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Abstract: This paper proposes an enhanced YOLO v7-based method for detecting insulator defects
in transmission lines, addressing the challenges of low accuracy and high leakage rates caused by
complex backgrounds and electric poles alongside varying sizes of insulator targets in the image.
Firstly, to address the issue of background interference and improve the importance of insulator
features, a lightweight attention mechanism named Efficient Channel Attention (ECA) was introduced.
With the incorporation of ECA, this model could effectively suppress background noise and provide
more focus to insulator regions, thus enhancing its ability to detect insulator defects accurately.
Secondly, a partial convolution (PConv) approach was employed in the backbone network instead of
conventional convolution, which learned some important channels. This substitution improved both
the network model’s accuracy and the training speed. Finally, the Normalized Wasserstein Distance
(NWD) prevented insulator features from being lost during pre-feature extraction, which reduced the
leakage rate and improved the detection accuracy of small target insulators and defective insulators.
The experimental results demonstrate that the improved YOLO v7 network model achieved an
average detection accuracy (mAP) of 98.1%, recall of 93.7%, and precision of 96.8% on the TISLTR
dataset. On the FISLTR dataset, the average detection accuracy (mAP) for flashover insulators
was 93%, with a recall of 92.3% and precision of 87.1%. The average detection accuracy (mAP)
for broken insulators was 92.2%, with a recall of 90.3% and a precision of 95.2%. These metrics
demonstrate significant improvements in both datasets, highlighting the proposed algorithms’ strong
generalization capability and practicable potential to detect insulator targets.

Keywords: UAV Patrol Image; insulator identification; object detection; deep learning

1. Introduction

In recent years, China’s electric power industry has witnessed remarkable growth
in tandem with the country’s economic development. According to statistics, China’s
industrial electricity consumption is set to reach 5509 billion kWh in 2021, an increase of
9.1% year on year, while urban and rural residential electricity consumption could reach
1174.3 billion kWh, an increase of 7.3% year on year [1]. However, the manual inspection of
transmission lines has become increasingly burdensome and cannot fully guarantee the
normal operation of high-voltage equipment. As a result, frequent faults in transmission
lines have emerged, necessitating higher requirements for the intelligent maintenance of
power systems [2].

Insulators, as a special isolation control, can be used to fix the conductive body to
ensure the smooth transmission of electricity. In the overhead, high-voltage transmission
lines play an important role. Due to their exposure to outdoor environments and suscepti-
bility to adverse weather conditions, insulators are prone to damage and require regular
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inspection and maintenance. The inspection methods involved are relatively advanced.
One effective method is the automatic detection of insulator defects, which can enhance
productivity, protect staff from potential hazards, and mitigate safety risks. Therefore, the
automatic defect detection of insulators holds great significance for improving maintenance
efficiency [3].

Both domestically and internationally, the current approaches to insulator defect
detection in transmission lines can be broadly classified into traditional image processing
techniques, machine learning algorithms, and deep learning methods.

Traditional image processing methods, such as filtering [4], edge detection [5], and
morphological processing [6], have been widely used. For example, Chen Guocui et al. [7]
applied an improved fast-guided filtering algorithm to filter insulator images, effectively
removing noise while preserving the edge detail features of the insulators. Zhao Le et al. [3]
utilized an edge detection algorithm with a noise suppression module for power line feature
extraction. Mei Xin et al. [8] employed morphological processing to optimize images of com-
posite insulator surfaces covered with water, mitigating the influence of lighting conditions.
These traditional methods are simple and easy to use, with high computational efficiency
and clear mathematical models and algorithmic formulas. However, they are also suscepti-
ble to interference from background pixels and external noise and lack robustness and im-
munity to interference. Machine learning methods, on the other hand, leverage spatial and
color feature information for insulator detection. Wu Yang et al. [9] applied the AdaBoost
algorithm to insulator detection and recognition, demonstrating good robustness and
laying the foundation for subsequent insulator fault diagnosis. Huang Huihang et al. [10]
integrated machine learning modules into an insulator anomaly detection system, enabling
the automatic detection of insulator anomalies.

