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Abstract: Medical landmark localization is crucial for treatment planning. Although FCN-based
heatmap regression methods have made significant progress, there is a lack of FCN-based research
focused on features that can learn spatial configuration between medical landmarks, notwithstand-
ing the well-structured patterns of these landmarks. In this paper, we propose a novel spatial-
configuration-feature-based network that effectively learns the anatomical correlation between the
landmarks. Specifically, we focus on a regularization method and a spatial configuration loss that
capture the spatial relationship between the landmarks. Each heatmap, generated using U-Net, is
transformed into an embedded spatial feature vector using the soft-argmax method and spatial
feature maps, here, Cartesian and Polar coordinates. A correlation map between landmarks based
on the spatial feature vector is generated and used to calculate the loss, along with the heatmap
output. This approach adopts an end-to-end learning approach, requiring only a single feedforward
execution during the test phase to localize all landmarks. The proposed regularization method is
computationally efficient, differentiable, and highly parallelizable. The experimental results show
that our method can learn global contextual features between landmarks and achieve state-of-the-art
performance. Our method is expected to significantly improve localization accuracy when applied to
healthcare systems that require accurate medical landmark localization.

Keywords: medical landmark localization; spatial configuration feature; soft-argmax

1. Introduction

Medical landmark localization involves precisely determining anatomical points or
distinctive regions within medical imagery, encompassing modalities such as X-rays, MRIs,
or CT scans. This process is of paramount importance due to its pivotal role in guiding
medical interventions and strategic treatment planning [1–4]. The accurate localization
of landmarks holds indispensable significance for various medical procedures, including
surgery, radiation therapy, and image-guided interventions.

However, the manual marking of medical landmarks by a doctor constitutes a labo-
rious task that demands a significant amount of time and is susceptible to errors. This
process not only contributes to the overall duration and cost of medical procedures, but
also introduces the possibility of inconsistencies and variability among different practition-
ers. Moreover, the accuracy of manual landmarking heavily relies on the expertise and
experience of the healthcare professional, potentially leading to discrepancies, particularly
in complex or intricate cases.

To address these difficulties, machine learning-based approaches are predominantly
used for automatic medical landmark localization in medical images. In the early days, a
traditional strategy for medical landmark localization employed handcrafted local feature
responses using prior graphical models, which extract the global spatial configuration
of landmarks [5–7]. In these methods, the utilization of prior anatomical spatial features
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is popular for comprehending the global context of medical landmarks, and significant
progress has been made. However, manually extracting local features is challenging due to
the existence of locally similar patterns among medical landmarks. Such ambiguities make
it difficult to achieve high performance.

To address this ambiguity problem, the classical machine learning-based approach-
es [5,8–14] have been used for medical landmark detection and shown to be effective for
medical landmark detection. These classical machine learning-based approaches involve
regressing the location of landmarks through a regression voting scheme and then using a
graphical shape model to optimize the detection results obtained from region proposals.
In recent years, deep learning-based approaches [15–21] have outperformed the classical
machine learning approaches [5,8–14,22] in terms of landmark detection. The existing deep
learning-based approaches [16,17,23–25] have commonly utilized convolutional neural
network (CNN)-based frameworks for detecting regional proposals with regard to anatom-
ical landmarks. These regional proposals, including landmark features, were classified
into landmark categories. The coordinates-regression-based approaches [26–29] directly
estimate the spatial indices of landmarks by employing multiple CNN models.

Additionally, significant advancements have been made through the utilization of
heatmap-regression-based approaches [17–19,30–32] using a fully convolutional network
(FCN) [33]. In these approaches, the heatmap, consisting of Gaussian distribution for each
landmark, was generated using FCN without a dense layer. In the heatmap, the high re-
sponse of the network’s output was concentrated around the center of the target landmarks,
while the response of non-landmark regions was suppressed [15]. Therefore, the coordi-
nates of each landmark can be obtained using the non-maximum suppression method. The
heatmap-regression-based approaches have demonstrated superior performance compared
with coordinate regression, and our methodology is also based on heatmap regression using
FCN networks. Even through the heatmap regression approaches have demonstrated no-
table progress, there is a lack of research on employing the anatomical context information
during training.

