
Citation: Hu, Q.; Chen, W.; Wang, Z.;

Lu, S.; Nie, Y.; Li, X.; Kuang, X.

BSFuzz: Branch-State Guided Hybrid

Fuzzing. Electronics 2023, 12, 4033.

https://doi.org/10.3390/

electronics12194033

Academic Editor: Paulo Ferreira

Received: 2 September 2023

Revised: 21 September 2023

Accepted: 22 September 2023

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

BSFuzz: Branch-State Guided Hybrid Fuzzing
Qi Hu 1,†, Weijia Chen 1,†, Zhi Wang 1 , Shuaibing Lu 2,*, Yuanping Nie 2, Xiang Li 2 and Xiaohui Kuang 2

1 College of Cyber Science, Nankai University, Tianjin 300350, China; huqi@mail.nankai.edu.cn (Q.H.);
weijiachen@mail.nankai.edu.cn (W.C.); zwang@nankai.edu.cn (Z.W.)

2 National Key Laboratory of Science and Technology on Information System Security, Beijing 100085, China;
yuanpingnie@nudt.edu.cn (Y.N.); ideal_work@163.com (X.L.); xiaohui-kuang@163.com (X.K.)

* Correspondence: lushuaibing@alumni.sjtu.edu.cn
† These authors contributed equally to this work.

Abstract: Hybrid fuzzing is an automated software testing approach that synchronizes test cases
between the fuzzer and the concolic executor to improve performance. The concolic executor solves
path constraints to direct the fuzzer to explore the uncovered path. Despite many performance
optimizations for hybrid fuzzing, we observe that the concolic executor often repeatedly performs
constraint solving on branches with unsolvable constraints and branches covered by multiple test
cases. This can cause significant computational redundancies. To be efficient, we propose BSFuzz,
which keeps tracking the coverage state and solving state in a lightweight branch state map. BSFuzz
synchronizes the current coverage state of all test cases from the fuzzer’s queue with the concolic
executor in a timely manner to reduce constraint solving for high-frequency branches. It also records
the branch-solving state during the concolic execution to reduce repeated solving of unsolvable
branches. Guided by the coverage state and historical solving state, BSFuzz can efficiently discover
and solve more branches. The experimental results with real-world programs demonstrate that
BSFuzz can effectively increase the speed of the concolic executor and improve branch coverage.

Keywords: hybrid fuzzing; concolic execution; branch-solving state; coverage state

1. Introduction

Fuzzing is a widely used software testing method that quickly finds vulnerabilities
in programs by randomly mutating seed inputs. However, due to its random nature,
fuzzing can struggle to satisfy complex and tight constraints and may spend much time
exploring repeated paths. To address this limitation, researchers have proposed hybrid
fuzzing [1–5], which combines the strengths of fuzzing and concolic execution [6]. Fuzzing
relies on random mutation to efficiently explore code, while concolic execution employs
constraint solving to navigate complex and tight branch conditions. In a typical hybrid
fuzzing framework, the concolic executor executes all test cases generated by the fuzzer,
traces their execution, solves constraints at each branch, and generates test cases to achieve
new code coverage. These new test cases are synchronized with the fuzzer, which starts a
new round of mutations. This process continues iteratively, allowing the hybrid fuzzer to
explore more code in a shorter amount of time.

Extremely expensive constraint solving is a challenge for hybrid fuzzing. Despite
optimization efforts, hybrid fuzzers still face performance issues caused by the considerable
computational overhead of symbolic emulation and constraint solving. The state-of-the-art
hybrid fuzzers selectively solve only interesting path constraints to improve performance.
Driller [1] invokes a concolic executor to help the fuzzer explore hard-to-pass branches
when it gets stuck; i.e., when fuzzing can no longer increase code coverage. QSYM [2]
implements instruction-level concolic execution via dynamic binary translation (DBT) and
emulates only the instructions necessary to generate symbolic constraints, significantly
reducing the number of symbolic emulations and improving the efficiency of concolic

Electronics 2023, 12, 4033. https://doi.org/10.3390/electronics12194033 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12194033
https://doi.org/10.3390/electronics12194033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3252-9254
https://doi.org/10.3390/electronics12194033
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12194033?type=check_update&version=2

Electronics 2023, 12, 4033 2 of 16

execution. DigFuzz [3] and MEUZZ [7] use the Monte Carlo method and machine learning,
respectively, to optimize the seed scheduling strategy of the concolic executor.

For test case generation, random mutation is much faster than constraint solving,
which causes a delay in coverage state synchronization between the fuzzer and the concolic
executor. For example, when the concolic executor executes a test case, the fuzzer may have
already generated multiple new test cases. The delay in the coverage state synchronization
may affect the judgment of when to invoke constraint solving. Additionally, we observe
that the concolic executor constantly and repeatedly attempts to solve some constraints
that cannot be solved. The concolic executor does not record the state of solving and
repeatedly performs constraint solving when it encounters the same branch again. This can
result in significant computational overhead and slow down the overall testing process.
Finally, we find that the concolic executor does not distinguish between high-frequency and
low-frequency branches when performing constraint solving. A high-frequency branch
is one that has been covered by multiple test cases. As a rule of thumb, there are more
uncovered branches near low-frequency branches. Therefore, it would be more efficient to
spend more time exploring low-frequency branches rather than treating high-frequency
and low-frequency branches equally.

In this study, we implemented a prototype system called BSFuzz, which integrates
the coverage state of the fuzzer with the historical solving states of the concolic executor
to improve constraint solving performance. We used a bitmap to record the number of
times each branch is covered by test cases, as well as the constraint-solving state. When the
concolic executor reaches a branch location, BSFuzz first determines whether the location
can be successfully solved based on the historical solving states and skips locations that
have been labeled unsolvable. Based on this strategy, we implemented BSFuzz-uns. In a
second strategy, the concolic executor checks the execution frequency of branches and skips
constraint solving for the high-frequency branches. We implemented BSFuzz-fre based
on this strategy. In this way, BSFuzz can focus on solving the solvable and low-frequency
branches to explore as much code as possible in a short time.

We tested BSFuzz and its two separate strategies, BSFuzz-uns and BSFuzz-fre, with six
popular benchmark programs. Our evaluation results show that BSFuzz and its optimized
strategies outperformed the current state-of-the-art hybrid fuzzer QSYM [2] in terms of
branch coverage with six real-world programs. Our strategy effectively reduces the amount
of redundant constraint solving and, on average, solves nearly 50% more branches. After
24 h of testing, the average bitmap coverage increased by 3.57% for BSFuzz, 2.32% for
BSFuzz-uns, and 1.35% for BSFuzz-fre. These results demonstrate the effectiveness of
BSFuzz and its optimized strategies in improving the efficiency of hybrid fuzzing.

