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Abstract: The separation of time–frequency mixing signals composed of radar, communication, and
jamming is the first step in integrated reception processing, which requires higher accuracy for
complex blind source separation (CVBSS). However, traditional CVBSS methods have limitations
such as low separation accuracy, a slow convergence speed, and poor robustness in low signal-to-
noise ratio (SNR) and high jamming-to-signal ratio (JSR) scenarios. To address the above issues, this
paper firstly establishes a time delay mixing mathematical model. A robust whitening algorithm
is proposed by using the time delay correlation matrix of the observed signal, which is insensitive
to noise. Secondly, the joint diagonalized F-parametrization is used as the objective function, and
the separation matrix is constructed based on the multiple complex-valued Givens matrices. The
complex-valued Givens matrix not only ensures orthogonality in the separation matrix but also
effectively reduces the number of parameters to be calculated. This approach guarantees accuracy
and simplifies the complexity of the separation process. Finally, the nonlinear chaotic grey wolf
optimizer is utilized to search for the optimal rotation angle. The simulation results demonstrate
that this algorithm offers higher separation accuracy and requires fewer iterations compared to the
traditional algorithm. Additionally, it enhances the accuracy of direction of arrival (DOA) estimation,
reduces the communication bit error rate, and enables the joint estimation of the target distance and
velocity even in the presence of powerful jamming and a low SNR.

Keywords: integrated reception; complex-valued blind source separation; robust whitening; joint
diagonalization; anti-main lobe jamming; swarm intelligence

1. Introduction

In the complex electromagnetic environment, numerous radar, communication, jam-
ming, and other radiation signals, whether cooperative or non-cooperative, are present.
The integrated receiver’s wide beam and wide bandwidth coverage often result in over-
lapping signals in the time–frequency and air domains. Consequently, performing tasks
like parameter estimation and information extraction becomes challenging due to the low
signal-to-noise ratio (SNR) and high jamming-to-signal ratio (JSR). Under conditions of
low SNR, valuable signals may become obscured by strong noise, making it challenging to
detect radar signals and increasing the likelihood of bit errors in communication signals.
Conversely, if the jamming signal is too strong, jamming can suppress the useful signal,
resulting in the failure of or errors in radar signal detection and the inability to demodulate
the communication signals. Therefore, the primary concern is to separate these overlap-
ping signals. Blind source separation (BSS) [1,2] aims to recover or reconstruct the source
signal using observed data from the receiver channel, even when the source signal and
mixing characteristics are unknown. BSS, as a powerful technology in signal processing,
has played a crucial role in various domains, including speech separation [3–5], wireless
communication [6–8], anti-main lobe jamming [9–13], and direction of arrival (DOA) esti-
mation [14,15]. BSS has also provided innovative ideas for ongoing research in integrated
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reception processing. In this paper, a complex scenario of integrated reception is considered,
as depicted in Figure 1. In this scenario, radar signals, echo signals, jamming signals, and
communication signals overlap in the time–frequency domain. After separating the mixed
signals, the mixing matrix is used to estimate the DOA. The echo signals undergo pulsed
Doppler processing, the communication signal is demodulated, reconnaissance signals are
sorted, and the jamming signal is analyzed. This method enables the execution of tasks
such as location, detection, reconnaissance, communication, and anti-jamming.
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When using arrays to receive far-field narrowband signals, which are part of the
time delay mixing mathematical model [16], it is necessary to employ complex-valued
blind source separation (CVBSS). However, traditional CVBSS algorithms suffer from low
separation accuracy, slow convergence, poor robustness, and high sensitivity to noise and
jamming. The well-known second-order blind identification (Sobi) [17,18] is a classical
and effective algorithm to solve BSS problems using second-order statistics. Although
it has low computational complexity, it exhibits poor separation performance. In [19],
the joint approximate diagonalization of eigenmatrices (JADE) algorithm was proposed.
This algorithm tackles the objective function maximization problem by jointly diagonal-
izing the eigenmatrices of a set of fourth-order cumulant matrices, thereby significantly
improving the separation performance. The computational complexity is high due to
the fourth-order cumulant matrix. To address this, c-FastICA [20] extends the FastICA
algorithm from the real domain to the complex-valued domain. However, c-FastICA is
limited to circular signals. To handle non-circular signals, Novey et al. developed the
nc-FastICA algorithm [21]. Another approach is the RobustICA algorithm proposed in the
literature [22,23], which combines an exact linear search with a cost function called cliquish-
ness. RobustICA addresses the convergence issue of c-FastICA and nc-FastICA, which may
lead to a saddle point. However, RobustICA uses cliquishness as the objective function and
is more sensitive to noise and outliers. Another algorithm, FAJD [24], is a non-orthogonal
joint diagonalization algorithm that avoids degenerate solutions by introducing a penalty
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term to the non-diagonal error criterion equation. However, the penalty term increases the
computational complexity of the algorithm.