In medical landmark localization, anatomical information plays a crucial role, because
unlike natural images, medical landmarks exhibit a geometrically well-structured pattern.
Therefore, the most existing approaches have attempted to incorporate prior knowledge
of the anatomical context to improve performance. Hence, most previous approaches
have attempted to construct deep networks that comprehend the anatomical contextual
information. Payer et al. [18] introduced a pair of cascading neural networks. The initial
network is tasked with identifying landmark candidate neighborhood proposals, and
the subsequent network pinpoints the exact location of these landmarks. This study
exhibited outstanding performance in terms of applying a joint learning method that
employs anatomical information. However, the use of multi-stream networks leads to
computational complexity and difficulty in controlling hyper-parameters. Oh et al. [15]
proposed an anatomical context network that considers the spatial relationship between
the landmarks during training. The method learns a much deeper semantic representation
of anatomical context, resulting in improved performance. However, there has been a lack
of extensive experiments regarding the use of various spatial features.

In this paper, our primary objectives are to develop a spatial-configuration-feature-
based network that can learn the anatomical correlation between landmarks. To this end,
we focus on the cost function, and introduce a regularization method that captures the
spatial relationship between the landmarks. In the proposed regularization term, we
also introduce a soft-argmax-based transformation methodology for effectively converting
landmark heatmaps into spatial features. The proposed cost function and regularization
method can train the network to understand the anatomical correlation between landmarks,
which can lead to higher performance in landmark localization.

During the experiment, we evaluated the proposed method using the hand radiograph
benchmark [18], which comprises 895 X-ray images containing 37 landmarks. Figure 1
shows the hand X-ray images with ground truth landmarks. The results demonstrate
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that our proposed method achieves state-of-the-art performance. In addition, we pro-
vide extensive experiments using various spatial features, including Cartesian and Polar
coordinates.
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This paper is structured as follows: Section 2 provides an overview of related works.
Section 3 outlines the proposed methods, providing a detailed explanation. Section 4
presents our experimental results, highlighting the findings. Finally, Section 5 offers a
comprehensive discussion and our conclusion.

2. Related Works

In this section, we present an overview of the existing methods for medical landmark
detection. In particular, we concentrate on methodologies that utilize X-ray images, such as
cephalometric and hand atlas scans.

For classical approaches to medical landmark detection, random forest-based meth-
ods [13,14,22] have been proposed for detecting medical landmarks. In these methods, a
regression-voting technique was employed to capture contextual features surrounding the
target landmark, resulting in remarkable performance. Also, the study [13] employed an
iterative framework that refines both appearance information and geometric landmark
configuration. The cascade framework was employed in an existing approach [10]. In
this method, the region proposals are generated, followed by the incorporation of local
features to detect the final landmark locations through the utilization of manually designed
rules. Mirzaalian el al. [11] initially extract local features from landmarks and then opti-
mize the geometric attributes between the medical landmarks through the utilization of a
spatial graphical model. Although the classical approaches for medical landmark detec-
tion have demonstrated commendable performance, they heavily depend on manually
engineered features, which consequently yield suboptimal outcomes. In recent years, deep
learning-based approaches have solved these drawbacks.

Deep learning approaches can be roughly classified into two mechanisms, namely,
spatial coordinate regression [27] and heatmap regression [17–19,30–32]. For the spatial
coordinate regression approach, the method directly regresses Cartesian coordinates (x,
y) using a CNN-based architecture, whereas the heatmap regression approach generates
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a heatmap where the highest response corresponds to the location of a landmark. After
acquiring heatmaps, the landmark coordinates can be determined using the non-maximum
suppression method. Qian et al. [27] introduced a Faster R-CNN-based approach that
directly predicts the spatial coordinates of landmarks. In their method, an undirected graph
technique was employed to refine the spatial relationships between landmarks subsequent
to the detection of landmark candidate locations. Additionally, during the training phase,
multi-scale images were incorporated for enhanced performance. Despite the favorable
results reported for this approach, dense layers containing numerous network parameters
are employed. This situation could potentially give rise to an overfitting issue.