Compared with traditional image processing methods, machine learning methods
are more robust, can automatically analyze large amounts of data to extract valuable
information, have some noise processing ability, and have some insulator defect detection
capabilities. However, these methods are more suitable for offline data analysis and may
require human intervention to achieve better detection results. In addition, machine
learning methods have limited adaptability and generalizability in complex environments.
In conclusion, both traditional image processing methods and machine learning methods
have limitations when effectively solving complex problems and might not be able to meet
the practical requirements of detection accuracy and speed.

With the continuous advancements in hardware technology, new deep learning detec-
tion methods have emerged, addressing challenges that traditional image processing meth-
ods and machine learning approaches struggle with. These deep learning methods can be
generally classified into two-stage detection methods and single-stage detection methods.

Two-stage detection methods utilize a two-step process to detect targets [11]. Firstly,
they generate candidate regions that potentially contain the insulators being detected.
Then, each candidate region is classified and refined for recognition and localization.
Some popular two-stage detection methods include R-CNN [12] and Faster R-CNN [13].
For instance, Zheng Ruojun [14] employed cropped R-CNN to extract insulator features
and performed validation on Raspberry Pi, eliminating the need to transfer images to
remote GPU servers for processing. Yi Jiyu et al. [15] incorporated multi-scale images
and introduced an adversary generation strategy to enhance the accuracy of Faster RCNN
when detecting blocked insulators. Tian Zijian et al. [16] proposed a two-stage target
enhancement network specifically designed for low illumination environments, effectively
detecting insulator faults.

The two-stage detection method offers greater accuracy when locating insulators and
achieves higher overall detection accuracy, particularly on large-scale datasets. However, this
method is more complex, demands more computational resources, and poses challenges in
deployment on mobile devices.
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Single-stage detection methods offer faster inference speed and significant engineering
application values than two-stage detection methods. Some classic single-stage detection
methods include the YOLO [17–21] series and the SSD [22] series.

For instance, Zhu Youchan et al. [23] utilized Darknet-53 as the feature extraction
network in YOLOv3 to successfully detect and identify normal insulators. Song Libo
et al. [24] employed Resblock-D+CSPDarknet53-tiny as the backbone network for YOLOv4-
tiny and achieved successful deployment on Jetson NANO, showcasing its engineering
usability. Wang Jianye [25] developed a lightweight multi-scale feature fusion SSD model
to detect insulator self-detonation faults.

Compared to the two-stage detection method, the single-stage detection method
outputs the defect detection results directly from the input image without multiple pro-
cessing stages. Compared with the traditional multi-stage pipeline approach, it simplifies
the complexity of the whole inspection system and improves the efficiency of the model.
It facilitates insulator defect detection and model deployment. However, single-stage de-
tection methods are more suitable for ordinary image comparisons and might struggle
with high-resolution image detection. Insulator images often have complex backgrounds,
variable sizes, and the insulator defect area is relatively small, which can lead to suboptimal
detection results using single-stage methods.

Therefore, this paper presents a novel approach for detecting defects in transmission
line insulators using an enhanced version of YOLO v7. This method aims to achieve the
efficient and accurate detection of insulator faults while maintaining a high detection speed.
The major contributions of this paper are outlined as follows:

(1) Data Enhancement: The standard insulator dataset TISLTR and the high-resolution
tiny target faulty insulator dataset FISLTR are enhanced through various techniques,
including image enhancement, flipping, cropping, blurring, and random transforma-
tions. These techniques enhance the datasets by increasing their diversity and quality.

(2) Attention Mechanism: To address the challenge of varying insulator sizes and occlu-
sion caused by transmission line towers, the ECA is incorporated into the backbone
of YOLO v7. This mechanism dynamically learns the significance of various channels
in the input image, effectively reducing the impact of pole occlusion and enhancing
the detection algorithm’s accuracy.

