i:;l?é electronics @\py

Article

RETRACTED: A Global Structural Hypergraph Convolutional
Model for Bundle Recommendation

Xingtong Liu *© and Man Yuan *

check for
updates

Citation: Liu, X.; Yuan, M.
RETRACTED: A Global Structural
Hypergraph Convolutional Model
for Bundle Recommendation.
Electronics 2023, 12, 3952.
https://doi.org/10.3390/
electronics12183952

Academic Editors: Jesu- Boticario,
David Martin Géms ., Jose M.

Alcaraz Calero 7 i Ping-Feng . ai

Received: 2 Augus. 3

Revise<: 0 September

A< cptea. September 20.

Cublished: 1 September 2023
‘racted: 7 March 2024

e

Copyright: 023 by the authors.
Licensee MUPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Computer & Information Technology, Northeast Petroleum University, Fazhan . 4,
Dagqing 163318, China
* Correspondence: Ixtdyx2022@163.com (X.L.); yuanman@nepu.edu.cn (M.

Abstract: Bundle recommendations provide personalized sugges.. 3 to us .rs Ly cembini.ig related
items into bundles, aiming to enhance users’ shopping ex e.’ences.  ooost merch ats’ sales rev-
enue. Existing solutions based on graph neural networ” s (GNN) face se  al sign‘ .cant challenges:
(1) it is demanding to explicitly model multiple cor .pi. ‘ssociations usin,  .idard graph neural
networks, (2) numerous additional nodes and < (ges are . oduced to apr roximate higher-order
associations, and (3) the user-bundle histori  interaction de. ‘re highly sparse. In this work, we
propose a global structural hypergraph < onvolutional model for ~ Tie recommendation (SHCBR)
to address the above problems. Speci.cally, we jointly incorporz.e multiple complex interactions
between users, items, and bundles int  a relational hypergraph without introducing additional nodes
and edges. The hypergraph structu. inherently incorpc ates higher-order associations, thereby
alleviating the training burden on ne. ' networks ane .he dilemma of scarce data effectively. In
addition, we design a special matrix prop ">~ = * (hat captures non-pairwise complex relation-
ships between entities. « . **em nodes as links, structural hypergraph convolutional networks
learn representations of t sers ai.. ~dles on a relational hypergraph. Experiments conducted
on two real-world datasets lems istrate . .t the SHCBR outperforms the state-of-the-art baselines
by 11.07-2547% on Recall a. . 16.81-33.03% on NDCG. Experimental results further indicate that
the appr_ach b.  d on hypery -aphs can offer new insights for addressing bundle recommendation
chall- ges. The ¢ ydes and data s have been publicly released on GitHub.

Aawvwora.  recominici... systems; bundle recommendation; hypergraph neural networks;
hypergraph

1. In. v tion

R_commender systems have emerged as a crucial tool in the e-commerce industry,
contributing significantly to improving user experiences and driving product sales with
aeir development [1,2]. Traditional recommender systems primarily emphasize individual
item recommendations, which could not meet the growing personalized needs of users.
To further enhance user satisfaction, the bundle recommendation as a marketing strategy
has been proposed. Based on users’ purchasing behavior and the relevance of items, the
bundle recommendation combines relevant items into bundles, such as music playlists [3],
game bundles [4,5], and drug packages [6]. Recommending bundles containing related
products not only provides users with more advantageous personalized combinations but
also aids businesses in achieving profitability [7].

The essence of recommender systems lies in utilizing historical interaction informa-
tion and similarity relationships between entities to predict the likelihood of interactions
between users and items [8]. Traditional recommender systems only involve two types of
entities: users and items. However, bundle recommendation tasks encompass three types
of entities: users, items, and bundles. Therefore, the decision-making process for users to
choose bundles will be more complex compared to selecting individual items. Specifically,
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users will simultaneously consider multiple items in the bundle and their combination
discounts. Sometimes, even if users like all the items contained, they may not prefer the
bundle because it is not a satisfactory well-matched combination. Only when users are
highly satisfied with the combination of items within this bundle will they choose the
bundle for consumption. Therefore, user-bundle interactions are usually sparser than
user—item interactions. Moreover, the user-item-bundle relationship is much m~== =~mplex
than the pairwise relationship. For example, a user can interact with m-.aple nc or
bundles, and an item can exist in multiple bundles. In this case, the affir’.y relations arc 2
longer dyadic (pairwise) but rather an integration of multiple binary - *ionships betwe:
users, items, and bundles (three types of entities). Accordingly, the afor.  ~ntioned issur ;
make bundle recommendation tasks highly challenging.