The algorithms mentioned above all utilize the zero time delay autocorrelation matrix
of the observed signal for whitening. However, it is important to note that the zero time
delay autocorrelation matrix does not eliminate the impact of additive noise, leading to
lower separation accuracy in low SNR and high JSR scenarios. Additionally, most of these
algorithms rely on the Newton optimizer, which is highly sensitive to the initial value and
prone to becoming stuck in saddle points. In recent years, swarm intelligence-based BSS
objective functions such as kurtosis and negative entropy have gained attention [25–29].
However, these approaches primarily focus on real-valued BSS through instantaneous
mixing models, and they rarely consider swarm intelligence as a joint diagonalization
optimization algorithm. To address these concerns, this paper introduces a time delay
mixing model and proposes a method to correct amplitude and phase errors, ensuring the
accurate demodulation of the communication signal. Secondly, the whitening matrix is
constructed using multiple time delay correlation matrices of the observed signals, which
enhances its anti-noise ability due to the correlation matrix of Gaussian noise being 0.
Additionally, the separation matrix is constructed using multiple complex-valued Givens
matrices. These matrices not only satisfy the orthogonality constraint of the separation
matrix but also effectively reduce the number of parameters to be calculated, simplifying
the separation complexity while ensuring accuracy. To further enhance the performance,
a nonlinear convergence factor and chaotic perturbation are incorporated into the stan-
dard grey wolf optimizer (GWO), resulting in the nonlinear chaotic grey wolf optimizer
(NCGWO). Simulation results demonstrate that the proposed algorithm exhibits higher
separation accuracy and requires fewer iterations, particularly under low SNR and high
JSR conditions. These findings lay a solid foundation for applications such as anti-main
lobe jamming, the reduction of the bit error rate (BER), and the joint estimation of the DOA,
distance, and velocity. The main contributions or novelties of this paper are as follows.

(1) This paper first proposes an integrated receiving system that is based on signal
separation. The system utilizes a time delay mixed model, allowing it to receive radar,
communication, and jamming signals that suffer from time–frequency aliasing. By
applying a blind source separation algorithm, the mixed signals can be effectively
separated. This enables the system to perform various tasks such as target position and
velocity estimation, the extraction of communication information, anti-interference
measures, and direction of arrival (DOA) estimation.

(2) A robust whitening method is employed instead of the traditional method. This
method utilizes multiple time delay covariance matrices of observed signals to con-
struct a whitening matrix, effectively suppressing the influence of noise. Additionally,
we introduce a new method to accurately calculate the coefficients of the delay covari-
ance matrix.

(3) The F-norm of the joint diagonalization is used as the objective function. This replaces
kurtosis and negative entropy, which are traditionally used in swarm intelligence in
solving the blind source separation. Unlike kurtosis and negative entropy, the F-norm
does not require multiple averaging operations, making it more efficient when dealing
with large amounts of data. The F-norm solely relies on matrix operations, which are
known for their fast computation speed.

(4) This paper proposes a nonlinear chaotic grey wolf optimizer to solve the objective
function. In order to optimize the performance, we apply a restriction on the unitary
matrix using multiple complex Givens matrices. This restriction not only reduces the
number of parameters in the solution but also accelerates the overall solution process.

2. Time Delay Mixing Model

The linear time delay mixing model considers both the time delay and amplitude
attenuation of the source signal arriving at each sensor. Considering that there are K
independent far-field narrowband signals incident on an M-element uniform line array
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from different directions θ1, θ2, · · · , θK, if the k-th target signal received by the first array
element is sk(t), the mixing signal received by the m-th array element is [30]

xm(t) =
K

∑
k=1

sk(t) exp(−j2π fkτmk) + nm(t)(1 ≤ m ≤ M, 1 ≤ k ≤ K) (1)

where t = t1, t2, · · · , tN is the time series, N is the array snapshot number, fk is the carrier
frequency of the target signal, τmk is the time delay of the k-th signal reaching the m-th
array element, and nm(t) is the output noise of the m-th array element.

As shown in Figure 2, for a uniform linear array, the time delay can be expressed as
τmk =

d sin θk
c based on the first array element. d is the distance between adjacent elements,

and c is the speed of light. The output of all array elements is expressed in matrix form as

x(t) = As(t) + n(t) (2)

where the observed signal is x(t) = [x1(t), x2(t), . . . , xM(t)]T , the source signal is
s(t) = [s1(t), s2(t), . . . , sK(t)]

T , and the noise is n(t) = [n1(t), n2(t), . . . , nM(t)]T , M ≥ K.
nm(t) is complex-valued Gaussian white noise with zero mean. The output noise of each
array element is independent of each other. The array matrix (mixing matrix) A is

A =


1 1 · · · 1

e−j2πd sin θ1
λ e−j2πd sin θ2

λ · · · e−j2πd sin θK
c

...
...

...
...

e−j2π(M−1)d sin θ1
λ e−j2π(M−1)d sin θ2

λ · · · e−j2π(M−1)d sin θK
λ

 (3)

where λ is the signal wavelength. It is obvious that the array flow pattern matrix A contains
the DOA of the signal.
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The purpose of BSS is to obtain the separation matrix B by some algorithm, so that

y(t) = Bx(t) (4)

where y(t) is the separated signal (estimation of the source signal). CVBSS generally
has uncertainty in the amplitude, phase, and sequence. Amplitude ambiguity affects
signal detection and phase ambiguity affects signal demodulation in an integrated system.
Therefore, amplitude and phase correction are needed.

Without considering noise, if the array is ideal, the separation matrix B and the mixing
matrix A have the following relationship.