(3) Partial Convolution: The YOLO v7 network model has a complex network structure
and many computational parameters, resulting in slower performance. To tackle
this issue, partial convolution (PConv) is introduced as a replacement for traditional
convolution in the YOLO v7 network model. PConv ensures both efficiency and
detection accuracy while reducing computational parameters.

(4) Normalized weighted detection: Due to the complex background of insulator images
and the presence of small and dense insulators in datasets, insulator features can
easily be lost during feature extraction, leading to missed detections. The YOLO v7
network model uses the Normalized Weighted Distance (NWD) metric instead of
the traditional Intersection over Union (IoU) for target detection, which reduces the
sensitivity of the IoU to the positional deviation of insulators with small targets, thus
achieving the effective detection of insulators with small targets.

2. Enhanced YOLO v7 Defect Detection Method
2.1. Overview of the YOLO v7 Algorithm

The YOLO v7 network model was proposed by Chien-Yao et al. [26] in 2022 and
compared to the previous YOLO v3, YOLO v4, YOLO v5, and YOLOX network models; it
surpassed the previous YOLO series in terms of accuracy and detection precision in the
range of 5 FPS to 160 FPS. The YOLO v7 network model mainly contains Input, Backbone,
and Head. Input is the input image, Backbone is the backbone network that extracts the
input image features, and Head is the detection head that predicts the type and location of
the target, still using the YOLO v5 network architecture model.
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This paper describes the structure of the improved YOLO v7 network model, as shown
in Figure 1. First, the attention mechanism ECA is introduced in the Backbone of YOLO
v7. It can adaptively learn the features of different channels to improve the accuracy of the
detection algorithm. Second, the traditional convolution in the Backbone of YOLO v7 is
replaced with PConv to reduce the computational parameters and ensure the efficiency of
the network model. Finally, to reduce the sensitivity of IoU to the positional deviation of
small target insulators, the target detection intersection and fusion ratio IoU in YOLO v7 is
replaced with NWD, which reduces the leakage detection rate of small target insulators.
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2.2. Insulator Detection Based on the Attention Mechanism ECA

Transmission line insulator detection targets are of different sizes, the broken insulator
site area is very small, and the detection background is complex and variable, while the
original YOLO v7 network model tends to ignore the feature information of small targets
during feature extraction, resulting in a lower detection accuracy during insulator target
detection. Therefore, the channel attention module (Efficient Channel Attention, ECA)
is added to the YOLO v7 backbone network Backbone [27], which means that YOLO v7
is based on the Efficient Aggregation Network E-ELAN. The channels that are effective
in isolator feature extraction are given higher weights to suppress irrelevant background
features and reduce the influence of background noise on target detection; therefore, the
network model is able to judge the position and size of isolators.

In addition, ECA replaces the fully connected layer with a 1× 1 convolutional layer on
top of SE, avoiding dimensionality reduction and allowing the network model to achieve
better results with fewer parameters. ECA Channel Attention the specific structure of the
module is shown in Figure 2.
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Figure 2. ECA channel attention module.

To extract the feature map F[h, w, c] from the backbone network (“h” represents the
height of the feature map, “w” represents the width of the feature map, and c represents the
number of channels), a Global Average Pooling (GAP) operation is applied. This operation
computes the average value across each channel of the feature map, resulting in a new
feature map with a size of [1 × 1 × c].

Next, a one-dimensional convolution is performed on this feature map using a convo-
lution kernel of size 5. This convolution operation aims to obtain the weight size for each
channel. The resulting weights are then multiplied by the initial feature map. The specific
structure of the Global Average Pooling (GAP) operation is illustrated in Figure 3.
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As depicted in Figure 3, for each of the three channel feature maps, there are 64-pixel
points. The Global Average Pooling (GAP) operation sums up the corresponding pixel
values of each point and then calculates their average to obtain three 1 × 1 channel maps.
These maps represent the averaged values for each channel after pooling.