This paper makes the following contributions:

• We analyzed mainstream hybrid fuzzers’ synchronization and scheduling mechanisms.
Our analysis revealed shortcomings of hybrid fuzzing in synchronizing test cases and
selecting interesting branches for exploration;

• We designed and implemented a fast synchronization mechanism to synchronize the
latest coverage state from the fuzzer to the concolic executor in real time and reduce
solving computation for high-frequency branches;

• We propose the strategy of filtering out unsolvable branches. This strategy can be
applied to all hybrid fuzzers to avoid meaningless branch solving;

• We evaluated our method’s performance with real-world programs. Our experimen-
tal results demonstrated that BSFuzz outperformed our benchmark tool QSYM [2]
in terms of branch coverage growth rate and efficiency.

2. Motivation

Hybrid fuzzing combines fuzzing and concolic execution based on test case synchro-
nization and scheduling mechanisms. Test case synchronization refers to how the concolic
executor synchronizes information from all test cases in the fuzzer, while scheduling refers
to which branches the concolic executor performs constraint solving on. Based on our anal-

Electronics 2023, 12, 4033 3 of 16

ysis, we found that current hybrid fuzzers suffer from drawbacks in both synchronization
and scheduling.

2.1. Slow Concolic Execution

A significant number of test cases are generated during the fuzzing process. Typically,
the concolic executor synchronizes all test cases generated by the fuzzer and performs
constraint collection and solving. For example, both Driller [1] and QSYM [2] traverse and
explore all inputs from the fuzzer. However, concolic execution must perform symbolic
emulation and constraint solving, both of which have computational overheads, making
concolic execution extremely slow. As a result, only a very small fraction of the test cases in
the fuzzer queue can be explored by the concolic executor.

We conducted tests with a set of real-world benchmark programs using QSYM [2].
Table 1 shows that, after 24 h of execution, QSYM [2] only processed an average of 13.55%
of the test cases in the fuzzer’s queue. This indicates that the concolic executor was not
able to keep up with the rate at which the fuzzer generated test cases. In all five programs
except pngfix, the number of test cases processed by QSYM [2] was less than 10% of the
total number of test cases generated by the fuzzer.

Table 1. Comparison between the numbers of test cases executed by QSYM [2] and generated by
AFL [8] in 24 h.

Program AFL [8] QSYM [2] Ratio

readelf 13,132 1177 8.96%
tcpdump 21751 1165 5.36%
pdfimages 15,521 880 5.67%
pdftops 16,875 865 5.13%
pdftotext 18,089 888 4.91%
pngfix 3194 1912 59.86%

There is a time gap between the concolic executor and the fuzzer. The concolic executor
cannot process test cases as fast as the fuzzer generates them. This means that when the
concolic executor generates a useful input for a particular path after a long period, this path
may have already been covered by the newly generated input from the fuzzer. In this case,
the input generated by the concolic executor is meaningless. Therefore, it is important for
the concolic executor to obtain the latest coverage states of all test cases. The latest state can
act as a good guide for the concolic executor, informing it when constraint solving should
be performed and when it is not necessary. The concolic executor can thus focus its efforts
on generating inputs for paths that have not yet been covered by the fuzzer’s inputs.

2.2. Unsolvable Constraints

Existing hybrid fuzzers do not record whether the constraints are solved successfully
when performing constraint solving. For example, when QSYM [2] encounters a branch
position, it first tries to solve the complete path constraints. If the entirety of the constraints
are unsolvable, QSYM [2] attempts to solve the last constraint of the path. Driller [1]
only checks if the current branch can jump to an area of code not covered by fuzzing,
without considering whether the fuzzer has attempt to solve the current branch multiple
times but failed. The concolic executor continually solves the constraints of some branch
positions that are not actually solvable, wasting time and resources.

We divide the constraint-solving states of one branch into three types: solvable, partially
solvable, and unsolvable. If the full path constraints for the branch can be satisfied, it is
solvable. If the full path constraints cannot be satisfied but the last constraint of the path
can be solved, it is partially solvable. If even the last constraint of the path cannot be solved
in the current context, it is unsolvable. The final constraint of a path is typically associated
with a single judgment condition, making it less complex and easier to solve than the

Electronics 2023, 12, 4033 4 of 16

constraints of the entire path. If the final constraint cannot be solved, then the constraints
of the complete path cannot be solved either.

We found that the constraint-solving process involves many repeated attempts to solve
unsolvable branches. We recorded the constraint solving information for pdftotext provided
by QSYM’s [2] concolic executor and present the results in Figure 1. The left figure shows
the solving times over 24 h, where “Total” is the total solving time and “Unsolvable” is the
solving time for the unsolvable branches. The right figure shows the number of branches
solved in 24 h, where “Total” is the total number of branches, “Solvable” is the number of
branches solved successfully, “Unsolvable” is the number of branches with unsolvable states,
and “Unsolvable + solvable” is the number of branches with both unsolvable and solvable
states demonstrated by repeated solving attempts in different contexts. The branches that
could be successfully solved amounted to 27% of the total branches, and only 7% of all
unsolvable branches were successfully solved after multiple iterations in different contexts.
These branches amounted to 3% of the total branches. The solver consumed 44% of the
total solving time on the unsolvable branches; i.e., the solver spent almost half of the time
repeatedly attempted to solve the unsolvable branches but did not generate test cases
that increased coverage. Therefore, we would like to reduce the solving time used for
unsolvable branches and use the time spent on unsolvable branches for branches that may
have solutions.

� 	 � �� �� �� �	
�������

�

����

������

�
����

������

�
����

������

��
�
��
��
���

��

����� ����� ����

� 	 � �� �� �� �	
�������

�

���

	��

���

���

�����

�
��
��
��
��

��
�

�����
��� ����

����� ����
����� �������� ����

Figure 1. Example of branch solving for pdftotext.

2.3. High-Frequency Branches

The effectiveness of symbolic execution originates from its ability to systematically
enumerate the paths in a program, exposing vulnerabilities that may be hidden within
it. The concolic executor typically solves constraints for the neighbor path of the seed
execution path without determining the branch coverage state. This means that the concolic
executor does not consider whether a particular branch has already been covered multiple
times by previous test cases.

Most of the test cases generated by the fuzzer have the same path as the original seed,
so most of them visit certain branches frequently. As a result, the concolic executor per-
forms too many redundant constraint-solving attempts on the same branches, introducing
significant unnecessary overhead and making it difficult to generate valuable test cases.

Figure 2 shows the coverage state of a branch in readelf that corresponds to the code
fragment in Listing 1. This code snippet checks the number of program headers and outputs
an error message if the number is illegal. During testing, the concolic executor read a test
case from the fuzzer’s queue that covered the left branch (indicated by the solid line in
Figure 2), and then it tried to generate an input that would cover the right branch. However,
by the time the concolic executor reached this branch position, the right branch had been
executed by 197 test cases and the left branch had been executed by only 89 test cases.
It can be seen that the right branch was executed about twice as often as the left branch,

Electronics 2023, 12, 4033 5 of 16

indicating that the format of most of the test cases generated by the fuzzer was illegal. We
can reduce the number of constraint-solving attempts for these high-frequency branches.

loc_40C7A0:

…

jnb loc_40CAA8

loc_40C7D4:

other codes
loc_40CAA8:

mov rbx, rdi

mov edx, 5

mov esi, offset aTooManyProgram

loc_40CAB5:

call error

retn

19789

Current execution path

Neighbor path

Figure 2. The branch coverage state of the branch in readelf in Listing 1.