Unlike spatial coordinate regression, several heatmap-regression-based methods have
been studied using FPN-based architectures that exclude dense layers. Park [17] proposed
an automated landmark detection FCN model with internally residual connections for
cephalometric landmarks. This model was trained to output an archery-target-shaped
heatmap when an image patch near the landmark was input. Chen et al. [19] proposed
the Spatial Configuration-Net (SCN), a method for decomposing the localization task for
anatomical landmark localization into two simple subproblems. In SCN, one component
is dedicated to predicting locally accurate, but ambiguous candidates, while the other
component incorporates the spatial configuration of the landmark to improve robustness
to ambiguity. The heatmap predictions of the two components were multiplied and the
network was trained end-to-end to benefit from small datasets. Ao et al. [30] proposed a
feature aggregation and refinement network (FARNet). A backbone network pretrained on
natural images is used to alleviate the problem of insufficient training data in the medical
domain. A multi-scale feature aggregation module and a feature refinement module
can cover different resolutions of medical images and achieve improved performance by
increasing the resolution of the predicted heatmap. For accurate heatmap regression, they
also proposed an exponentially weighted centroid loss to focus on the loss of pixels near
landmarks. Kim et al. [31] aimed to develop a fully automated cephalometric analysis
method using deep learning and a web-based application that can be used without the
need for high-end hardware. They trained a two-step automated algorithm with a stacked
hourglass deep learning model and specialized in landmark detection in images.

Although FCN-based heatmap regression methods have made significant progress,
there is a lack of FCN-based research focused on features that can learn the spatial configu-
ration between medical landmarks, notwithstanding the well-structured patterns of these
landmarks. Existing FCN-based heatmap regression methods have difficulty effectively
capturing the global context due to the limitations of the receptive field. These FCN-based
networks focus on local features and misinterpret them as heatmaps, even at coordinates
where these heatmaps cannot be structurally located within the medical X-ray image. In
this paper, we propose a novel spatial-configuration-feature-based network that effectively
learns the anatomical correlation between the landmarks. Specifically, we focus on a reg-
ularization method and a spatial configuration loss that capture the spatial relationship
between the landmarks.

3. Methods

Figure 2 provides an overview of the proposed method for medical landmark local-
ization. First, the hand X-ray image is fed into the U-Net architecture [34,35] to generate
landmark heatmaps. Second, each landmark heatmap is transformed into the embedded
spatial feature vector by using the soft-argmax method and the spatial feature maps. Third,
we generate the correlation map between landmarks based on the spatial feature vector. In
the training phase, the loss is minimized by evaluating both heatmaps and the correlation
map. Since the proposed approach adopts an end-to-end learning approach, only a single
feedforward execution is necessary during the test phase to localize all landmarks.
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Figure 2. Framework of the proposed method.

3.1. Heatmap Regression Using U-Net

The U-Net architecture, as illustrated in Figure 3, is comprises repeating modules that
consist of two 3 × 3 convolutions (with padding), each followed by instance normalization,
RELU activation, and 2× 2 max-pooling (for encoding layers) or up-sampling (for decoding
layers). In the encoding layers, the count of feature maps was gradually increased from 64
to 1024, while in the decoding layers, it decreased from 1024 to 64. A skip connection was
employed to concatenate identically scaled output maps between the encoder and decoder
layers. Within the U-Net outputs, each landmark is represented by an individual Laplace
heatmap channel, which is a normalized grayscale image ranging from 0 to 1. The highest
intensity within the heatmap indicates the coordinates of the respective landmark. Output
heatmaps are two-dimensional matrices with 37 channels, corresponding to the number of
landmarks.
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3.2. Spatial Feature Embedding