2.3. PConv-Based Implementation of YOLO v7 Network Model for Fast Detection

It is well known that the computation of the YOLO v7 network model consumes a lot of
computational resources and, therefore, has low performance. To reduce the computational
intensity and improve performance, this paper introduces a new convolution operation
called the PConv convolution [28]. This operation exploits the similarity between the
features of different channels of the insulator and the redundancy in its feature mapping
to optimize the computational cost and reduce the number of floating-point operations.
The specific structure of the PConv convolution is illustrated in Figure 4.
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Compared to the traditional convolution operation where all channels are filtered,
PConv selectively performs feature extraction only on certain input channels while leaving
the remaining channels unchanged. In the case of constant insulator feature extraction in
the YOLO v7 backbone network, the channels are computed as representatives of the entire
feature mapping. Without loss of generality, we can assume that input and output feature
mappings have an equal number of channels. The number of floating-point operations for
PConv can be calculated as follows:

h× w× k2 × c2
p (1)

where h represents the height of the feature map, w denotes the width of the feature map,
k represents the convolution kernel size, and cp denotes the number of output channels.
When partially compared r = cp/c = 1/4, the FLOPs of PConv are only 1/16th of those of
a normal Conv in addition to the smaller memory accesses of PConv, which are only 1/4th
of those of a normal Conv:

h× w× 2cp + k2 × c2
p ≈ h× w× 2cp (2)

In PConv convolution, only cp channels are used for spatial feature extraction, while
the remaining c-cp channels stay unchanged for inter-channel feature information transfer.

In summary, by integrating PConv convolution with the traditional convolution in
the YOLO v7 network model, we could enhance the detection accuracy while reducing
the number of parameters in the model. This combined approach enables the effective
detection of insulator faults, leading to improved overall performance.

2.4. Small Target Insulator Detection Based on NWD

There are some challenges in the dataset, such as small and dense insulators at the
far end of the image, insulators at the edges of the image, and small areas of defective
insulators. These situations can lead to a loss of important insulator features during the pre-
feature extraction process, resulting in a lower detection accuracy for insulators. To tackle
this issue, this paper proposes the use of NWD [29] as a replacement for the intersection
over union (IoU) metric to improve the detection accuracy of small insulator targets.

The sensitivity of IoU varies widely for different scales of insulators, as illustrated
in Figure 5. In the case of a small target measuring 25 × 50 pixels, box A represents
the true bounding box, while boxes B and C represent bounding boxes with diagonal
deviations represented by 1 pixel and 5 pixels, respectively. The IoU values for these cases
are 0.88 and 0.56, indicating some degree of IoU degradation. This degradation can affect
the label assignment process and subsequently impact detection accuracy.

IoU25×50 =
|A ∩ B|
|A ∪ B| = 0.88 (3)

IoU25×50 =
|A ∩ B|
|A ∪ B| = 0.56 (4)

In the case of normal targets with dimensions of 827 × 163 pixels, when the diagonal
pixel deviations are the same, the IoU cross-merge ratios are 0.985 and 0.916, respectively,
showing only slight variations in deviation. However, it is important to note that IoU is
highly sensitive to small target position deviations. Despite YOLO v7’s dynamic assignment
strategy, IoU remains significantly sensitive to small target insulators. Finding a single
threshold that is suitable for all cases becomes challenging, making the detection and
segmentation of small target insulators more difficult.

IoU827×163 =
|A ∩ B|
|A ∪ B| = 0.985 (5)
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To mitigate the sensitivity of the IoU metric to the positional deviation of small insu-
lator targets, this paper introduces a method for detecting small target insulators based
on the NWD. In the bounding box of a small target insulator, background pixels are often
present, while the pixels of the detected object predominantly concentrate in the center of
the bounding box. The weight assigned to each pixel gradually decreases from the center
toward the boundary, with the pixel at the center having the highest weight.

To enhance the representation of pixel weights within the bounding box, this article
models the bounding box as a two-dimensional Gaussian distribution.