Over the past few years, graph neural networks (GM.Ns) [9] have bec te ore of
the research hotspots. GNNs are a type of neural netws  designe  for proce. .ig and
learning from graph-structured data. The core idea hehin.  "NMs [10,11] is to perform
message passing between neighboring nodes in th* grephto.  mnode re’ resentations
based on their local neighborhood informatior~ his allows GI\  to c.pture complex
and non-linear relationships between nodes i the  aph. Due to the  :tfective modeling
of graph-structured data, GNNs have eme.2ed as a  tting-edge cigorithm in the field
of recommender systems, finding wi< . woplications. ‘r example, GNNs have been
applied in item recommendation [*_,13], session-based 1« amendation [14,15], social
recommendation [16,17], and buns ie recommendation [18,77].

Despite the success achieve by existing solutions based on GNNs in bundle rec-
ommendation tasks, there are stii ‘ome significant  nallenges that need to be addressed.
Specifically, due to the interactions.  ‘ween users ~ .d items/bundles, as well as the affilia-
tion relationships between items and. "=~ *"  difficult to explicitly model the multiple
complex associations « ~ three types or entities using standard graph neural networks.
Furthermore, tradition. | grap. == limited in the sense that each edge can only connect
two nodes. Consequentl - a svostari..  number of additional nodes and edges need to be
introduced t~ approximat “agher-oruer associations between entities, which increases the
training“ura.  onneural r *tworks. Finally, recommender systems generally encounter the
challs 1ge of sp rse user-ite. » ‘iteraction history data. Since bundles encompass multiple
ite.ns, he use -hundle inte.action history data is inherently scarcer than the user—item
_‘*eract: histoi, therefore, the issue of data sparsity becomes more pronounced
inbundle1 >mmendation scenarios. The highly sparse historical interaction data make
learning with.  r=lnetworks difficult and unstable. This also makes it difficult for bundle

commendatio . models to accurately model user preferences.

Hypergraphs [20] provide a natural solution to address the above limitations. In
com, -isea to traditional graphs, hypergraphs represent a more flexible type of graph
structu ¢. Figure 1 illustrates the differences between traditional graph structures and
hypergraph structures. In traditional graphs, an edge can only connect two nodes, while a
yperedge in hypergraphs can connect multiple nodes simultaneously. Therefore, hyper-
graphs can more flexibly represent and capture complex relationships in real applications.
Compared to traditional graph structures, hypergraph structures possess more intricate
topologies and enhanced expressive capabilities. Consequently, some problems could be
easier to solve with the more accurate representation provided by hypergraphs. For bundle
recommendation tasks, higher-order complex associations exist among users, items, and
bundles. Hypergraphs inherently possess advantages in handling such data.

In this work, we propose a novel global structural hypergraph convolutional model
for bundle recommendation (SHCBR), which jointly incorporates multiple complex in-
teractions between users, items, and bundles into a relational hypergraph. We directly
connect user nodes, item nodes, and bundle nodes (three types of nodes) with a hyperedge,
which explicitly models complex associations among the three types of entities without
introducing additional nodes and edges. Further, we design a special matrix propaga-
tion rule that uses items as links to aggregate and update user embeddings and bundle
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embeddings on relational hypergraphs. We introduce the Laplacian matrix derivation
in the matrix propagation rule, which can help one to better understand the evolution
process of structural hypergraph convolutional neural networks. Additionally, we design a
personalized weight operation to improve the accuracy of the final recommendation results.
Meanwhile, inspired by LightGCN [13], we simplify the original hypergraph convolution
by removing feature transformations and non-linear activation functions, = ... “ore
suitable for bundle recommendation scenarios. Hypergraph convolutiun can lear. e
hidden layer representation considering the high-order informatior thereby acquiri
more meaningful representations of users and bundles. The SHCBI 1. “er integrates tl
acquired representations to produce recommendations based or' ‘core ra. ‘mgs.
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Figure 1. The differences between a tr itional graph and a hypergraph. In a traditional graph, every
edge, represented as a line, solely con:  <ts two nodes. Cony rsely, in a hypergraph, every hyperedge,
denoted by a colored ellipse, can conr.  more than two .odes simultaneously.