Listing 1. An example of a conditional statement in readelf.

1 //@src/binutils/readelf.c:6031
2 if (filedata->file_header.e_phnum *
3 (is_32bit_elf ?
4 sizeof (Elf32_External_Phdr) :
5 sizeof (Elf64_External_Phdr))
6 >= filedata->file_size)
7 {
8 error(_("Too many program headers
9 -%#x-the file is not that big\n"),

10 filedata->file_header.e_phnum);
11 return false;
12 }
13 ... //other interesting code

3. Design

In this section, we describe the key components of BSFuzz. Figure 3 shows an
overview of BSFuzz’s architecture. Our improvements are based on QSYM [2] and
AFL [8]. The method of concolic execution with dynamic instrumentation uses the design
of QSYM [2].

Fuzzer

Concolic executor

Concolic execution

Fast synchronization

Symbolic

emulation

Constraint

solving

Input

Output

State map

Unsolvable

branches

Fast sync
Lightweight

instrumentation

Count of branch

executions

Figure 3. Overview of BSFuzz’s architecture.

First, we add a state map with a size of 65,536 and 16 bits per entry to record the
number of executions for each conditional jump. This map allows us to keep track of
branch executions. BSFuzz improves performance by quickly synchronizing the latest

Electronics 2023, 12, 4033 6 of 16

coverage state from the fuzzer to reduce constraint solving. Secondly, during concolic
execution, we mark the branch locations that cannot be solved by concolic execution
with a maximum value. BSFuzz then selectively executes constraints of interest. If the
current branch is marked as unsolvable, it is skipped. This significantly reduces redundant
constraint solving. BSFuzz also determines whether a branch is a high-frequency execution
branch based on the number of executions recorded in the state map. If it is a low-frequency
branch or appears in a new context, constraints solving is performed; otherwise, the branch
is skipped.

3.1. Fast Synchronization

The latest fuzzing coverage state can serve as a good guide for concolic execution.
By having access to this state, the concolic executor can focus its efforts on generating
inputs for branches that have not yet been covered by the fuzzer’s inputs. To record the
location of unsolvable branches and the specific execution counts for the branches, we
create a state map with an entry size of 16 bits.

We emulate the execution of the test cases using the Intel Pin tool. Pin instruments
the instructions of the program at runtime, allowing us to track the execution traces of the
program. During dynamic instrumentation, we only track the execution traces and do not
consider the register value changes before and after the instructions. The advantage of this
is that we can execute the test cases quickly and keep up with the speed of fuzzing. We
only instrument the conditional jump instructions in binary to obtain the address of the
instruction and the jump target address. Since the main concern of constraint solving is
the constraints on these conditional jump locations, instrumenting only conditional jump
instructions also minimizes the overhead.

3.2. Unsolvable Branch Filter

As described in Section 2.2, the concolic executor may perform repeated solving for
some unsolvable locations. This can result in a significant waste of resources and reduce the
overall efficiency of the concolic execution process. To address this issue, we developed
a method for labeling unsolvable branch locations. If both the complete path and the last
constraint in the path are unsolvable, we consider this location to be probabilistically related
to the execution environment and therefore label this branch location. Listing 2 shows an
unsolvable branch of the file program. The true branch condition of the if statement is
that the malloc function returns a null pointer, indicating that memory allocation has been
unsuccessful. This is usually not possible because the return value of malloc is NULL only
when there is insufficient memory.

Listing 2. BSFuzz’s branch coverage count.

1 h = hashPC(pc, taken)
2 state_map[(prev_jcc >> 1) ^ h]++
3 prev_jcc = h

We use two 16-bit large numbers to record the current state of each branch. If the
branch is considered unsolvable with high probability, it is labeled with 65,534 in the state
map. If the branch has already been covered by test cases, the last bit of the branch label is
set to 1, resulting in a value of 65,535. When the program is executed again at a labeled
branch location and tries to solve the current path constraint, it checks whether the branch
has been labeled. If the branch is already labeled as unsolvable, it is not considered a branch
of interest and will not be solved. This allows BSFuzz to avoid spending time and resources
on branches that are unlikely to yield useful results. We call this strategy BSFuzz-uns.

We chose 65,534 and 65,535 as labels because fast synchronization shares the same
bitmap with the unsolvable branch filter, but in fast synchronization, the number of test cases
executing the same branch usually does not reach 65,534 or 65,535. Even if the number
does reach or exceed 65,534, since neither the high-frequency branches nor the unsolvable

Electronics 2023, 12, 4033 7 of 16

branches are of interest for constraint solving, they will be filtered out anyway and will not
affect BSFuzz’s judgment.

3.3. Frequency-Based Branch Prioritization

The scheduling mechanism is a crucial component of the parallel model of the fuzzer
and the concolic executor. An effective scheduling mechanism can fully utilize the fuzzing
and concolic execution and reduce redundant exploration. Our goal is to make better use
of the coverage state from the fuzzer to guide the concolic execution process.

We generally let the concolic executor compute constraints on low-frequency branches
and reduce the computation of constraints on high-frequency branches. The same branch at
the same location will be treated as two different branches if the execution path is different
from the previous one. The number of test case executions on all branches is recorded in
the state map, and the count is increased once when a test case is executed. If the value of
branch bri in the state map is greater than the average avg, we consider it a high-frequency
branch. The average avg is defined as

avg =
∑bri∈S N(bri)

|S| (1)

where S is the set of branches that have been covered and N(bri) is the number of test cases
that cover branch bri.

BSFuzz uses lightweight instrumentation in its synchronization process. In some
situations, branches in different contexts may be treated as the same branch, leading to
frequency summation. Therefore, BSFuzz maintains a call stack for the current execution,
using hash values to distinguish between different contexts. If a branch is solvable and
high-frequency but in a different context, its path constraint will be solved; otherwise, it
will not. If a branch is low-frequency, its path constraint will be solved. This strategy is
called BSFuzz-fre.

Algorithm 1 shows the whole process of branch filtering. First, unsolvable branches
are excluded (line one). Then, branches are filtered according to their execution frequency
(line four) and contextual environment (line six) to reduce the constraint solving for high-
frequency branches.

Algorithm 1 Branch Filtering

Input: A branch br.
Output: Whether the branch is worth solving.