The horizontal bounding box R is represented as (cx, cy, w, h), where cx and cy
denote the coordinates of the center point, and w and h denote the width and height of
the bounding box. Based on pixel distribution characteristics, it can be expressed using the
equation of an ellipse.

(x− ux)
2

σ2
x

+

(
y− uy

)2

σ2
y

= 1 (7)

where ux and uy denote the coordinates of the center of the ellipse, ux = cx, uy = cy, σx denote
the length of the x-axis, whose length is σx = w/2, σy respectively, and the length of the
y-axis, whose length is σy = h/2.

The probability density function of a two-dimensional Gaussian distribution is pro-
vided by the following equation:

f
(

x
∣∣u, ∑

)
=

exp
(
− 1

2 (x− u)T ∑−1(x− u)
)

2π|∑|
1
2

(8)

where x denotes the coordinates (x, y), u denotes the Gaussian distribution mean vector,
and denotes the covariance matrix. When the ellipse in Equation (7) represents the prob-
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ability density function of a two-dimensional Gaussian distribution, the bounding box
R = (cx, cy, w, h) can be effectively modeled as a two-dimensional Gaussian distribution.

u =

[
cx
cy

]
, ∑

[
ω2

4 0
0 ω2

4

]
(9)

Next, the distribution distance is computed using the Wasserstein distance. For two
two-dimensional Gaussian distributions u2 = N(m2, ∑2), the second-order Wasserstein
distance is defined as follows:
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The above equation is further simplified as:
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The Gaussian distributions Na and Nb for bounding box A = (cxa, cxa, ωa, ha) and
bounding box B = (cxb, cyb, ωb, hb) can be expressed according to the above equation as:

W2
2 (Na, Nb) =

∥∥∥∥([cxa, cxa,
ωa

2
,

ωb
2

]T
,
[
cxb, cxb,

ωb
2

,
ωb
2

]T
)∥∥∥∥2

2
(12)

where W2
2 (Na, Nb) is the W2

2 distance metric, which cannot be used directly to detect the
similarity metric between the two; therefore, the exponential form is used to normalize the
new metric, called NWD:

NWD(Na, Nb) = exp

−
√

W2
2 (Na, Nb)

C

 (13)

where C is a constant closely related to the dataset and can be set according to empirical
values; in this paper, C = 2.

In summary, insulator detection using NMD instead of IoU can reduce the sensitivity
of position deviation for small targets in position and improve the detection accuracy
of insulators.

3. Experimental Results and Analysis

In order to comprehensively evaluate the performance of the enhanced YOLO v7
algorithm, several experiments were conducted, including attention experiments, different
convolution experiments, ablation experiments, and comparisons with classical network
models. The details of these experiments are as follows:

3.1. Experimental Platform

The experimental environment for the images in this paper is shown in Table 1. In this
paper, the image experiment environment is Windows system, the CPU of the experiment
platform is Intel i5-12400F, the graphics card is NVIDIA GeForce RTX3060, the memory is
16 GB, the input image size is 640 × 640 px, the batch size is 8, and the epochs are 150.

The YOLO v7 network model was trained using the PyTorch framework. This paper
used a pre-trained weight model and performed model training updates on top of it.
The model was trained for 150 epochs to generate the final network weight model.
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Table 1. This paper experiments with hardware and software configuration.

Software Details

OS Windows 10
CPU Intel i5-12400F
GPU NVIDIA GeForce RTX3060

Memory size 16 GB
Input 640 × 640 px

The table below presents the hyperparameter settings to train the improved YOLO v7
network model, as proposed in this paper (Table 2). Momentum action reduces oscillations
and noise, which is common in traditional gradient descent algorithms. Learning rates
affect the speed of convergence. Weight decay reduces the risk of overfitting in the model.

Table 2. Model hyperparameter settings.

Momentum 0.937 Weight decay 0.0005

Learning rates 0.01 Batch size 8

3.2. Data Description

To evaluate the generalizability of the algorithm, experiments were conducted using
two different datasets: the TISLTR dataset for normal insulators and the FISLTR dataset for
high-resolution small target fault insulators.