To summarize, ti ~rimary contric. _ of this study can be outlined as follows:

*  We propose a no\ 21 mc ~amed the SHCBR, which introduces the hypergraph
structure to explicit 7 moZel cu..  ex relationships between entities in bundle recom-
mendation tasks. We rectly cclinect three types of nodes with a hyperedge without
int*_auc 7 addition | nodes and edges. By constructing a relational hypergraph
< ntaininy three types »fliodes, we can explore existing information from a global
¢ spectir e. effectively alleviating the dilemma of data sparsity.

We  sigiia., matrix propagation rule and personalized weight operation in
the p1 nsed structural hypergraph convolutional neural network (SHCNN). Using
items as ks'we leverage efficient hypergraph convolution to learn node repre-
sentations onsidering the high-order information. Since the relational hypergraph
structure naturally incorporates higher-order associations, it is enough to generate

'de representations with one layer of SHCNN, further enhancing model efficiency;

e L. eriments on two real-world datasets indicate that our SHCBR outperforms existing
state-of-the-art baselines by 11.07-25.66% on Recall and 16.81-33.53% on NDCG. The
experimental results further validate that hypergraphs provide a novel and effective
method to tackle bundle recommendation tasks.

2. Related Work

In this section, we provide a concise review of related works concerning bundle
recommendation and hypergraph learning.

2.1. Bundle Recommendation

Despite the extensive research on recommender systems, few efforts have been devoted
to addressing the specific challenges of bundle recommendation tasks.

Initially, some works [21,22] modeled package recommendation as a linear knapsack
problem [23]. These works used integer programming techniques, which overlooked the
pairwise dependencies [24] among similar items. When cross-item dependencies were
modeled as hard constraints, the computation became complex, and the system could not
automatically recommend best matching results to users based on their preferences. During
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the same period, some studies [25,26] utilized association analysis techniques to address
bundle recommendation problems. However, association rule methods primarily focused
on the relationships between items, neglecting user and item feature information, which
made it difficult to achieve personalized recommendations.

With the advancement of recommender systems, methods such as collaborative fil-
tering [3,27], neural networks [28], and topic modeling [29] have been app’" _. . -dle
recommendations. For example, the embedding factor model (EFM) [3] > .ended the . {i-
tional factorization method to capture users’ preferences. The work [?” | combined mat ¢
factorization (MF) methods for collaborative filtering with learnecd ra.  »n constraints
achieve clothing package recommendation. However, matrix fa “orizatic  vas primari y
used to model user—item interactions. It was challenging to.irectty mode. =xher-or .er
associations, such as relationships between multiple item~ within b indles. Fu. “e‘.nore,
methods based on collaborative filtering often utilized ir.0. “tion fn. neighbor ng users
or items for recommendations. However, they could ! _ affectc ™~ noisy dat. and outliers,
which might result in inaccurate recommendatiop. The DAM [~ model 17 .ulized a factor-
ized attention network to learn bundle represe .. ans in a multi-v - r.anner. However,
neural network-based bundle recommend- ..on m. »ds could be : .tected by the issue
of data sparsity. Neural network method= ty vically it. 'ved numerous parameters and
complex model architectures, and spa-_e tra.ning data car.  »d +> overfitting issues. Xiong
et al. [29] proposed a personalized /.avel package recommei .ation model, which utilized
topic analysis to obtain activities ¢ interest to tourists. However, topic modeling methods
might not accurately capture the ‘ue meaning and ¢ttributes of items when performing
topic modeling on items. This coui ‘esult in inaccur: ce topic representations, consequently
affecting the effectiveness of recom. >dations.

In recent years, 1. ~rchers have 1c. _a their research focus towards graph neural
networks. The BGCN | ;. '»l unified three interactions between three types of entities
into a heterogeneous gr ph. Tk ... = RGCN model used graph convolutional networks
(GCN) [30] to acquire noc = 1< presentz .ions for both users and bundles. The BundleNet [5]
model for  ‘zed a reco. mmendation task as a link prediction problem on the graph
and acuressec t by utilizi. g a neural network model capable of directly learning from
grar  structur .d data. The .vIBR [31] model used the graph neural network to extract
multi-r *ior ~*~tions from various views. Additionally, an algorithm called BFTC
was devis  to enhance the precision of bundle representations.