1: if isUnsolvableBranch(br) then
2: return false
3: end if
4: if isLowFrequencyBranch(br) then
5: return true
6: else if NewContext(br) then
7: return true
8: else
9: return false

10: end if

4. Implementation and Evaluation

We implemented a prototype system called BSFuzz based on AFL [8] and QSYM [2].
AFL [8] is the most popular fuzzer and we used it to fuzz the programs. QSYM [2] is one
of the best-performing hybrid fuzzers, and we used it for concolic execution, collecting
constraints in the path and solving them. To prove the effectiveness of our method, we
conducted extensive experiments with several target programs. Our experiment was
designed to answer the following questions:

Electronics 2023, 12, 4033 8 of 16

• RQ1: How effectively does fast synchronization keep up with the fuzzer’s speed
(Section 4.1)?

• RQ2: How effective is the filtering of unsolvable branches and high-frequency branches
in improving the efficiency of hybrid fuzzing (Sections 4.2 and 4.3)?

Baseline. We compared our approach to QSYM [2]. When running experiments with
QSYM [2], each program was assigned one CPU core for fuzzing and two CPU cores for
concolic execution. Each independent BSFuzz experiment also used three cores: one core for
fuzzing, one core for concolic execution (BSFuzz-ce), and one core for fast synchronization
(Fast sync). Since the experiments for the unsolvable branch filter strategy did not require
fast synchronization, we used only two cores for testing this strategy; i.e., one core for
fuzzing and one core for concolic execution.

Benchmarks. To verify the validity of BSFuzz, we chose the latest versions of real-
world programs for evaluation. These programs are frequently tested in fuzzing-related
papers and use tcpdump, xpdf, libpng, and binutils. The configuration information and
program versions are displayed in Table 2. Our initial seed files were from AFL [8] and
UNIFUZZ [9].

Experimental setup. All experiments were run on an Ubuntu 16.04 LTS system
equipped with four Intel(R) Xeon(R) Gold 5117 CPUs (each with 14 2.00 GHz cores) and
128 GB of RAM. We used up to three cores for each experiment.

Table 2. Configuration information and versions of the benchmark programs.

Program Version Input Format

readelf -a @@ binutils-2.40 elf
tcpdump -e -vv -nr @@ tcpdump-4.99 pcap
pdftotext @@ /dev/null xpdf-4.04 pdf
pdfimages @@ /dev/null xpdf-4.04 pdf
pdftops @@ /dev/null xpdf-4.04 pdf
pngfix @@ libpng-1.6.40 png

4.1. Fast Synchronization

To demonstrate the speed of fast synchronization, we conducted a 24 h experiment
with the programs in Table 2 using BSFuzz. During the experiment, we recorded the
number of test cases processed by the concolic executor and the fast synchronization
process, respectively. We compared the speed of both in terms of the number of test cases
processed in 24 h. Figure 4 shows the results of the 24 h experiment. The left side represents
the total number of test cases generated by the fuzzer (AFL), the middle side represents
the number of test cases processed by BSFuzz’s concolic executor (BSFuzz-ce), and the
right side represents the number of test cases processed by the fast synchronization process
(Fast sync). BSFuzz-ce and Fast sync processed test cases from the same fuzzer’s queue.
In addition, the processing speed of QSYM [2] for these programs is recorded in Table 1.

In the 24 h experiment, the fuzzer could generate thousands of test cases. On average,
it took a few seconds to discover a test case with increased coverage. For example, programs
using xpdf could generate nearly 20,000 test cases to increase coverage, while pngfix could
generate only about 3000 test cases. The speed of BSFuzz-ce in executing most programs
did not differ significantly. BSFuzz-ce could execute about 1000 test cases in 24 h; i.e., it
could process a test case synchronized from the fuzzer’s queue in an average of 80 s. It
mainly performs symbolic emulation and constraint solving.

Fast synchronization is much faster than BSFuzz-ce in processing test cases and it
was able to process all the test cases generated by the fuzzer in the 24 h experiment. Its
disadvantage is that it has to execute test cases one by one, so it lagged behind the fuzzer
at the beginning of the experiment. However, after fuzzing entered the deeper code area,
the rate of generating meaningful test cases also gradually slowed down, at which point
the progress of the fast synchronization was consistent with that of the fuzzer. As shown

Electronics 2023, 12, 4033 9 of 16

in Figure 5, the fast synchronization mechanism was able to gradually catch up with AFL
during the 24 h test. For pngfix, in particular, the fast synchronization mechanism was on
par with AFL from the very beginning. In summary, the fast synchronization mechanism
can synchronize the test cases in the fuzzer-generated queue in real time to obtain the latest
conditional jump coverage state during concolic execution.

������ ������� �������� ������� ��������� ������
�

�����

������

������

������
�
��

��
���

���
��
���

�
��

�	
 ��	� ��� 	�������

Figure 4. The numbers of test cases executed by the fuzzer (AFL), concolic executor, and fast
synchronization in 24 h.

0 3 6 9 12 15 18 21 24
Time(h)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Nu
m
be

r o
f t
es
t c

as
es

pdfimages
���
���������
��'(�'+#�

� �
 �� �	 �� �� ��
� "����

�

��	��

	����

��	��

������

���	��

�	����

���	��

�
)"

��
&�$

��(
�'

(��
�'

�'

%��($(�*(
���
���������
��'(�'+#�

� �
 �� �	 �� �� ��
� "����

�

�����

�����

����

�����

������

������

������

�
����

�
)"

��
&�$

��(
�'

(��
�'

�'

%�� "���'
���
���������
��'(�'+#�

� �
 �� �	 �� �� ��
� "����

�

	��

�����

��	��

�����

��	��

�
)"

��
&�$

��(
�'

(��
�'

�'

%#�� *
���
���������
��'(�'+#�

� �
 �� �	 �� �� ��
� "����

�

�����

�����

����

�����

������

������

������

�
)"

��
&�$

��(
�'

(��
�'

�'

&����!�
���
���������
��'(�'+#�

� �
 �� �	 �� �� ��
� "����

�

��	��

	����

��	��

������

���	��

�	����

���	��

������

�
)"

��
&�$

��(
�'

(��
�'

�'

(�%�)"%
���
���������
��'(�'+#�

Figure 5. The numbers of test cases processed by different components over time with real-world
programs.

4.2. Unsolvable Branch Filter

To demonstrate the performance improvement of the unsolvable branch filtering
strategy, we used benchmark programs to compare the branch solving of QSYM and
BSFuzz. Table 3 shows the branch-solving performance of each program over a 24 h
period. The branch-solving states were classified as solvable, partially solvable, and unsolvable.
“Processed branches” refers to all branches that the symbolic execution engine attempted to
solve, regardless of whether or not they were successfully solved. “Solvable branches” are
those branches for which the complete constraints could be solved successfully. “Unsolvable
branches” are those branches where even the last constraint could not be satisfied. “Solving
times” means the total number of times the symbolic execution engine performed branch
solving. “Unsolved times” refers to the number of times the symbolic execution engine

Electronics 2023, 12, 4033 10 of 16

failed to solve the last constraint. We primarily counted the total number of branches
processed by the concolic executor, the number of solvable branches, and the number of
unsolvable branches in 24 h. We also calculated the growth rate of BSFuzz relative to
QSYM. BSFuzz significantly increased the total number of branches processed, with an
average increase of nearly 50%. The number of branches successfully solved by BSFuzz
also increased significantly, with an average growth rate of 22.87%.