The TISLTR dataset consists of 976 normal insulator images with varying sizes and
backgrounds. The resolution of these images is 1152 × 864 pixels. On the other hand, the
FISLTR dataset contains 1231 faulty insulator images with a resolution of 3216 × 2136 pixels.
The faulty insulators in this dataset exhibit flash and broken fault types. The data are labeled
using the Labeling tool and divided into three main categories: normal insulators, flashover
insulators, and broken insulators.

The original dataset is not sufficient to satisfy the experimental generalization and
universality; therefore, the dataset is expanded by color random transformation, cropping,
and blurring, and the result of image data enhancement and expansion is shown in Figure 6.
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To improve the generalization capability of the network model, the TISLTR and FISLTR
datasets were divided into training, validation, and test sets in a ratio of 8:1:1.

3.3. Evaluation Indicators

To evaluate the superiority of the improved YO-LO v7 algorithm in an objective
and accurate manner, metrics like precision, recall, and mean average precision (mAP)
are employed to distinguish the network model. Precision refers to the percentage of
correctly predicted positive samples using the model out of all samples predicted as
positive categories. Recall is the number of samples correctly predicted by the model in
the positive category as a proportion of the number of all samples actually in the positive
category. The mAP is an evaluation metric in the target detection task that calculates the
average accuracy value across multiple categories. Additionally, the frame rate (Frames
Per Second, FPS) indicates the number of images that the model can process per second.
The higher the model’s processing frame rate, the quicker it can detect the images.

3.4. Experimental Results and Analysis
3.4.1. Experimental Comparison of Different Attentional Mechanisms

This study aims to verify the effectiveness of the ECA mechanism in detecting in-
sulator targets. To achieve this objective, two other attention mechanisms, namely the
Squeeze-and-Excitation networks (SE) and Convolutional Block Attention Module (CBAM),
were introduced and experimentally compared with the ECA mechanism within the
YOLO v7 algorithm.

The SE mechanism learns the significance of each channel’s feature map through self-
learning and assigns distinctive weights according to the specific characteristics. CBAM, in
addition to channel attention, incorporates spatial attention by assigning varying weights to
different objects or background information corresponding to feature channels and spatial
locations. However, CBAM is less sensitive to smaller feature maps and is, therefore, less
suitable for detecting small target faults in insulators.

Both SE and CBAM have certain limitations. On the other hand, ECA, which is built
upon the SE mechanism, achieves better extraction of useful insulator features by applying
one-dimensional convolution to information interaction across channels. The performance
metrics of these three attention modules trained on both the TISLTR dataset (normal
insulator dataset) and the FISLTR dataset (high-resolution small target faulty insulator
dataset) are presented in Table 3.

Table 3. Comparison of results obtained by different attention mechanisms.

Dataset Labels Methods Precision Recall mAP@0.5

TISLTR insulator
SE 93.5% 90.6% 91.7%

CBAM 96.7% 93.8% 92.1%
ECA 90.9% 93.7% 94%

FILTER

flash
SE

74.1% 76% 80.1%
broken 83.8% 67.9% 74.7%

flash
CBAM

81.3% 83.4% 87.4%
broken 85.2% 77.2% 81.3%

flash
ECA

83.2% 89.3% 91.3%
broken 90.2% 86.1% 88.5%

The table demonstrates that the YOLO v7 algorithm with the ECA attention mech-
anism outperforms both the SE and CBAM mechanisms in terms of detection results.
This superiority can be observed not only in the normal insulator dataset (TISLTR) but
also in the high-resolution small target fault dataset (FISLTR). These findings indicate that
the ECA attention mechanism exhibits strong feature extraction capabilities for insulators
within the dataset used in this study.



Electronics 2023, 12, 3969 11 of 15

3.4.2. Comparison of Different Convolution Experiments

To evaluate the performance of partial convolution (PConv) in insulator target detec-
tion, this study compared it with conventional convolution (Conv) within the YOLO v7
network model. PConv achieves feature extraction for insulators by leveraging the similar-
ity between channel features and extracting features from only a subset of the channels.