Furthe1. re, some researchers have incorporated contrastive learning methods into
SNN-based m. _is. Contrastive learning can extract more meaningful and discrimina-

» feature representations by learning the relationships between different entities in
cor stive views. These feature representations can better capture the similarities and
differ. s between entities, thereby enhancing the accuracy of bundle recommendation.
The M.DGN [19] model utilized a graph neural network equipped with the neighbor
routing mechanism to untangle the coupling between the user-item and bundle-item
_raphs, considering users’ intents. CrossCBR [32] utilized cross-view contrastive learning
to capture cross-view cooperative associations. GPCL [33] innovatively embedded each
entity as a Gaussian distribution and introduced a prototypical contrastive learning method
to capture more refined representations.

The review of the mentioned works indicates that a significant portion of recent
research has utilized GNN to model interactions between users, items, and bundles. GNN-
based models possess the advantage of integrating node features and graph topology.
However, bundle recommendation involves intricate relationships among users, items, and
bundles. Graph neural networks may require the design of appropriate graph structures
and connections to capture these intricate relationships. Accurately modeling higher-
order associations could present a challenge. On the other hand, graph neural networks
exhibit high computational complexity, especially for large-scale graph data. In bundle
recommendations, there might be a substantial number of nodes and edges, approximating
higher-order associations among the three types of entities. This can lead to an increased
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computational burden during training and inference. This brings forth the concept of the
hypergraph [20]. Hypergraph is a special graph structure that can utilize hyperedges to
simultaneously connect multiple nodes. In response to the challenges arising from the use of
GNN, hypergraph neural networks present a natural and relative solution. The flexibility of
hypergraphs makes them a novel approach for investigating bundle recommendation tasks.

2.2. Hypergraph Learning

Hypergraphs [20,34] are a specialized type of graph structure tha’ extends traditios |
graphs. Hypergraphs allow a hyperedge to connect multiple ncae.  orming a man -
to-many relationship. Therefore, hypergraphs can more accv’ ‘tely re; sent compl x
relationships that traditional graphs cannot directly capture .n real-world . narios. " or
instance, in the knowledge graph [35], hypergraphs can « rectly re hresent re. "~ ships
between one entity and multiple other entities using a si"g..  perer g4e. Such hig .er-order
associations are useful for modeling complex semanti" . ssocia.  -.. In contra %, to approxi-
mate such higher-order associations, traditional gr< phs would re. e the ir".roduction of a
substantial number of nodes and edges.

Hypergraph learning [36] is a deep lear .ng m«  ~d based on h' pergraph structures.
In the past few years, hypergraph learrng has gair.  significant attention due to its
flexibility and ability to model comple> uata «ssociations. 1. “ergraph learning was initially
proposed as a label propagation m< chod [37] for semi-supe) 1sed learning. Subsequently,
Huang et al. [38] employed hyperg aph learning for video object segmentation, delving into
hypergraph construction methodc Hgies. Weights had a great influence on the modeling of
data correlation, and then learning ‘e weights of hv eredges became a new research topic.
Gao et al. [39] proposed anovel app  <h for ev~’ .ating the significance of hyperedges or
subgraphs within a i ti-hypergrap!: . _xe. The aim was to assign weightings that
reflect their relative in' »>o. ~ Subsequently, the L2 regularization of weights to learn
optimal hyperedge weig hts wa' ~od by [40]. Hypergraph neural networks (HGNN)
have been introduced as . nrvel metb sd on hypergraph structure, similar to graph neural
networks”  Hypergrap. neural networks employed the hypergraph Laplacian operator
to repr sent thy ypergraph ‘rom a spectral perspective. Hypergraph neural networks have
an 7 antage ¢ ver the curre . GNN methods in their ability to model and encode high-
ecrder:  tHor “hixdata. The authors of [42] introduced two end-to-end trainable
op.rators  ently, namely, hypergraph convolution and hypergraph attention, which can
handle non-;  ~wise relationships modeled in high-order hypergraphs.

Although . -arch on hypergraph deep learning is still in its early stages, hypergraph

'ral networ!’s have found widespread application across various fields [35,43-46] due
to. it exceptional representation capabilities. For example, in computer vision, Wang
etal. | Tapplied hypergraphs to visual classification tasks, using hypergraphs to describe
the rel.tions among visual features. In knowledge graph [35], hypergraph neural networks
were utilized to capture higher-level correlations between entities and attributes. In the

.eld of recommender systems, hypergraph-based recommendation models can capture
complex interactions between entities and provide more accurate and diverse recommen-
dation results. For example, the UHBR [44] model utilized hypergraphs to model complex
user-item-bundle associations, thereby enhancing the efficiency and accuracy of the model.
Hg-PDC [45] model proposed an algorithm based on dynamics clustering and similarity
measurement in hypergraphs, thereby improving the recommendation performance. The
GC-HGNN [46] model utilized the hypergraph convolutional neural network to obtain the
global context information.