BA = DP (5)
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where P is the permutation matrix of dimension K × K, which represents the sequence
ambiguity of CVBSS. D = diag

{
α1, α2, · · · , αK

}
is the diagonal matrix, which represents

the amplitude and phase ambiguity of CVBSS. αk ∈ C denotes the amplitude phase
ambiguity between the i-th estimated signal and its corresponding source signal. When
there is no amplitude phase ambiguity in this signal component, αi = 1. Â is the mixing
matrix estimated using the CVBSS. Then, Â is the left pseudo-inverse matrix of B, i.e.,
Â =

(
BHB

)−1BH . Replacing it into Equation (5),

Â = AP−1D−1 (6)

Since the inverse of the permutation matrix P−1 is still a permutation matrix, AP−1

is swapping the positions of some columns in A. Let the left-to-right columns of A be
numbered 1, 2, · · · , K. The numbering of the replacement is P1, P2, · · · , PK,φk = 2πd sin θk

λ .
Then, AP−1 can be expressed as

AP−1 =


1 1 · · · 1

e−jφp1 e−jφP2 · · · e−jφPK

...
...

. . .
...

e−j(M−1)φP1 e−j(M−1)φP2 · · · e−j(M−1)φPK

 (7)

Substituting AP−1 and D into Equation (6),

Â =


1 1 · · · 1

e−jφP1 e−jφP2 · · · e−jφPK

...
...

. . .
...

e−j(M−1)φP1 e−j(M−1)φP2 · · · e−j(M−1)φPK




α−1
1

α−1
2

. . .
α−1

K



=


α−1

1 α−1
2 · · · α−1

K
α−1

1 e−jφP1 α−1
2 e−jφP2 · · · α−1

K e−jφPK

...
...

. . .
...

α−1
1 e−j(M−1)φP1 α−1

2 e−j(M−1)φP2 · · · α−1
K e−j(M−1)φPK


(8)

It can be seen that the elements of the first row of Â contain exactly the amplitude phase
ambiguity information of each signal. The amplitude phase ambiguity can be extracted
from Â to correct the estimated signal for amplitude phase. Thus,

D−1 = diag
{

Â(1, :)
}

(9)

After considering the noise, the output obtained by CVBSS is

y(t) = BAs(t) + Bn(t)
= DPs(t) + ∆s(t)

(10)

where ∆s(t) = Bn(t) denotes the error due to additive noise. Therefore, the amplitude phase
correction for CVBSS can be performed by left multiplying the matrix y(t) by D−1, i.e.,

ŝ(t) = D−1y(t) (11)

Substituting y(t) into Equation (11),

ŝ(t) = Ps(t) + D−1∆s(t) (12)

It can be seen that the error ∆s(t) still exists between ŝ(t) and s(t) due to the sequence
ambiguity P and additive noise. From the expression of A, for each column of A, the DOA
corresponding to a source signal is obtained by
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θ̂k =
1

M− 1

M−1

∑
i=1

arcsin
(
−λarg{âk(i + 1)/âk(i)}

2πd

)
(13)

âk(i) represents the i-th element in column k of A.

3. Robust Whitening

The conventional whitening process utilizes the zero time delay correlation matrix of
the observed signal, which cannot eliminate the effect of additive noise. In [31,32], a robust
whitening algorithm is proposed using the property that the time delay correlation matrix
is insensitive to white noise. The time delay correlation matrix of the observed signal is

Rx(τ) = E
[
x(t)xH(t− τ)

]
= ARs(τ)AH , τ 6= 0 (14)

where τ is the time delay and Rs(τ) is the time delay correlation matrix of the source signal.
Since the signals are all complex, R̃x(τ) should be replaced by the ergodic matrix, i.e.,

R̃x(τ) =
1
2

(
Rx(τ) + RH

x (τ)
)

(15)

However, R̃x(τ) is not a positive definite matrix. The literature [32] demonstrated
that when the number of delay-dependent matrices and observed signals is equal, a linear
combination of multiple delay-dependent matrices can form a positive definite matrix, i.e.,

C =
M

∑
m=1

βmR̃x(τm) (16)

where β = [β1, β2, · · · , βM] ∈ RK is the real vector, i.e., the coefficients of the time delay
correlation matrices. τm(1 ≤ m ≤ M) is the time delay sequence. Thus, the key to the

algorithm lies in how to determine β. R̃x(τm) is an ergodic matrix, so C =
M
∑

m=1
βmR̃x(τm) is

also an ergodic matrix. The minimum eigenvalue of the positive definite matrix should
be greater than 0. A new method of finding β is as follows. Let the set C be all linear
combinations of R̃x(τm), i.e.,

C =
{

K

∑
k=1

βkR̃x(τk) | β ∈ RK

}
(17)

When C =
K
∑

k=1
βkR̃x(τk) is a positive definite matrix, the minimum eigenvalue of C

should be no less than a given threshold σ ∈ R+, i.e., O+
σ ∩ C 6= ∅, where O+

σ repre-
sents a set of minimum eigenvalue matrices. It is equivalent to minimizing the following
optimization problem.

minF(O, C) =‖ O− C ‖, O ∈ O+
σ , C ∈ C (18)

H = span
{

R̃x(τ1), · · · , R̃x(τK)
}

is the subspace of R̃x(τk) and OH(O) is the orthogo-
nal projection operator from O toH. A is the M2 × K tensor, i.e.,

A =
[
vec
(
R̃x(τ1)

)
, · · · , vec

(
R̃x(τK)

)]
(19)

OH is

OH = A
(
AHA

)−1
AH (20)
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Initialize C ∈ C, β = [1, 1, · · · , 1], and calculate the eigenvalue decomposition [UC, ΛC]
of C. If the minimum eigenvalue is less than the given threshold σ, then update O and C,
respectively, according to the following equation.