The TISLTR dataset (normal insulator dataset) and the FISLTR dataset (high-resolution
small target fault insulator dataset) have been employed to evaluate the performance of
both Conv and PConv. Table 4 illustrates that PConv accomplishes a higher detection
accuracy while having a reduced parameter count of 4.3 MB in both datasets compared
to Conv. The utilization of PConv not only decreases the count of parameters but also
significantly improves the detection speed.

Table 4. Comparison of the results from various convolution experiments.

Dataset Labels Convolutions mAP@0.5 mAP@0.5:0.95 FPS Params

TISLTR insulator
Conv 92.1% 63.4% 95.24 37.1 MB
PConv 92.3% 66% 75.75 32.8 MB

FILTER
flash

Conv 85.9% 41.7% 131.58 37.2 MB
PConv 86.6% 42.7% 129.87 32.8 MB

broken
Conv 81.9% 40.6% 131.58 37.2 MB
PConv 83.6% 45% 129.87 32.8 MB

3.4.3. A Comparison of Ablation Experiments

In order to assess the accuracy and effectiveness of the algorithms proposed in this
paper and examine the impact of each module on the model’s performance metrics, we
conducted ablation experiments on both the TISLTR and FISLTR datasets. We used the
YOLO v7 model as the base model and gradually added different modules to evalu-
ate the performance metrics of the network model. Table 5 presents the results of the
ablation experiments.

Table 5. Comparison results of ablation experiments.

Dataset Labels Methods Precision Recall mAP@0.5 mAP@0.5:0.95

TISLTR insultor

YOLOv7 90.9% 93.7% 92.1% 63.4%
YOLOv7+ECA 90.9% 93.7% 94% 65.6%
YOLOv7+ECA+PConv 91.2% 96.8% 96.7% 66.5%
YOLOv7+ECA+Pconv+NWD 96.8% 93.7% 98.1% 68%

FITER

flash
YOLOv7

81.7% 80.4% 85.9% 41.7%
broken 92.6% 73.2% 81.9% 40.6%

flash
YOLOv7+ECA

83.6% 90.2% 91.3% 47%
broken 89.9% 89% 90.8% 52.5%

flash
YOLOv7+ECA+PConv

81.5% 91.6% 91.1% 48.1%
broken 91% 87.5% 92.5% 54.6%

flash
YOLOv7+ECA+Pconv+NWD

87.1% 92.3% 93% 47.6%
broken 95.2% 90.3% 92.2% 55.2%

The experiments showed that incorporating the ECA attention mechanism into the
YOLO v7 model led to an mAP enhancement of 1.9% in the TISLTR dataset and 5.4% in
the FISLTR dataset. This suggests that the ECA attention mechanism allows the network
model to concentrate on vital channels and have particular extraction capabilities to detect
insulators in complex background images.

When comparing the performance metrics of YOLO v7+ECA and YOLO v7+ECA+PConv,
the results indicate that the inclusion of PConv enhances Precision and Recall slightly, while
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significantly improving the average detection accuracy. These findings suggest that PConv
improves the network model’s ability to extract features of insulators by utilizing channel
similarity in conjunction with the channel attention provided by ECA.

In conclusion, the proposed YOLO v7+ECA+PConv+NWD network structure com-
bines the strengths of the ECA attention mechanism, partial convolution (PConv), and
normalized Wasserstein distance (NWD) in insulator target detection. This combination
significantly enhances the performance metrics of the single-stage network model YOLO
v7 in power system insulator detection, including higher Precision, Recall, and mAP scores.