In this phase, we introduce a transformation method that converts each heatmap into
a spatial feature. To achieve this, rather than non-maximum suppression, we utilize the
soft-argmax method [36], which guarantees end-to-end differentiability of the networks, in
order to transform the heatmap into coordinate values. Given the c-landmark heatmaps
x ∈ Rh×w and d-spatial feature maps f ∈ Rh×w×d, we extract the spatial coordinates (x,
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y) that approximate the maximum value on the heatmap. By default, both the heatmap
and each spatial feature map are represented as a 2D map. The SoftMax function used is
defined as follows:

s =
exp(x× β)

∑i exp(x× β)
(1)

where s denotes the SoftMax function, and the resulting probability map signifies that the
maximum response corresponds to the highest probability. The temperature parameter
β is used to regulate the probability distribution. By adjusting β, the SoftMax function
can effectively suppress undesirable values that are lower than the maximum value. After
normalizing the heatmap using Equation (1), we reshape xh×w into a vector x′1×hw. Simi-
larly, the d-spatial feature maps fd×h×w are reshaped into f′hw×d. Then, embedded spatial
features can be obtained by calculating the inner product between the normalized heatmap
and spatial feature maps:

e1×d = x′1×hw·f′hw×d (2)

In this study, we employed the two spatial features of Cartesian and Polar coordinates.
Figure 4 illustrates the two spatial feature maps employed in our study. From left to right,
we can observe both Cartesian coordinates and Polar coordinates. The Cartesian system
includes two features that reflect the x- and y-axis maps, while the Polar system includes
maps for radius and angle. Before applying soft-argmax pooling, each feature map is
normalized using the 2D-instance normalization function provided by the Pytorch API
without learnable parameters. In the proposed approach, the feature map normalization
process is essential due to its excessively large scale, leading to suboptimal performance.
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3.3. Spatial Configuration Loss

We present a cost function known as the spatial configuration (SP) loss, which aims to
learn the spatial relationship between landmarks. As mentioned previously, the proposed
method is incorporated into the loss function as a regularization term. The proposed loss
function can be defined as:

loss(x, o) = ‖x− o‖2
2 + γ‖cx − co‖2

2 (3)

where x is the heatmaps on landmarks, and o is the corresponding ground truth heatmaps.
We utilized the L2 loss to measure the overall pixel-wise similarity between the network’s
output heatmaps x and the ground truth heatmaps o. The second term represents the
regularization term used to learn the relationship between landmarks, where c is the
correlation map, cx and co are calculated from the network output x and ground truth
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o, respectively, and γ denotes the weight value for the regularization term. Given the
n-embedded vectors en×d, the correlation map is calculated by:

c = en×d·eT
d×n (4)

where n represents the number of landmarks. Figure 5 illustrates the process of constructing
a correlation map. As mentioned previously, our work utilizes two spatial features reflecting
Cartesian and Polar coordinates. Since both spatial features are simultaneously used, each
embedded vector becomes an e1×4.
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4. Results
4.1. Dataset

Our model was evaluated using the publicly available hand radiograph dataset known
as the Digital Hand Atlas (DHA) [18]. The DHA dataset comprises 895 images with an
average size of 1563× 2169 pixels, and includes annotations for 37 landmarks, acquired
with different X-ray scanners. To evaluate the network, a three-fold cross-validation was
performed. Each fold consisted of approximately 600 training images and 300 test images.
Table 1 describes the property of the DHA dataset with the evaluation scenario using
three-fold cross-validation. Due to variations in the physical pixel resolutions of images, a
wrist-width-based normalization factor, as provided by [18], was employed for the purpose
of performance evaluation. The wrist-width-based normalization factor n(j) is calculated
as follows:

n(j) = 50/
∥∥∥o(j)

l_wrist − o(j)
r_wrist

∥∥∥
2

(5)

where j is the image for evaluation. We assume a wrist width of 50 mm, which is determined
by two landmarks annotated on the wrist as in [18]. The normalization factor n(j) is based on
the Euclidean distances of specifically selected landmarks. The normalized point-to-point
error is defined as follows:

PE(j)
i = n(j)

∥∥∥x(i)i − o(i)
i

∥∥∥
2

(6)

where i is a landmark in image j. This allows us to account for variations in physical pixel
resolution when calculating the mean and standard deviation of the point-to-point error.
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Table 1. Digital hand atlas dataset.