Hypergraph learning also comes with certain limitations in practical applications.
Hypergraph learning is still a relatively new field, and there might not be enough well-
established frameworks, libraries, or benchmarks available for researchers and practitioners.
This can make it challenging to implement and compare different hypergraph-based models.
It is worth noting that the application of hypergraph models may be more suitable for
specific domains, whereas their applicability in other domains could be limited.
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3. Preliminary

In this section, we briefly formulate the problem and introduce our bundle hypergraph
definition.

3.1. Problem Formulation

In our research, we have a defined group of users U = {uy,up,...,77 1, Wi the
variable N is the total number of users, a defined group of items I = {'|,iy,..., iy}, €
variable M is the total number of items, a defined group of bundles: = {b1,b,,...,b; ,
and the variable K is the total number of bundles. Each individual pur. ~bs € B is mac
up of a specific group of items, denoted as bs = {isl, [P | A L with  ~bundlesi e
being greater than one. In order to gain a deeper understand’.ig of the conne.  'ms an=ung
users, items, and bundles, we present three matrices: user ‘tem mat.*x Xnwpm - uilu €
U, i € I}, user-bundle matrix Ynxx = {yuplu € U, 0 € Y, an'. bundl>—ite.n matrix
Zrxxm = {zpilb € B, i € I}. These matrices consis* o1 hinary  «ues, wher: a value of 1
indicates an observed interaction or inclusion. J- the user—item  >trix, 7.1entry x,,; =1
signifies that there is an interaction between us<. . ditemi. Then,. ~.tryy,, = linthe
user-bundle matrix indicates that user u ha' interac. " with bundle . Similarly, an entry
zp; = 1 in the bundle-item matrix implie- hatitem iis. mponent of bundle b. From the
definition provided earlier, we can fr.mulave the issue ot . ~<.ie recommendation in the
following manner:

Input: Data on the interactior between users and items Xx« 1, data on the interaction
between users and bundles Yy, . and data on the dependency relationship between
bundles and items Zg « p;-

Output: A bundle recommenc. " mod-’ (hat calculates the likelihood of user u
interacting with buna

3.2. Bundle Hypergraph L =finitio:

Hypergraphs provia 2.iapproa.n to obtain intricate higher-order connections. How-
ever, trac ... | hypergra, hs struggle to represent multiple relationships in bundle rec-
ommre 1dation 1sks suitabi - I response, we propose a novel data structure named the
bur.c  hyperg.aph, which ¢ an more effectively capture the multiple associations among
‘reety, oL " undle recommendations.

Abu: = hypergraph G = (V,£) is a mathematical structure that consists of a set
of hyperedge ~ ard a set of nodes V. The hyperedges are subsets of the nodes set and

an contain mt .iple nodes. This definition allows for a more flexible representation
¢ rlationships between nodes compared to traditional graphs. The incidence matrix
Hpe 0,1 }M <I£l represents the connection relationship between hyperedges and nodes.
The en y h(v,e) in the incidence matrix can be defined as:

h(v,e) = {1' foek (1)

0, otherwise

Based on the hypergraph definition, node degrees and hyperedge degrees can be
calculated. Next, we consider a node v € V, where V represents the set of nodes. In the
bundle hypergraph, the degree of node v can be denoted as d, = Y ,c¢ h(v,e), which is
calculated by summing up the contributions from all of the connected hyperedges in £ (the
set of hyperedges) using the function /1(v, ¢). Similarly, for a hyperedge e € &, its degree
can be expressed as d. = Y ¢y h(v, e). It is determined by adding up the values calculated
by applying the function h(v, e) for each node v in V.

4. Method

The construction of our proposed relational hypergraph is presented in Section 4.1.
Following that, we elaborate on the structural hypergraph convolutional neural networks
in Section 4.2. Moving on to Section 4.3, we introduce the matrix propagation rule in our
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research. Lastly, a detailed explanation of the model’s prediction and training process is
given in Section 4.4.