To further demonstrate the ability of the improved network model to extract insula-
tor features, heat maps of the model were generated using both the TISLTR and FISLTR
datasets, which were trained with the best.pt model. As shown in Figure 7, the heat
maps demonstrate that the improved network model effectively highlights relevant fea-
tures of insulators. This capability allows for the detection of insulator defects within
power systems.
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3.4.4. Experimental Comparison of Different Network Models

The improved YOLO v7 algorithm proposed in this paper was evaluated using the
TISLTR dataset, and its performance was compared against several currently mainstream
target detection network models, such as the single-stage network models SSD, YOLO
v3, YOLO v4, YOLO v5, YOLOx, YOLO v7-tiny and the two-stage network model Faster
R-CNN. Table 6 displays the relevant performance metrics obtained from the experiments.

Table 6. Detection results of different network models.

Methods Precision Recall mAP@0.5

SSD 92.36% 59.92% 78.18%
YOLOv3 93.47% 76.86% 88.31%
YOLOv4 92.00% 57.02% 75.69%
YOLOv5 91.7% 87.5% 89.3%
YOLOx 88.56% 86.36% 90.43%
FasterR-CNN 53.92% 90.91% 86.9%
YOLOv7-tiny 91.82% 83.47% 92.01%
Ours 96.8% 93.7% 98.1%

As seen in Table 6, both the traditional single-stage network models and the two-stage
network model performed well in power system insulator target detection. The mAP
(Mean Average Precision) of all network models exceeded 75%, with the improved YOLO
v7 network model in this paper achieving an mAP of 96.2%, which is higher than that of
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other network models. However, SSD and YOLO v4 had the lowest Recall, as indicated by
Figure 8, which shows instances of missed detections and leakage detection. In contrast,
the improved network model in this paper achieved a Recall of 93.7% and a Precision of
96.8%, both of which surpass other network models. YOLO v7-tiny, being a lighter version
of YOLO v7, demonstrated a detection performance second only to that of the improved
YOLO v7 network model in this paper. The detection results of YOLO v3, YOLO v5, YOLO
x, and Faster-CNN show that their network models are all weaker than the improved
network model in this paper. Therefore, the improved network model proposed in this
article exhibits a certain superiority.
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Figure 8 illustrates that insulator detection is challenging due to the presence of
background utility poles. The middle vertical insulator, in particular, almost blends into
the background of utility poles, resulting in a complex background for insulator detection.
Additionally, Figure 9 presents the detection results for different insulator sizes. It can be
observed that other algorithms missed detections during the process, while the improved
network model from the article successfully detected insulators in complex backgrounds.
The improved network model demonstrated better results for both insulator detection in
complex backgrounds and the detection of insulators with different sizes.
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4. Conclusions

(1) This paper proposes a model based on the YOLO v7-ECA-PConv-NWD network for
identifying normal insulators, broken insulators, and flashover insulators in power
transmission lines. After training, the model achieved detection accuracies of 98.1%,
93%, and 92.2%, respectively, resulting in enhanced performance. This provides a
theoretical basis for the intelligent maintenance of power systems.

(2) This paper proposes adding an ECA mechanism to the backbone of the YOLO v7
network model to improve its attention toward insulator features and reduce noise
interference. As a result of this improvement, the accuracy of insulator detection
could be enhanced.

(3) A new PConv convolution was utilized in this paper to reduce the number of floating-
point operations while processing insulators in the target detection task. By exploiting
the similarity between different channel features and the redundancy in feature map-
ping, the PConv convolution successfully reduced the parameter size by 4.3 MB
compared to conventional convolution. Despite this reduction, the accuracy of insula-
tor detection remained largely unaffected.

(4) This paper utilized NWD in place of the IoU ratio for target detection. By substituting
NWD for IoU, the model became less susceptible to position deviations in small target
insulators. Based on the fact that the center pixel has the highest weight and decreases
from the center to the edge, it addresses the challenge of high miss detection rates
in images.

This paper only achieved the detection of insulator breakage and flashover of trans-
mission lines, and it is relatively limited in terms of fault types. The next stage is to broaden
the scope of fault types and incorporate the enhanced network model into DWF3.0, a big
data application development tool developed by the Tsinghua National Laboratory of Big
Data System Software. By doing so, we aim to construct a more comprehensive system for
detecting and providing alerts in insulator failures.
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