Dataset Digital Hand Atlas

Number of landmarks 37

Number of images 895

Three-fold cross-validation
Fold 1 Train 597/Test 298
Fold 2 Train 597/Test 298
Fold 3 Train 597/Test 298

Resolution 1563× 2169 (Average)

4.2. Implementation Details

In this section, we perform both quantitative and qualitative evaluations of the land-
mark localization performance. The experiments were conducted on a system comprising
an Intel Core i7-7800X (Intel, Santa Clara, CA, USA) with a 3.50 CPU, 32 GB of memory,
and a Geforce RTX 3090 GPU (Nvidia, Santa Clara, CA, USA). The network was trained
and tested using Pytorch 1.8.0 (https://pytorch.org/docs/1.8.0/ accessed on 4 October
2021), a popular deep learning framework. The input X-ray image and output heatmap
were downscaled to a size of 800× 640 pixels, allowing the computing time to be reduced
without significant performance loss.

The data augmentation procedure involves two main types of transformations: ge-
ometry and intensity transformations. First, the input images and ground truth heatmaps
are randomly rotated within the range [−15, 15] degrees, and rescaled within the range
[0.8, 1.2]. Second, intensity changes are applied by randomly adjusting the brightness,
contrast, saturation, and hue of the images. Image data augmentation is a very popular
process in the machine learning field when aiming to improve performance. Note that we
adopt on-line data augmentation.

For the U-Net, we minimized the cost function using an Adam optimizer with a mini-
batch size of 1, β1 = 0.9, β2 = 0.9, and initial learning rate of 1 × 10−3. We trained the
U-Net for 800 epochs, reducing the learning rate by 1/10 at the 500th and 700th epochs. For
the spatial configuration loss, we utilized four spatial features, which encompassed both
Cartesian and Polar coordinates. Also, we set the weight hyper-parameter γ to 1 × 10−3.

During the soft-argmax phase, the spatial maps were normalized, and we empirically
assigned a temperature parameter β of 10 to enhance sensitivity to the maximum value.

4.3. Performance Comparison

The performance of the proposed method was evaluated using two metrics: point-to-
point error (PE), and error detection rate (EDR). The PE is the Euclidean distance between
the predicted and ground truth landmark points. The EDR measures the rate of misde-
tection, where a misdetection is counted if the absolute difference between the detected
landmark and the reference landmark exceeds z mm. We considered three reference ranges:
2.0, 4.0, and 10.0 mm. Among these, the 2.0 mm range is the clinically accepted refer-
ence [15]. Since the ground truth consists of pixel coordinates, in the test phase, we utilized
a threshold value of T > 0.95 to generate binary blobs from the predicted heatmap. Sub-
sequently, we determined the centroid of the largest blob as the landmark localization
point.

We assessed our approach using the DHA benchmark dataset and compared its
performance with that of other state-of-the-art methods. For a quantitative comparison, we
chose competitive models based on their citations and the recency of their results. Figure 6
presents the visualization outcomes of the proposed method using the DHA dataset. We
can see that the landmarks predicted by our model align with the ground truth landmarks.
Table 2 demonstrates that the proposed method outperforms the existing methods, as it
achieved a 2 mm range EDR of 3.72% and PE of 0.61. The significance of the proposed
method is supported by a statistically significant p-value of <0.05 obtained through a t-test,
when compared with the existing methods.

https://pytorch.org/docs/1.8.0/
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Figure 6. Visualization results of the proposed model in the Digital Hand Atlas dataset. Green dots
are the ground-truth, while blue dots are the prediction results.

Table 2. Quantitative comparison with the existing methods on the DHA dataset (p-value < 0.05).