Table 3. Comparison of the numbers of branches solved and total solving times for QSYM [2] and
BSFuzz.

Program Fuzzer
Processed Branches Solvable Branches Unsolvable Branches Total Solving Times Unsolved Times

Number Growth Number Growth Number Growth Number Growth Multiples Number Ratio Multiples

pdftotext QSYM 945 - 252 - 480 - 26,568 - 28.11× 11,614 43.71% 24.20×
BSFuzz 1338 +41.59% 314 +24.60% 712 +48.33% 14,625 −44.95% 10.93× 712 4.87% 1×

pdftops QSYM 786 - 230 - 348 - 25,293 - 32.17× 10,096 39.92% 29.01×
BSFuzz 1283 +63.23% 316 +37.39% 683 +96.26% 13,849 −45.25% 10.79× 683 4.93% 1×

pdfimages QSYM 809 - 243 - 380 - 26,185 - 32.37× 10,541 40.15% 27.67×
BSFuzz 1119 +38.32% 247 +1.65% 584 +53.68% 11,041 −57.83% 9.87× 584 5.29% 1×

tcpdump QSYM 4254 - 846 - 1016 - 24,592 - 5.78× 5709 23.21% 5.62×
BSFuzz 6570 +54.44% 1165 +37.71% 1632 +60.63% 21,803 −11.34% 3.31× 1632 7.46% 1×

readelf QSYM 2302 - 1205 - 299 - 36,259 - 15.75× 840 23.22% 28.16×
BSFuzz 3115 +35.32% 1415 +17.43% 545 +82.27% 149,462 312.21% 47.98× 545 0.36% 1×

pngfix QSYM 1438 - 219 - 547 - 38,586 - 26.83× 11,376 29.48% 20.80×
BSFuzz 2027 +40.96% 223 +1.83% 595 +8.78% 28,590 −25.91% 14.10× 595 2.08% 1×

Average QSYM 1756 - 499 - 512 - 29,581 - 16.85× 9622 32.53% 18.80×
BSFuzz 2575 +46.68% 613 +22.87% 792 +54.76% 39,895 +34.87% 15.49× 792 1.98% 1×

In addition to comparing the number of branches processed, we also compared the
change in the number of solving attempts. For most programs, the total solving attempts
over 24 h decreased somewhat due to the fact that redundant solving of unsolvable branches
was no longer performed. However, for readelf, the solving attempts increased by a factor
of about three, suggesting that the unsolvable branch filtering allowed the concolic executor
to spend more time solving the solvable branches of readelf. As discussed in Section 4.3,
BSFuzz showed a more significant improvement with readelf. For all other programs, we
effectively reduced the number of repeated solving attempts for the same branch location.
For unsolvable locations, in particular, the ratio of unsolvable executions to the total
number of constraint-solving attempts was greatly reduced. The average ratio decreased
from 32.53% to 1.98%. The instances of unsolvable executions were equal to the number
of unsolvable branches. This meant there were no more redundant unsolvable attempts.
However, during QSYM’s test process, the number of instances of unsolvable attempts was
dozens of times higher than the number of unsolvable branches.

In summary, BSFuzz’s unsolvable branch filtering strategy can effectively reduce the
time wasted on unsolvable branches and use that time to solve solvable branches, effectively
improving the efficiency of the concolic executor.

4.3. Code Coverage Effectiveness

To evaluate the effectiveness of BSFuzz, we conducted a series of experiments to
compare its code coverage with that of QSYM [2] with the same benchmark program
(Table 2). We also conducted separate experiments with BSFuzz-fre and BSFuzz-uns to
demonstrate the contribution of each strategy to code coverage. For a fair comparison, we
evaluated coverage using AFL’s edge coverage (i.e., bitmap coverage). Each experiment
was conducted for 24 h with each benchmark program and repeated five times. Since
fuzzing is an uncertain process with unstable results, we repeated the experiments several
times and used the average of the results for comparison. This is a common practice with
fuzzers [9–11], with experimenters typically choosing 24 h as the runtime.

Figure 6 shows the average coverage of the programs achieved with different strategies
over 24 h of repeated experiments. As can be seen in Figure 6, BSFuzz and its separate
strategies BSFuzz-uns and BSFuzz-fre performed well in most cases and were able to cover

Electronics 2023, 12, 4033 11 of 16

more code faster than QSYM [2]. In particular, BSFuzz clearly outperformed QSYM [2]
with readelf. With pdftops and pngfix, BSFuzz-fre performed better than BSFuzz, mainly
because BSFuzz-uns did not have a significant advantage with these programs. We believe
this was because BSFuzz-uns filters out some critical branches that are important for
achieving high coverage.

� 	 � � �� �� �� �� �

��!����

��

��

��

��

��
'!

�$
��

#)
�%

��
��

�
�

$���!���&

����
���(++�("&
���(++��%�
���(++

� 	 � � �� �� �� �� �

��!����

�	

�

��

��

��
'!

�$
��

#)
�%

��
��

�
�

$��'#'�*'

����
���(++�("&
���(++��%�
���(++

� 	 � � �� �� �� �� �

��!����

��

�

��

��

��
'!

�$
��

#)
�%

��
��

�
�

$��'#$&

����
���(++�("&
���(++��%�
���(++

� 	 � � �� �� �� �� �

��!����

����

���

����

����

����

���

��
'!

�$
��

#)
�%

��
��

�
�

$"���*

����
���(++�("&
���(++��%�
���(++

� 	 � � �� �� �� �� �

��!����

��

�

��

��
��

'!
�$

��
#)

�%
��

��
�

�

%���� �

����
���(++�("&
���(++��%�
���(++

� 	 � � �� �� �� �� �

��!����

�

��

	�

	�

�

��
'!

�$
��

#)
�%

��
��

�
�

'�$�(!$

����
���(++�("&
���(++��%�
���(++

Figure 6. The bitmap coverage and time evaluation with real-world programs.

According to Table 4, BSFuzz demonstrated a higher coverage compared to QSYM [2].
Specifically, BSFuzz-uns, BSFuzz-fre, and BSFuzz had average growth rates of 2.32%, 1.35%,
and 3.57%, respectively. In summary, BSFuzz’s strategies enhance the speed of QSYM’s [2]
concolic executor. The effectiveness of these two strategies varies across different programs.
Some programs may benefit more from one strategy than the other. Firstly, based on the
data presented in Figure 6, we evaluated the efficacy of the BSFuzz-fre strategy. It was
observed that, for the programs originating from xpdf, the fast-synchronization mecha-
nism exhibited a slower processing speed and required approximately 10 h to process
the test cases generated by AFL and catch up with AFL’s progress. Therefore, BSFuzz-fre
demonstrated inferior performance with pdfimages and pdftops compared to other pro-
grams. Analyzing the data in Table 3, we can see that the number of solvable branches for
pngfix only increased slightly under the BSFuzz-uns strategy, which did not help pngfix
explore more new solvable branches. Therefore, the BSFuzz-uns strategy was not effective
with pngfix.

