
COCO dataset. The batch size is set to 300, and the learning rate is 0.001. Meanwhile,
stochastic gradient descent is adopted as the optimizer.

5.2. Test and Evaluate

To comprehensively evaluate the performance of the model, precision rate, recall rate,
and average precision (AP) are adopted as evaluation indexes. Therefore, the mAP value
of different targets can be calculated. The calculation formulas can be expressed as [41]:

Precision =
TP

(TP + FP)
(16)

Recall =
TP

(TP + FN)
(17)

mAP =
∫ 1

0
P(R)d(R) (18)

where, TP, FP, and FN denote true positives, false positives, and false negatives, respectively.
To validate the detection and recognition performance of the proposed method, two

published methods are chosen for comparison. Table 2 shows the performance comparisons
between the proposed method and other detectors such as dense nested attention networks
(DNANet) and attentional local contrast networks. It can be seen from the comparison
results that the mAP value of the proposed method is 85.8%, 7.5% higher than that of
the original YOLOv5 model, which proves the proposed method can realize a significant
improvement in detection performance. In particular, it is more effective to detect small
targets. To validate the simulated data generated by the SAR imaging model, we carried out
the validation experiment on SAR-AIRcraft-1.0, a high-resolution SAR aircraft detection and
recognition dataset published by the Aerospace Information Research Institute, Chinese
Academy of Sciences. Based on a small amount of SAR image data, good recognition results
can be obtained.

Figure 12 shows the result of the proposed method in the test set. It can be seen from
Figure 12a that the loss value declines rapidly and shows rapid convergence of the iteration
procedure. It also indicates that the mAP@0.5 is up to 98.4% and the precision reaches
98.36% after 100 iteration steps. It demonstrates that the module is more effective at target
detection. Moreover, the mAP@0.5:0.05:0.95 reaches 0.78 through 150 epochs.
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Figure 13 shows the comparison results of the original YOLOv5 model and the pro-
posed model, which introduced another prediction head (YOLOv5 + PH), another predic-
tion head, and a convolution block attention module (YOLOv5 + PH + CBAM), respectively.
It can be seen that the precision and average precision of the proposed algorithm are higher
than those of the original YOLOv5 method.

Table 2. Comparison of dataset test results.

Detector mAP Precision

YOLOv4 56.8 77.6
ALCN 76.7 82.1

YOLOv5 78.3 89.2
DNANet 83.6 95.4
Proposed 85.8 98.4
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However, due to the introduction of another prediction head and a convolutional
block attention module, the improved model has great instability in the preliminary stage
of deep learning training. Moreover, the overall network converges more slowly, so it
takes more training epochs to reach stability. Through comprehensively analyzing the
advantages and disadvantages of the proposed model, it can be concluded that the method
proposed in this paper has significant improvements compared with the original model.

Figure 14 shows some of the results with different types and numbers of targets to
demonstrate the detection performance. It can be seen that the proposed method shows
good detection performance for images with multiple targets, especially for the detection
of small targets, which demonstrates the better accuracy and robustness of the improved
model in this paper. Meanwhile, the false detection rate has dropped significantly, which
also verifies the improvement of the mAP indicators in Figure 13. In addition to using
the self-established dataset, the improved model can be adapted to detect targets on the
publicly available SAR image dataset.
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6. Conclusions

Effective target detection and recognition based on high-resolution SAR images is
very important in civilian and military fields. However, there are few publicly released
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SAR image datasets of typical non-cooperative targets. In this paper, a fast facet-based
SAR imaging model was proposed to simulate the SAR images of typical non-cooperative
targets under different conditions. As a result, a dataset can be constructed. Moreover, a
target detection model based on an improved YOLOv5 model is introduced.

Combining the iterative physical optics which was accelerated by fast far-field ap-
proximation and the Kirchhoff approximation algorithm, the composite EM scattering of
ultra-low altitude targets above rough surfaces was analyzed. Furthermore, based on the
backscattering coefficient of the facet on the target surface, the radar echo can be obtained.
Then, a fast facet-based SAR image simulation method was proposed. Based on the SAR
images obtained by simulations under different conditions, a dataset was constructed.
Furthermore, we introduced another detection head, an adaptive and robust edge detection
detector, and the convolutional block attention module to improve the YOLOv5 model.
Then, target detection and recognition are realized utilizing the improved YOLOv5 network.
Compared with other YOLO series detectors, the simulation results show a significant im-
provement in the accuracy of detection and recognition. Although the method has achieved
good performance in target detection, there are several shortcomings in the present study,
especially that the overall network converges more slowly during the training process, so it
takes more training epochs to reach stability.

In future research, the automatic target recognition system presented in this paper can
provide a reference for the detection and recognition of non-cooperative aircraft targets
and has great practical application in situational awareness of battlefield conditions. For
example, the SAR imaging system and the automatic target recognition system can be
equipped in unmanned reconnaissance aircraft, which can realize real-time detection
and recognition of non-cooperative targets and provide data support for the ground-to-
air missile weapon system in combating incoming targets. In addition, with the rapid
development of unmanned aerial vehicle technology, real-time SAR imaging and target
detection of typical unmanned aerial vehicles are of great importance for air defense.
Moreover, detecting various typical targets in complex environments such as coastal cities,
islands, and valley areas will be an important research direction.
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