Method
PE (mm) EDR (%)

Mean SD >2 mm >4 mm >10 mm

Štern et al. [6] 0.80 ±0.91 7.80% 1.55% 0.05%
Urschler et al. [13] 0.80 ±0.93 7.81% 1.54% 0.05%

Payer et al. [18] 0.66 ±0.74 5.01% 0.73% 0.01%
Oh et al. [15] 0.63 ±0.71 3.93% 0.33% 0.01%

Kang et al. [37] 0.64 ±0.64 3.96% 0.34% 0.02%
The proposed method 0.61 ±0.61 3.72% 0.31% 0.01%

4.4. Ablation Study

In this section, we conducted an ablation study on the validation dataset to investigate
the effectiveness of each key component and hyperparameter in the proposed methodology.

Table 3 shows the performances based on the combination of spatial features in the
proposed SC loss function. The best performance was observed when both Cartesian and
Polar features were used in the proposed loss function. When employing the Polar feature,
the performance is slightly higher than when using the Cartesian feature. Furthermore, it is
evident that performance improvement has been consistently observed across various types
of spatial features when utilizing the SC loss function. These outcomes clearly demonstrate
that the proposed SC loss term enhances the network’s generalization capability during the
training process. Considering the standard deviation, the proposed methods have achieved
lower results, compared with the original U-Net (p-value < 0.05).
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Table 3. Performance comparison in relation to the combination of spatial features in the proposed
SC loss (p-value < 0.05).

Method
PE (mm) EDR (%)

Mean SD >2 mm >4 mm >10 mm

U-Net 0.66 ±0.85 4.24% 0.46% 0.03%
SC Loss (Cartesian) 0.63 ±0.63 3.81% 0.35% 0.01%

SC Loss (Polar) 0.62 ±0.61 3.79% 0.33% 0.01%
SC Loss (Cartesian + Polar) 0.61 ±0.61 3.72% 0.31% 0.01%

For the spatial feature embedding phase, Table 4 presents the various performances
in relation to the temperature parameter β. Parameter β can adjust sensitivity on the
maximum value of the heatmap. For example, a larger β increases the sensitivity to the
maximum intensity of the heatmap. In the results, we obtained the best performance with
β = 10, which is moderately sensitive to the values close to the maximum value. Also, a
poor performance was observed with β = 20. This indicates that focusing solely on the
largest value while ignoring the surrounding large values leads to disadvantages.

Table 4. Performance comparison in relation to the temperature parameter β.

Temperature Parameter β
PE (mm) EDR (%)

Mean SD >2 mm >4 mm >10 mm

1 0.63 ±0.60 3.74% 0.36% 0.01%
5 0.62 ±0.64 3.76% 0.32% 0.01%
10 0.61 ±0.61 3.72% 0.31% 0.01%
20 0.65 ±0.64 3.98% 0.36% 0.02%
30 0.64 ±0.66 3.88% 0.35% 0.01%

Table 5 shows the results in relation to the weight parameter γ in the proposed SP
loss. As mentioned previously, the proposed SP loss is the regularization term, enabling
the consideration of the spatial relationship between landmarks. In the results, a favorable
performance was observed for γ = 1 × 10−4. Since γ = 0 completely eliminates the effect of
the proposed regularization term, its result is an outcome identical to that of the original
U-Net model. We can see that the large weights γ = 1 × 100 and 1 × 10−1 lead to poor
performances. The larger weight γ appears to function as a strong regularization term and
disrupts the learning process of the pixel-wise heatmap regression task. Therefore, in our
study, the parameter γ forces the network to reconstruct the spatial locations of landmarks
based on prior anatomical information.

Table 5. Performance comparison in relation to the weight parameter γ.