ΛP = max(ΛC, σI) (21)

O = UCΛoUH
C (22)

C = vec−1(OH(O)) (23)

where I is the unit matrix, until the minimum eigenvalue of C is greater than or equal to
the given threshold σ.

Use C* to denote the final derived positive definite matrix. The eigenvalue decomposi-
tion of C* is performed to obtain the eigenvalues and eigenvectors, respectively. The
K large eigenvalues and the corresponding eigenvectors are selected and denoted as
Λs = diag

(
σ2

1 , σ2
2 , · · · , σ2

K
)

and Us = [u1, u2, · · · , uK], respectively, which leads to the
following robust whitening matrix.

V = Λ−1/2
s UH

s (24)

The whitening signal after robust whitening is expressed as

z(t) = Vx(t) (25)

The above method can not only attenuate the effect of noise, but also achieve dimen-
sionality reduction and reduce the amount of computation.

4. Objective Function

At present, the objective function commonly used in CBSS is kurtosis maximization in
a complex domain. However, kurtosis needs to be averaged many times, which requires a
large amount of computation when there are many snapshots. Therefore, this paper chooses
the F-norm in joint diagonalization as the objective function. It only needs to multiply the
matrix, which can greatly reduce the running time. For a given set of diagonalizable target
matrices M =

{
Ml , l = 1, . . . , L

}
, where Ml is a square matrix of K × K, the goal of the

F-norm objective function is to solve W by minimizing the following equation

J(W) =
K

∑
k=1

off
(

WMkWH
)

(26)

where off(·) is the sum of the F-norms of all non-diagonal elements, expressed as

off(F) ,‖ F− diag(F) ‖2
F= ∑

i 6=i
F2

ij (27)

where F is an arbitrary matrix. Obviously, the F-norm cost function is to measure the
degree to which the matrix group WMkWH deviates from the diagonal matrix to solve
the optimal solution. W = 0 is a global minimal solution satisfying this cost function if
there is no additional constraint. However, W = 0 is called a trivial solution. Constrained
diagonalization matrix W is a unitary matrix, i.e., WWH = I. Obviously, the diagonalized
matrix can avoid a trivial solution. At present, there are four-order cumulants of statistically
independent sources and second-order statistics of statistically uncorrelated sources to
obtain joint diagonalized matrices. Because the fourth-order cumulant of Gaussian white
noise is zero, it has a strong anti-noise ability. Moreover, by whitening and selecting
multiple cumulant matrices for joint diagonalization, a very robust solution can be obtained.
Therefore, the fourth-order cumulant of the whitening signal is used to obtain the joint
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diagonalization matrix group. The (p,q) element in the fourth-order cumulant matrix Qz(M)
of the whitening signal z(t) is

[Qz(M)]p,q =
K

∑
i=1

K

∑
o=1

Qz(p, q, i, o)mi,o (28)

where M is any matrix of K × K and mi,o is the (i,o) element of matrix M. The fourth-order
cumulant of whitening signal z(t) is

Qz(p, q, i, o) = cum
(
zp(t), z∗i (t), zq(t), z∗o (t)

)
,

p, q = 1, 2, · · · , K
(29)

where z∗ represents the conjugate of z, and zq(t) is the i-th line of whitening signal z(t).
cum(·) is the fourth-order cumulant operation

cum
(
zp(t), z∗i (t), zq(t), z∗o (t)

)
= E

(
zp(t)zq(t)z∗i (t)z

∗
o (t)

)
− E

(
zp(t)z∗i (t)

)
E
(
zq(t)z∗o (t)

)
−E
(
zp(t)z∗o (t)

)
E
(
zq(t)z∗i (t)

)
− E

(
zp(t)zq(t)

)
E
(
z∗i (t)z

∗
o (t)

) (30)

Obviously, the number of elements of Qz(p, q, i, o) is K × K × K × K. Qz is constructed
as an K2 × K2 dimensional matrix Hz, where

Hz(n1, n2) = Qz(p, q, k, l) (31)

where n1 = p + (q− 1)K, n2 = o + (i− 1)K. The K2 × 1 eigenvectors corresponding to
K maximum eigenvalues λk of matrix Hz are uk(k = 1, 2, · · ·K), and uk is the performed
matrix operation to obtain vec−1(uk). By the joint diagonalization of Mk = λkvec−1(uk), the
unmixing matrix can be obtained.

Unitary matrices can be expressed in the form of the continuous multiplication of
Givens matrices and extended to the complex field to express the following complex Givens
matrices.

W = TK−1TK−2 · · ·T1,
T1 = T1,KT1,K−1 · · ·T1,2,

T2 = T2,KT2,K−1 · · ·T2,3, · · ·
TK−1 = TK−1,K2

(32)

where

Tρ,µ =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cejϕ1 · · · −dejϕ2 · · · 0
...

...
. . .

...
...