Table 4. Average bitmap coverage of BSFuzz and QSYM [2] in 24 h.

Program QSYM BSFuzz-Uns BSFuzz-Fre BSFuzz

pdftotext 25.42% 25.66% (+0.94%) 25.84% (+1.65%) 25.77% (+1.38%)
pdftops 29.18% 29.22% (+0.14%) 29.39% (+0.72%) 29.44% (+0.89%)
pdfimages 22.32% 22.61% (+1.30%) 22.33% (+0.04%) 22.53% (+0.94%)
tcpdump 39.81% 41.41% (+4.02%) 40.36% (+1.38%) 41.48% (+4.19%)
readelf 16.12% 17.49% (+8.50%) 16.65% (+3.29%) 18.52% (+14.89%)
pngfix 6.68% 6.38% (−4.49%) 6.84% (+2.40%) 6.77% (+1.35%)
Average 23.26% 23.80% (+2.32%) 23.57% (+1.35%) 24.09% (+3.57%)

Electronics 2023, 12, 4033 12 of 16

5. Related Work
5.1. Coverage-Based Fuzzing

Intuitively, the more code a fuzzer is able to cover, the more likely it is to find vul-
nerabilities in the program being tested. Therefore, coverage-based fuzzers aim to cover
more target code regions through various methods. For example, some fuzzers generate
well-formed test cases to produce high coverage inputs [12]. Others provide more accurate
coverage information to explore the program state more broadly [13–15]. These techniques
can help to improve the chances of finding vulnerabilities in the program being tested.

Coverage tracking is generally achieved through program instrumentation. American
Fuzzy Lop (AFL) [8] is representative of coverage-based fuzzers. It obtains edge coverage
information by instrumenting the source code or binary using the QEMU mode and
then mutates inputs to obtain new coverage. Other instrumentation techniques, such as
Pin [2,16], Intel PT [17,18], DynamoRIO [19,20], E9Patch [21], and RetroWrite [22], are
also widely used in practice. For example, BSFuzz uses Pin [2,16] to obtain coverage of
conditional jump branches.

Fuzzers can use coverage information to select more useful seeds for fuzzing. By pri-
oritizing seeds that are likely to increase coverage, fuzzers can improve their chances of
finding vulnerabilities. Some fuzzers, such as Zeror [23] and UnTracer [24], only track test
cases that increase coverage. Others, such as TortoiseFuzz [25], focus on test cases that
cover edges associated with sensitive memory operations. Some fuzzers determine the
priority of seeds based on the priority of execution paths [13,26–29]. BSFuzz prioritizes
low-frequency branches based on their branch frequency for constraint solving, assign-
ing a higher priority to branches with lower frequency and solving path constraints for
low-frequency branches first.

5.2. Concolic Execution

Fuzzers can generate large numbers of test cases quickly but may struggle to generate
inputs that satisfy complex conditions, such as judgments of magic bytes [30,31]. This
is where concolic execution comes in. Concolic execution combines concrete and symbolic
execution and uses constraint solving to pass certain branches in the program being tested.
Common tools for concolic execution include Angr [32], KLEE [33], S2E [34], UC-KLEE [35], etc.

Given the effectiveness of concolic execution, many tools use it to solve various
problems. BORG [36] guides concolic execution to point out potentially vulnerable spots
in the program, thus triggering the buffer overread bug. SYMFUZZ [37] uses concolic
execution to detect correlations between input bits and return a recommended mutation
ratio that optimizes the fuzzing parameters.

Theoretically, concolic execution can cover all paths of a program. However, in practice,
it has a well-known problem known as path explosion. While this problem cannot be
resolved completely, there are many different methods that can be used to mitigate its
impact. For example, Woodpecker [38] prunes redundant paths to speed up symbolic
execution. Matryoshka [39] focuses only on conditional statements associated with the
target branch. MergePoint [40] mitigates overhead by switching between dynamic and
static symbolic execution. Eclipser [41] selects only a portion of the comparison instructions
to generate approximate path constraints. BSFuzz utilizes fuzzing to explore most paths
and directs the concolic executor to focus on solvable and low-frequency branches.

5.3. Hybrid Fuzzing

Hybrid fuzzing combines the strengths of fuzzing and concolic execution to improve
the effectiveness of testing. The fuzzing is responsible for exploring most of the program’s
paths, while concolic execution solves the hard paths. Driller [1] invokes concolic execution
to direct the execution path to a new region when the fuzzer gets stuck. Dowser [42]
builds a guided fuzzer through taint tracking and program analysis, identifying code in
the program that accesses arrays in loops (usually associated with buffer overflows) and
symbolizing only the input bytes that affect the array index.

Electronics 2023, 12, 4033 13 of 16

Despite the benefits of hybrid fuzzing, the slow speed of concolic execution can still
cause inefficiencies. To alleviate this problem, QSYM [2] utilizes dynamic binary translation
(DBT) to tightly integrate symbolic emulation and native execution. It achieves instruction-
level symbolic emulation and significantly speeds up concolic execution. In addition, it has
been found that there is an over-constrained problem with concolic execution, so QSYM
generates more potentially useful inputs by partially solving the path constraints.

In addition, better cooperation between the fuzzer and the concolic executor is cru-
cial in hybrid fuzzing. The creators of DigFuzz [3] identified the drawbacks of Driller’s
“demand launch” strategy. DigFuzz uses the Monte Carlo-based probabilistic path priori-
tization model (MCP3) to calculate the probability of executing a specific path and then
prioritizes the paths to ensure that concolic execution only works on the most difficult
parts of the program. Since the fuzzer’s mutation strategy is random, it may destroy
the valid part of the input generated by the concolic executor. Based on this problem,
PANGLOLIN [11] utilizes “polyhedral path abstraction” to limit the fuzzer’s mutations
to a given range so that the newly generated test cases still satisfy the corresponding path
constraints. The creators of MEUZZ [7] believe that simple and fixed heuristics (e.g., se-
lecting the seed with the smallest size) cannot be adapted to all situations, so they utilized
machine learning to achieve adaptive seed scheduling, which can be extended to different
programs. SHFuzz [43] also schedules the inputs based on the complexity of the branch,
branch coverage information, and other factors.

Our method is orthogonal to the methods mentioned above and can be combined with
other hybrid fuzzers. Unlike current hybrid fuzzers, we record whether constraint solving
is successful or not, and we demonstrated that filtering out unsolvable positions improves
concolic execution efficiency. Our method is similar to DigFuzz [3] in that both record the
number of times each branch is executed. However, while DigFuzz uses the number of
executions to calculate the difficulty of each path, we use it to reduce the constraint solving
for high-frequency branches. In addition, both SHFuzz [43] and BSFuzz are concerned with
the existence of a speed divide between the fuzzer and the concolic executor. SHFuzz [43]
mitigates this problem through input scheduling, and BSFuzz mitigates it through the fast
synchronization mechanism.