Weight
Parameter γ

PE (mm) EDR (%)

Mean SD >2 mm >4 mm >10 mm

0 0.66 ±0.85 4.24% 0.46% 0.03%
1 × 100 0.74 ±0.88 8.59% 4.85% 0.99%

1 × 10−1 0.70 ±0.77 6.88% 3.44% 0.15%
1 × 10−2 0.66 ±0.71 4.15% 0.48% 0.02%
1 × 10−3 0.63 ±0.66 3.75% 0.44% 0.01%
1 × 10−4 0.61 ±0.61 3.72% 0.31% 0.01%
1 × 10−5 0.61 ±0.62 3.73% 0.32% 0.01%
1 × 10−10 0.67 ±0.88 4.31% 0.47% 0.03%

5. Discussion and Conclusions

In this study, we have introduced a novel approach designed for the precise detection
of medical landmarks within the hand atlas dataset. Specifically, we focus on a regulariza-
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tion method and a spatial configuration loss that capture the spatial relationship between
the landmarks. In the proposed regularization term, we introduced a soft-argmax-based
transformation methodology for effectively converting landmark heatmaps into spatial
features. Each heatmap generated by U-Net is transformed into an embedded spatial
feature vector using the soft-argmax method and spatial feature maps, here, Cartesian and
Polar coordinates. A correlation map between the landmarks based on the spatial feature
vector is generated and used to calculate the loss, along with the heatmap output. This
approach adopts an end-to-end learning approach, requiring only a single feedforward
execution during the test phase to localize all landmarks. The proposed spatial feature
embedding method for extracting spatial features from the heatmaps is computationally
efficient, differentiable, and highly parallelizable. Also, this approach is advantageous in
that other spatial features can easily be introduced.

In the experimental results, quantitative comparisons show that the proposed method
clearly outperforms the existing methods. This demonstrates that our method can learn
the global contextual features between landmarks, leading to performance increases. Qian
et al. [27] employed the Faster R-CNN-based method and the graph technique for detecting
superfluous or undetected landmarks using a repair strategy with Laplacian transforma-
tion. However, this method makes it difficult to directly train the network on the spatial
configuration between the landmarks. Our method allows the network to learn spatial
configurations between the landmarks using correlation maps and the proposed loss. Chen
et al. [19] employed a pretrained backbone model to extract multi-scale features and intro-
duced an attentive feature pyramid fusion module. However, due to the linear relationship
between the size of the attention enhancement feature map and the number of landmarks,
this model increases the number of parameters, memory storage, and computational cost.
In contrast, since the proposed method is focused on the cost function, it does not require
any additional parameters. Payer et al. [18] introduced a pair of cascading neural networks
for landmark localization. Nevertheless, the utilization of multi-stream networks results in
computational complexity and challenges in controlling hyper-parameters. As previously
mentioned, our approach is specifically designed to be end-to-end. This implies that only
a single feedforward run is required during the testing phase to localize all landmarks,
thereby rendering it computationally efficient and highly parallelizable.

In the context of medical imaging and diagnostics, the precise identification of anatom-
ical landmarks is of paramount importance. These landmarks serve as critical reference
points for healthcare professionals, aiding in the accurate diagnosis, treatment, and moni-
toring of patients. Our method is expected to significantly improve localization accuracy
when applied to healthcare systems that require accurate medical landmark localization.
Additionally, since our method achieved an improved performance without increasing the
number of parameters, it can be easily applied to existing environments that use U-net for
landmark localization.

In future work, we plan to conduct experiments aimed at expanding the application of
the proposed method to a broader range of medical landmark detection tasks, encompass-
ing various anatomical structures and datasets. This wider application will enable us to
assess the versatility and robustness of our approach across diverse medical contexts. We
will also explore the integration of different backbone networks to evaluate their compati-
bility with our method. Such comparative analysis will help us identify the best backbone
architecture for specific medical landmark detection applications, and potentially improve
the overall effectiveness of our approach.

Another critical facet of our future research involves the development of an adaptive
model that can autonomously learn the temperature parameter β. This innovative feature
aims to dynamically optimize the temperature parameter, tailoring it to the specific charac-
teristics of each dataset or task. By doing so, we anticipate a further enhancement in the
overall performance and adaptability of our proposed model.
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