0 · · · dejω3 · · · cejϕ4 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


N×N

(33)

where K is the matrix order, i.e., the number of sources. c = cos θ,d = sin θ,θ ∈ (0, 2π) is the
rotation angle and satisfies θ1 + θ4 = θ2 + θ3. Because of the constraint θ1 + θ4 = θ2 + θ3,
one unknown parameter can be reduced. Therefore, the number of unknown parameters
of each complex Givens matrix is 4. T1 contains K − 1 complex Givens matrices, T2
contains 2K complex Givens matrices, and so on; TN−1 contains 1 complex Givens matrix.
Each complex Givens matrix contains 4 unknown parameters, so the number of unknown
parameters of W is
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(1 + 2 + · · ·+ (K− 2) + (K− 1)) · 4
= (1+(K−1))(K−1)

2 · 4
= K(K−1)

2 · 4 = 4C2
K

(34)

where C is a combination. If W is not represented by the concatenation of complex Givens
matrices, since W is of order K and each element is in complex form with 2 unknown
parameters, the number of unknown parameters included is 2K2. Therefore, the number
of unknown parameters that can be reduced 2K2 − 4C2

K = 2K. For 4 source signals,
W = T3T2T1 = T12T13T14T23T24T34 can be expressed as follows:

W =


cos ϕ1ejϕ2 − sin ϕ1ejϕ3 0 0
sin ϕ1ejϕ4 cos ϕ1ej(ϕ3+ϕ4−ϕ2) 0 0

0 0 1 0
0 0 0 1

·


cos ϕ5ejϕ6 0 − sin ϕ5ejϕ7 0
0 1 0 0

sin ϕ5ejϕ8 0 cos ϕ5ej(ϕ7+ϕ8−ϕ6) 0
0 0 0 1

·


cos ϕ9ejϕ10 0 0 − sin ϕ9ejϕ11

0 1 0 0
0 0 1 0

sin ϕ9ejϕ12 0 0 cos ϕ9ej(ϕ12+ϕ11−ϕ10)

·


1 0 0 0
0 cos ϕ13ejϕ14 − sin ϕ13ejϕ15 0
0 sin ϕ13ejϕ16 cos ϕ13ej(ϕ16+ϕ15−ϕ14) 0
0 0 0 1

·


1 0 0 0
0 cos ϕ17ejϕ18 0 − sin ϕ17ejϕ19

0 0 1 0
0 sin ϕ17ejϕ20 0 cos ϕ17ej(ϕ20+ϕ19−ϕ18)

·


1 0 0 0
0 1 0 0
0 0 cos ϕ21ejϕ22 − sin ϕ21ejϕ23

0 0 sin ϕ21ejϕ24 cos ϕ21ej(ϕ24+ϕ23−ϕ22)



(35)

Based on the analysis above, the proposed algorithm converts the solution into the
rotation angle in the complex Givens matrix. This algorithm not only guarantees the
orthogonality of the separation matrix in the complex domain and enhances the accuracy
of the solution, but also reduces the number of unknown parameters. After obtaining the
unmixing matrix W, the separated signal is

y(t) = Wz(t) (36)

The separated matrix is
B = WV (37)

The estimated mixing matrix is

Â =
(

BHB
)−1

BH (38)

5. Optimization Algorithm

Traditional CVBSS commonly utilizes Newton’s method or the gradient method as the
optimization algorithm. However, these methods are sensitive to the initial value and can
be greatly affected by the step size, often resulting in solutions becoming trapped in saddle
points. On the other hand, swarm intelligence algorithms offer several advantages, such as
high accuracy, fast convergence, and no need for parameter adjustment. In this study, we
employ the grey wolf optimizer (GWO) [33,34] as the optimization algorithm. Several GWO
algorithms have been developed to improve its performance. Ref. [35] introduces chaos
theory into the GWO algorithm to enhance its global convergence. Ref. [36] enhances the
global search ability by improving the chaotic tent map used to initialize the wolf, and also
uses a nonlinear convergence factor based on the Gaussian distribution curve to balance
global and local searchability. The detailed steps of GWO are not extensively discussed.
We introduce a new nonlinear convergence factor and chaotic perturbation to enhance the
accuracy and convergence speed of the optimization process. This modified algorithm
is referred to as the nonlinear chaotic grey wolf optimizer (NCGWO). By incorporating
chaotic motion, which possesses spatial ergodicity and extrinsic randomness, the NCGWO
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is capable of exploring the entire solution space without repetition. Consequently, the
overall quality-seeking capacity and the ability to find local superiority are significantly
improved [37].