6. Discussion

Threats to validity. Although BSFuzz’s fast synchronization mechanism is a lightweight
dynamic instrumentation process, it requires a separate process to synchronize and record
the coverage information for the test cases. Therefore, the fast synchronization mechanism
increases CPU resource usage. During the experiments, the same number of cores was
used for each experiment to fairly compare our approach with the others. To verify the
effectiveness of our method, we used several benchmark programs that are commonly used
in fuzzing papers. However, our method was not as effective with some programs. This
was mainly because our method mainly improves the speed of concolic execution but does
not improve the ability to solve constraints.

Limitations. We instrumented only conditional jump instructions in the program to
improve the execution speed of the fast synchronization mechanism and to reduce the
instrumentation overhead. In complex programs, there are often multiple paths that go
through the same branch. If only the execution frequency for the branches is recorded,
it may result in an inability to distinguish the frequency associated with different paths.
Therefore, a finer granularity for path coverage would provide better accuracy for frequency
recording. We chose branch coverage for the following reasons: Firstly, we prefer to quickly
collect coverage information through lightweight instrumentation without focusing on
the specific execution of branches (such as current register values). Therefore, we chose to
only instrument at branches after weighing the pros and cons. Additionally, since concolic
execution only performs constraint solving at branches, instrumenting branches allows
our index to remain consistent with the index from concolic execution. Although we may
confuse frequencies from different paths, we can still solve them from other branches of

Electronics 2023, 12, 4033 14 of 16

these paths. Therefore, branch coverage does not have a significant negative impact on our
final results.

7. Conclusions

In this paper, we proposed BSFuzz, a hybrid fuzzer designed to address the shortcom-
ings of existing concolic executors. We found that these executors do not fully utilize the
coverage states of all test cases or the history states of constraint solving. To address this is-
sue, BSFuzz uses lightweight dynamic instrumentation to implement a fast synchronization
mechanism that quickly executes test cases in the fuzzing queue. This allows the concolic
executor to be guided by the latest coverage state obtained from the fuzzer and reduces
constraint solving for high-frequency branches. In addition to this fast synchronization
mechanism, BSFuzz also records locations that cannot be solved by the concolic executor
and avoids attempting to solve these locations in the future. Our experimental results
demonstrate that filtering both unsolvable branches and high-frequency branches can
successfully improve the efficiency of hybrid fuzzing.

Author Contributions: Conceptualization, Q.H. and W.C.; Methodology, Q.H., W.C., Z.W. and S.L.;
Validation, X.L. and X.K.; Formal analysis, Q.H. and W.C.; Investigation, Q.H. and W.C.; Data curation,
Q.H., W.C. and Y.N.; Writing—original draft, Q.H. and W.C.; Writing—review & editing, Q.H., W.C.
and Z.W.; Visualization, Q.H. and W.C.; Supervision, S.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Tianjin Key R&D Program (20YFZCGX00680), and the
2019 Tianjin New Generation AI Technology Key Project (19ZXZNGX00090).

Data Availability Statement: All data generated or analysed during this study are included in this
published article.

Acknowledgments: The authors would like to thank anonymous reviewers for feedback and the sup-
port provided by the Tianjin Key R&D Program and the 2019 Tianjin New Generation AI Technology
Key Project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting

Fuzzing Through Selective Symbolic Execution. In Proceedings of the 2016 Network and Distributed System Security Symposium,
San Diego, CA, USA, 21–24 February 2016. [CrossRef]

2. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 745–761.

3. Zhao, L.; Duan, Y.; Yin, H.; Xuan, J. Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In
Proceedings of the 2019 Network and Distributed System Security Symposium, San Diego, CA, USA, 24–27 February 2019.
[CrossRef]

4. Jiang, L.; Yuan, H.; Wu, M.; Zhang, L.; Zhang, Y. Evaluating and Improving Hybrid Fuzzing. In Proceedings of the IEEE/ACM
International Conference on Software Engineering, Melbourne, Australia, 14–20 May 2023; pp. 410–422. [CrossRef]

5. Majumdar, R.; Sen, K. Hybrid Concolic Testing. In Proceedings of the 29th International Conference on Software Engineering
(ICSE’07), Minneapolis, MN, USA, 20–26 May 2007; pp. 416–426. [CrossRef]

6. Sen, K.; Marinov, D.; Agha, G. CUTE: A Concolic Unit Testing Engine for C. SIGSOFT Softw. Eng. Notes 2005, 30, 263–272.
[CrossRef]

7. Chen, Y.; Ahmadi, M.; Farkhani, R.M.; Wang, B.; Lu, L. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. In Proceedings
of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, 14–15
October 2020; Egele, M., Bilge, L., Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 77–92.

8. Zalewski, M. American Fuzzy Lop. 2015. Available online: https://lcamtuf.coredump.cx/afl/ (accessed on 15 May 2023).
9. Li, Y.; Ji, S.; Chen, Y.; Liang, S.; Lee, W.H.; Chen, Y.; Lyu, C.; Wu, C.; Beyah, R.; Cheng, P.; et al. UNIFUZZ: A Holistic and

Pragmatic Metrics-Driven Platform for Evaluating Fuzzers. In Proceedings of the 30th USENIX Security Symposium (USENIX
Security 21), USENIX Association, Vancouver, BC, Canada, 11–13 August 2021; pp. 2777–2794.

10. Peng, H.; Shoshitaishvili, Y.; Payer, M. T-Fuzz: Fuzzing by Program Transformation. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 697–710. [CrossRef]

http://doi.org/10.14722/ndss.2016.23368
http://dx.doi.org/10.14722/ndss.2019.23504
http://dx.doi.org/10.1109/ICSE48619.2023.00045
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1145/1095430.1081750
https://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1109/SP.2018.00056

Electronics 2023, 12, 4033 15 of 16

11. Huang, H.; Yao, P.; Wu, R.; Shi, Q.; Zhang, C. Pangolin: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1613–1627.
[CrossRef]

12. Kargén, U.; Shahmehri, N. Turning Programs against Each Other: High Coverage Fuzz-Testing Using Binary-Code Mutation and
Dynamic Slicing. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30
August–4 September 2015; pp. 782–792. [CrossRef]

13. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. CollAFL: Path Sensitive Fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 679–696. [CrossRef]

14. Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 711–725. [CrossRef]

15. Nagy, S.; Nguyen-Tuong, A.; Hiser, J.D.; Davidson, J.W.; Hicks, M. Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing
with Coverage-preserving Coverage-guided Tracing. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021; pp. 351–365. [CrossRef]

16. Luk, C.K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Reddi, V.J.; Hazelwood, K. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. SIGPLAN Not. 2005, 40, 190–200. [CrossRef]

17. Google. Honggfuzz. 2010. Available online: https://honggfuzz.dev/ (accessed on 10 June 2023).
18. Schumilo, S.; Aschermann, C.; Abbasi, A.; Wör-ner, S.; Holz, T. Nyx: Greybox Hypervisor Fuzzing Using Fast Snapshots and

Affine Types. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), USENIX Association, Vancouver,
BC, Canada, 11–13 August 2021; pp. 2597–2614.