In GWO, the convergence factor ρ decreases linearly with the increase in iteration
times. It is impossible to balance the global and local search capabilities, which is not
conducive to the solution of the algorithm. In this paper, a new nonlinear convergence
factor is used to improve the GWO. The expression of the convergence factor equation is

ρ = exp(iter− ((Max_iter + gen)/(Max_iter− iter))) (39)

where Max_iter is the maximum number of iterations, and iter is the current iteration.
The equation of the Statistical Parametric Map (SPM) is as follows:

γ(ϑ + 1) =



mod
(

γ(ϑ)
η + µ sin(πγ(ϑ)) + rand, 1

)
, 0 ≤ γ(ϑ) < η

mod
(

γ(ϑ)/η
0.5−η + µ sin(πγ(ϑ)) + rand, 1

)
, η ≤ γ(ϑ) < 0.5

mod
(
(1−γ(ϑ))/η

0.5−η + µ sin(π(1− γ(ϑ))) + rand, 1
)

, 0.5 ≤ γ(ϑ) < 1− η

mod
(
(1−γ(ϑ))

η + µ sin(π(1− γ(ϑ))) + rand, 1
)

, 1− η ≤ γ(ϑ) < 1

(40)

where η and µ are the control parameters, respectively. γ is the sequence value of the SPM
map. ϑ is the sequence number. rand is a random number. When η ∈ (0, 1), µ ∈ (0, 1), the
system is in a chaotic state. As shown in Figure 3, the SPM map is uniformly distributed
and has a uniform probability density distribution. It indicates that the SPM map has good
ergodicity. The following are the steps of the chaotic perturbation operator.
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Figure 3. SPM map, (a) Scatter plot, (b) frequency statistics.

Step 1: Set the number of chaotic perturbations R and iterate to generate a sufficient
number of chaotic sequences. Randomly select R values in the above chaotic sequence to
obtain the chaotic sequence Ĉ = {ĉ1, ĉ2, · · · , ĉR}.

Step 2: Let {Xh, h = 1, 2, · · ·H} represent the current wolves, Xh = {Xh1, Xh2, · · · , Xhu,
· · · , XhU} represent the i-th wolf, U = 4C2

K. gX =
{

gX∗1 , gX∗2 , · · · , gX∗u, · · · , gX∗U
}

repre-
sents the position where the optimal wolf is located. After chaotic perturbation R times,
R chaotic wolves are obtained within the neighborhood of the optimal wolf, denoted as
{gXr, r = 1, 2, · · · R}. Equation (41) represents the position of each wolf.

gXr = {gXr
1, gXr

2, · · · , gXr
u, · · · , gXr

U} (41)

gXr
u = gX∗u + ω · ĉr · γu (42)
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In the above equation, the value in the j-th dimensional variable of the k-th wolf
obtained after chaotic perturbation is denoted by gXr

u, and the perturbation radius in the
j-th dimensional variable space is denoted by γu. The sign function ω is obtained according
to Equation (43).

ω =

{
1, if rand ≥ 1/2
−1, if rand < 1/2

(43)

where rand ∈ (0, 1).
Each variable space has different ranges, i.e., each variable takes values in different

ranges, and the perturbation radius needs to be discussed in dimensions. The pertur-
bation radius of the j-th dimensional variable space can be calculated according to the
following equation.

γu =

∣∣∣∣∣ 1
H

H

∑
i=1

xhu − gx∗u

∣∣∣∣∣ (44)

Step 3: The newly generated R chaotic wolves are ranked in fitness with the current H
wolves, and greedy decisions are made to select the optimal H wolves among R + H wolves
and proceed to the next iteration.

Algorithm 1 is major steps of the proposed method.

Algorithm 1. Flow of the proposed algorithm.

Input: Observed signal x(t), threshold σ, chaotic perturbations R.
Output: Mixing matrix of estimation Â, separated signal y(t), estimated DOA, BER, estimated

target distance and velocity.
Step 1: Wavelet denoising of the observed signal;
Step 2: Calculate the time delay correlation matrix group R̃x(τ)
Step 3: Calculate optimal coefficient β* according to Formulas (26)–(28), and get unitary

matrix C*;
Step 4: Robust whitening according to Equations (14)–(17); robust whitening is performed

according to Equations (29) and (30) to obtain whitening signal z(t);
Step 5: Calculate diagonalizable target matrix group M = {Ml, l = 1, . . ., L} of whitening

signals;
Step 6: According to the number of sources, determine the number and dimension of wolves,

and initialize the positions of wolves;
Step 7: Calculate the nonlinear convergence factor ρ according to Equation (39) and update

the wolves’ positions according to (40);
Step 8: Chaos disturbance and greedy decision according to Equations (40)–(44);
Step 9: Judge whether the maximum iteration is reached. If so, output the unmixing matrix

and the estimated mixing matrix according to Equations (36)–(38), calculate the separated signal.
If not, return to Step 7 for the next iteration;

Step 10: Perform DOA estimation, BER detection, target distance and velocity estimation.

6. Simulation Analysis

In this paper, the similarity coefficient and performance index (PI) are utilized to
quantify the separation performance, while the mean square error (RMSE) is employed to
measure the accuracy of direction of arrival (DOA) estimation. The equation is presented
as follows.

ζij = ζ(si, yj) =

∣∣∣∣∣∣∣∣∣∣
N
∑

t=1
yj(t)si(t)√

N
∑

t=1
y2

j (t)
N
∑

t=1
s2

i (t)

∣∣∣∣∣∣∣∣∣∣
(45)

PI =
1

m(m− 1)

 n

∑
i=1

 n

∑
j=1

∣∣gij
∣∣

max
k
|gik|

− 1

+

 n

∑
j=1

∣∣gij
∣∣

max
k

∣∣∣gkj

∣∣∣ − 1


 (46)
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RMSE =

√√√√ 1
K

K

∑
j=1

(
θ̂j − θj

)2
(47)

The true and estimated values of the i-th source signal are si and yj, respectively. The
closer the similarity coefficient is to 1, the more similar the source signal is to the separated
signal, and the higher the separation accuracy. G is the system matrix, G = BA, where B
is the separated matrix and A is the mixing matrix. The ij-th element of G is denoted as
gij; the maximum element value of the i-th row vector in this matrix is denoted as max

k
|gik|.

Similarly,
∣∣∣∣max

k

∣∣∣∣gkj | represents the maximum element value of the j-th column vector. θj

represents the true DOA value, θ̂j represents the estimated value, and K is the number
of DOAs.

6.1. Parameter Setting

It is assumed that the enemy radar signal, our detection signal, the jamming signal,
and the communication signal are time–frequency mixing. After the mixing signals are
separated, DOA estimation, anti-main lobe jamming, target range and velocity estimation,
and BER detection are carried out. The target is located at the 2000th range bin, the radial
velocity is 60 m/s, and the angle is 60◦. The radar transmits a linear frequency modulation
(LFM) pulse signal. The bandwidth is 10MHz, the time width is 10 us, and the pulse
repetition period is 100us. The jamming signal is sliced jamming of smart jamming, located
within the main lobe, and the angle is 58◦. The communication signal is quadrature phase
shift keying (QPSK) with angle 80◦, the carrier frequency is 5 MHz, and the code rate
is 2 M/s. The enemy radar transmits a linear FM continuous wave signal. The starting
frequency is 0 MHz, the cutoff frequency is 15 MHz, and the angle is 20◦. The sampling
rate of the above signal is 100MHz, and the observed time is 500 us. The SNR varies from
0 to 20 dB, and the JSR varies from 10 to 30 dB. The radio frequency has been changed to
intermediate frequency. Array element spacing is half of the minimum wavelength of the
signal and the number of array elements is 20.

6.2. Separation Performance Analysis

Figure 4 shows the time and time–frequency plots of the source signal, observed signal
(first four channels), and separated signal at SNR = 10 dB and JSR = 20 dB. The waveform
plots of 40–60 us are taken for a clear display. From the source signal time–frequency
diagram, it can be seen that the source signals overlap each other in the time–frequency
domain, which is difficult to be separated by the traditional filtering method. Since the
jamming is relatively large, the observed signal has been basically covered by the jamming
signal, and only the time–frequency points of the jamming model can be seen.
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Figure 4. Time domain and time–frequency domain plots of the source signal, observed signal
(first four channels), and separated signal at SNR = 10 dB and JSR = 20 dB. (a) Source signal wave-
form (0–500 us), (b) source signal waveform (40–60 us), (c) source signal time–frequency diagram,
(d) observed signal time–frequency diagram, (e) observed signal waveform, (f) separated signal
waveform (JADE), (g) separated signal waveform (cFastICA), (h) separated signal waveform (SOBI),
(i) separated signal waveform (RobustICA), (j) separated signal waveform (FAGD), (k) separated
signal waveform (proposed), (l) separated signal after amplitude phase correction (proposed).

The separated signal waveforms clearly show that each algorithm produces different
distortions. Due to its high jamming power, the jamming signal separated by each algorithm
is the most distinct. Among the six algorithms, the proposed algorithm achieves the
highest separation accuracy. It closely resembles the source signal with minimal distortion.
After applying amplitude and phase correction, the resulting signal matches the source
signal in terms of both amplitude and phase. Table 1 presents the similarity coefficient,
performance index, and iteration times for the different algorithms. This algorithm yields
the highest similarity coefficients for all signals except the jamming signal. Moreover, the
average similarity coefficient exceeds 0.9, indicating a high level of separation accuracy.
Additionally, this algorithm exhibits the smallest performance index, suggesting the highest
estimation accuracy for the mixing matrix. Compared to cFastICA, RobustICA, and FAGD,
it requires the fewest iterations and achieves a faster convergence speed.

Table 1. Similarity coefficient, performance index, and iterations.

Algorithm JADE cFastICA Sobi RobustICA FAGD Proposed

Similarity coefficient

0.7694 0.4318 0.5435 0.5173 0.8384 0.8680
0.9908 0.9701 0.9679 0.9907 0.9796 0.9888
0.5669 0.2867 0.2965 0.3210 0.7079 0.8860
0.7784 0.5428 0.4567 0.7001 0.8311 0.9260

Average 0.7768 0.5630 0.5662 0.6323 0.8392 0.9160

Performance index 0.0175 0.1281 0.1301 0.0886 0.0086 0.0054

Iteration \ 55 \ 114 94 38

Figure 5 is the objective function curve of Equation (26) obtained by 30 times Monte
Carlo with different algorithms. The CGWO [35], IGWO [36], WOA [38], SOA [39],
NGO [40], PSO [41,42], SSA [43], and DBO [44] are all excellent swarm intelligence optimiz-
ers proposed in recent years. The above optimizers all have the problems of prematurity
and low accuracy in different degrees. Compared with GWO, IGWO, and CGWO, NCGWO
demonstrates higher convergence speeds and solution accuracy by incorporating improved
strategies such as a nonlinear convergence factor and chaotic disturbance strategy. The
integration of these strategies enables the NCGWO to generate more dominant solutions,
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surpassing the performance of the aforementioned optimizers. Compared with all the above
algorithms, the NCGWO proposed in this paper has high accuracy and a fast convergence
speed, making it very suitable to solve CVBSS problems.
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Figure 5. Objective function curves of different optimizers.