19. Google. DynamoRIO. 2014. Available online: https://github.com/DynamoRIO/dynamorio (accessed on 10 June 2023).
20. Fratric, I. WinAFL. 2016. Available online: https://github.com/googleprojectzero/winafl (accessed on 10 June 2023).
21. Duck, G.J.; Gao, X.; Roychoudhury, A. Binary Rewriting without Control Flow Recovery. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Implementation, London, UK, 15–19 June 2020; pp. 151–163.
[CrossRef]

22. Dinesh, S.; Burow, N.; Xu, D.; Payer, M. RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1497–1511.
[CrossRef]

23. Zhou, C.; Wang, M.; Liang, J.; Liu, Z.; Jiang, Y. Zeror: Speed Up Fuzzing with Coverage-Sensitive Tracing and Scheduling.
In Proceedings of the 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne,
Australia, 21–25 September 2020; pp. 858–870.

24. Nagy, S.; Hicks, M. Full-Speed Fuzzing: Reducing Fuzzing Overhead through Coverage-Guided Tracing. In Proceedings of the
2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 787–802. [CrossRef]

25. Wang, Y.; Jia, X.; Liu, Y.; Zeng, K.; Bao, T.; Wu, D.; Su, P. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. In Proceedings of the 2020 Network and Distributed System Security Symposium, San Diego,
CA, USA, 23–26 February 2020. [CrossRef]

26. Lemieux, C.; Sen, K. FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018;
pp. 475–485. [CrossRef]

27. Yan, S.; Wu, C.; Li, H.; Shao, W.; Jia, C. PathAFL: Path-Coverage Assisted Fuzzing. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020.

28. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2019,
45, 489–506. [CrossRef]

29. Yue, T.; Wang, P.; Tang, Y.; Wang, E.; Yu, B.; Lu, K.; Zhou, X. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant
of the Adversarial Multi-Armed Bandit. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), 2020,
USENIX Association, Berkeley, CA, USA, 12–14 August 2020; pp. 2307–2324.

30. Li, Y.; Chen, B.; Chandramohan, M.; Lin, S.W.; Liu, Y.; Tiu, A. Steelix: Program-State Based Binary Fuzzing. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017), Paderborn, Germany, 4–8 August 2017;
pp. 627–637. [CrossRef]

31. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings
of the 2017 Network and Distributed System Security Symposium, San Diego, CA, USA, 26 February–1 March 2017. [CrossRef]

32. Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.; Polino, M.; Dutcher, A.; Grosen, J.; Feng, S.; Hauser, C.; Kruegel, C.; et al.
SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the 2016 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 138–157. [CrossRef]

33. Cadar, C.; Dunbar, D.; Engler, D. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI’08), San Diego,
CA, USA, 8–10 December 2008; pp. 209–224.

34. Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A Platform for in-Vivo Multi-Path Analysis of Software Systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
XVI), Newport Beach, CA, USA, 5–11 March 2011; pp. 265–278. [CrossRef]

http://dx.doi.org/10.1109/SP40000.2020.00063
http://dx.doi.org/10.1145/2786805.2786844
http://dx.doi.org/10.1109/SP.2018.00040
http://dx.doi.org/10.1109/SP.2018.00046
http://dx.doi.org/10.1145/3460120.3484787
http://dx.doi.org/10.1145/1064978.1065034
https://honggfuzz.dev/
https://github.com/DynamoRIO/dynamorio
https://github.com/googleprojectzero/winafl
http://dx.doi.org/10.1145/3385412.3385972
http://dx.doi.org/10.1109/SP40000.2020.00009
http://dx.doi.org/10.1109/SP.2019.00069
http://dx.doi.org/10.14722/ndss.2020.24422
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1145/3106237.3106295
http://dx.doi.org/10.14722/ndss.2017.23404
http://dx.doi.org/10.1109/SP.2016.17
http://dx.doi.org/10.1145/1950365.1950396

Electronics 2023, 12, 4033 16 of 16

35. Ramos, D.A.; Engler, D. Under-Constrained Symbolic Execution: Correctness Checking for Real Code. In Proceedings of the 24th
USENIX Conference on Security Symposium (SEC’15), Washington, DC, USA, 12–14 August 2015; pp. 49–64.

36. Neugschwandtner, M.; Milani Comparetti, P.; Haller, I.; Bos, H. The BORG: Nanoprobing Binaries for Buffer Overreads. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 2–4 March 2015;
pp. 87–97. [CrossRef]

37. Cha, S.K.; Woo, M.; Brumley, D. Program-Adaptive Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 725–741. [CrossRef]

38. Cui, H.; Hu, G.; Wu, J.; Yang, J. Verifying Systems Rules Using Rule-Directed Symbolic Execution. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS’13,
Houston, TX, USA, 16–20 March 2013; pp. 329–342. [CrossRef]

39. Chen, P.; Liu, J.; Chen, H. Matryoshka: Fuzzing Deeply Nested Branches. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS’19), London, UK, 11–15 November 2019; pp. 499–513. [CrossRef]

40. Avgerinos, T.; Rebert, A.; Cha, S.K.; Brumley, D. Enhancing Symbolic Execution with Veritesting. Commun. ACM 2016, 59, 93–100.
[CrossRef]

41. Choi, J.; Jang, J.; Han, C.; Cha, S.K. Grey-Box Concolic Testing on Binary Code. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 736–747. [CrossRef]

42. Haller, I.; Slowinska, A.; Neugschwandtner, M.; Bos, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary
Violations. In Proceedings of the 22nd USENIX Conference on Security (SEC’13), Washinton, DC, USA, 14–16 August 2013;
pp. 49–64.

43. Mi, X.; Wang, B.; Tang, Y.; Wang, P.; Yu, B. SHFuzz: Selective Hybrid Fuzzing with Branch Scheduling Based on Binary
Instrumentation. Appl. Sci. 2020, 10, 5449. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2699026.2699098
http://dx.doi.org/10.1109/SP.2015.50
http://dx.doi.org/10.1145/2451116.2451152
http://dx.doi.org/10.1145/3319535.3363225
http://dx.doi.org/10.1145/2927924
http://dx.doi.org/10.1109/ICSE.2019.00082
http://dx.doi.org/10.3390/app10165449

	Introduction
	Motivation
	Slow Concolic Execution
	Unsolvable Constraints
	High-Frequency Branches

	Design
	Fast Synchronization
	Unsolvable Branch Filter
	Frequency-Based Branch Prioritization

	Implementation and Evaluation
	Fast Synchronization
	Unsolvable Branch Filter
	Code Coverage Effectiveness

	Related Work
	Coverage-Based Fuzzing
	Concolic Execution
	Hybrid Fuzzing

	Discussion
	Conclusions
	References