Figure 6 presents the average similarity coefficients under different SNRs and JSRs. The
comparison diagram of similarity coefficients under different SNRs reveals the following
observations. (1) As the SNR increases, the separation performance of each algorithm
improves. The proposed algorithm exhibits a relatively slow deterioration in performance
as the SNR decreases. Notably, when the SNR is between 0 and 10 dB, the proposed
algorithm outperforms other algorithms, indicating better separation performance at a
low SNR. (2) The performance order of each algorithm is as follows: Sobi < cFastICA <
RobustICA < JADE < FAGD < Proposed. The similarity coefficient diagram of different
JSRs shows the following trends. (1) As the JSR increases, the separation performance
of each algorithm decreases. However, the proposed algorithm exhibits a relatively slow
deterioration in performance as the JSR increases. (2) When the JSR is between 20 and 30 dB,
the proposed algorithm again outperforms other algorithms, indicating better separation
performance under a high JSR. (3) The performance order of each algorithm remains the
same: Sobi < cFastICA < RobustICA < JADE < FAGD < Proposed.
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cient under different SNR, (b) average similarity coefficient under different JSR.

Figure 7a shows the mean square error of DOA estimation under different SNRs.
With the increase in SNR, the DOA estimation RMSE decreases. Obviously, compared
with traditional methods, the proposed algorithm is closer to the real value and has
higher estimation accuracy. Figure 7b is the BER under different SNRs after coherently
demodulating the separated QPSK signal. When the SNR is greater than 10 dB, the BER is
0, so the BER of 0–10 dB is given in the figure. With the increase in SNR, the BER decreases.
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Because of the high separation accuracy of the proposed algorithm, the BER under the
same SNR is lower than that of other algorithms.
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Figure 7. DOA estimation RMSE and BER under different SNR. (a) DOA estimation RMSE under
different SNR, (b) BER under different SNR.

6.3. Target Range and Velocity Estimation

The integrated system needs to accomplish the detection task, which requires the
estimation of the target distance and velocity. The JADE algorithm in [17,18,20] is selected
for comparison. Let SNR = 0 dB (array level) and JSR = 30 dB. If pulse compression is
performed directly on the observed signal, as shown in Figure 8, multiple blurred false
targets will appear and the distance of the target cannot be obtained.
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Figure 8. Pulse compression of the observed signal. (a) Single pulse, (b) multiple pulses.

The observed signal is separated using the JADE and pulse compression is performed
on the radar echo signal. As shown in Figure 9, multiple spikes appear and the distance at
the first spike is not the true distance of the target, resulting in incorrect target detection.
After performing pulse compression on multiple pulses, multiple blurred points appear
and the distance of the target cannot be estimated. This is caused by the low separation
accuracy of the JADE under a low SNR and high JSR.

Figure 10 shows the pulse compression for single and multiple pulses after the sepa-
ration of the observed signals by the proposed algorithm. Pulse compression of a single
pulse shows that the first spike is approximately 700 higher in amplitude than the second
spike, and the target distance can be successfully detected. After compressing multiple
pulses, a clearer line can be seen, and thus the target distance can be estimated.
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Figure 9. Pulse compression of the observed signal (JADE). (a) Single pulse, (b) multiple pulses.
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Figure 11 shows the three-dimensional and two-dimensional plots of the pulse Doppler
processing of the radar echo signal, using the proposed algorithm. A peak and a bright
spot can be seen in the three-dimensional and the two-dimensional plot, respectively. The
proposed algorithm can successfully estimate the target distance and velocity.
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Figure 11. Pulsed Doppler processing of the echo signal. (a) Three dimensions, (b) two dimensions.

7. Conclusions

In this paper, a new method for CVBSS is proposed to address the problems of low
separation accuracy, slow convergence, and poor robustness in the case of a low SNR and
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high JSR. Firstly, a time delay mixing model based on a uniform line array is established,
and an amplitude phase correction and DOA estimation method is given on the basis
of this model. Then, the whitening matrix is calculated by the linear combination of
multiple time delay correlation matrices based on the feature that the time delay correlation
matrix is insensitive to noise. Secondly, the whitening matrix is calculated by the linear
combination of multiple time delay correlation matrices based on the feature that the
time delay correlation matrix is insensitive to noise. Thirdly, to further improve the
optimization accuracy and convergence speed, a nonlinear convergence factor and chaotic
perturbation operator are added to the GWO. Finally, NCGWO is used to optimize the joint
diagonalization objective function. The solution of the separation matrix is transformed into
the solution of the rotation angle in a complex-valued Givens matrix. Simulation results
show that the proposed algorithm has higher separation accuracy and fewer iteration
times compared with the traditional algorithm. At the same time, it can improve the
DOA estimation accuracy, reduce the communication bit error rate, and achieve the joint
estimation of the target distance and velocity.

Due to equipment limitations and objective conditions, it is sometimes impossible
to deploy an extensive number of sensors, resulting in a situation where the number of
sensors is smaller than the source signal. BSS with fewer sensors than the source signal is
called underdetermined blind source separation. Consequently, the problem of BSS with
integrated reception under an underdetermined case emerges as a significant research area
for the future.
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