4.1. Relational Hypergraph Construction

As shown in Figure 2, we construct a relational hypergraph matrix with items as
links. To obtain more meaningful bundle representations, we first construct = . c_ s of
relation graphs around users and bundles. The graphs that are included .n this stua, ve
the interaction graph between users and items, the interaction graph setween users a. 1
bundles, and the affiliation graph between bundles and items. Basec 01, ~se three relatic
graphs, we can obtain the three interaction matrices mentioned ir Section. namely, X,
and Z. In order to encode the input, we perform one-hot ep oding for eac.  ade on .ne
hypergraph and compress each node into a dense real-valus vector. E, . E;, and L, _esent
the embeddings of user, item, and bundle in the initial 7ia.  trepres cn.ation, res sectively.
The embedding size d remains consistent for all thr<_ matric 7, E;, and .. We define
the feature vectors of user u, item i, and bundle b« the followir,_ ~anner:

@

N, v, € RM, and v, € R are

T
ew =E, vy, ¢

' T
_41'1 0i, = Eb Uy

where E, € RN*4 E, ¢ RMxd and B e RKxd ¢ €
one-hot vectors of user, item, and by ndle, respectively.

plegsiepsieiepsiepuinpuinpsinpsinpsingsiegsingsl S siapuinpuinpuinpeh
—— = —————— ——==), ¢« [l Precicton
Upa Jser & Bundle | > —_
Adings 4 D:I:l | -i
g oo @) 002
v v | . : ~ | I
o B '8 o
I <7 [CITE 1®)! 032
[ : Y [ | « 11 s
3 \ o' I | |
€ .
Structural Hypergraph Convolution Ne  /ork L |i®_| e

S,
©

’

ser&Bundle
Embeddings

Ky

—— Interaction

O Bundle §

» 2. The SHCBR framework can be divided into two main components: in the relational

i Similarity

Fig
hypert,
obtains user/bundle initial embeddings; the structural hypergraph convolutional neural network is

.1 construction, we constructs a relational hypergraph matrix with items as links and

proposed for capturing high-order relationships of users and bundles on a relational hypergraph.

According to the definition in Section 3.1, in the application scenario of bundle recom-
mendation, we acquire the interaction matrix X between users and items, the interaction
matrix Y between users and bundles, and the affiliation matrix Z between bundles and
items, in a natural manner. Given the complexity of relationships among the three types of
nodes, the relevant items can serve as links between users and bundles. We construct the
item association matrix as follows:

T

Hi=[X Z] (©)]

where X € RIUXI, 7 ¢ RIBIXIT, and H; € RUUIHBD XTI Similarly, using items as connec-
tors and leveraging second-order interaction data, we can infer the similarity between users.
Likewise, we infer the similarity between bundles. Highly overlapping users and bundles
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aid in predicting user interests in bundles. Therefore, we further define the user—bundle
adjacency matrix as follows:

C[Su Y
HUB — |:YT SB:| (4)
Su=X-X', Sg=2-2T (5)

where Hyp € RUUIHIBDx(UIHBE) g, e RIUXIUI and S5 € RIBI*IB" denote the v
similarity-overlap matrix and the bundle similarity-overlap matr® onstructed bast
on second-order interactions, respectively.

Based on the flexibility of hypergraphs in representing a- u «apturin, ~mplex re a-
tionships in practical problems, the relational hypergraph -.iatrix we constr.  ~d c7.1be
defined as follows:

Hsc = [Hyp Hj! (6)

where Hyp € RUUHIBDx(UI+IB) e RUUHIBI and Hge RUUIHIT)<(UI+[B[+I])
The three types of nodes are jointly incorpora’sc a relational hy  » caph Hgc from a
global perspective, naturally capturing higk r-order  mnections wit'un it.

4.2. Structural Hypergraph Convolutions" New.:al Networks

According to the depicted in Figure 2, we propose a st uactural hypergraph convolu-
tional neural network (SHCNN), ~hich captures the higher-order associations between
entities on the hypergraph struct e. Hypergraphs [" 0] are an extension of graphs where
hyperedges can connect multiple odes. Compar.d with traditional graph structures,
hypergraphs have more complex ¢ >ectivitv .iaking them more suitable for bundle
recommendation task " 'vpergraph co... _..uaon, mentioned in the work by authors [42],
can be perceived as a t rn. ~ssage passing. Knowing how to define the convolution
operation and efficiently propz_a.. " ination between adjacent nodes is very crucial in
bundle recommendation . vs’ems. It ic a natural approach to introduce more convolutional
layers in " to acquire righer-order associations between entities. However, this ap-
proack accomy nies the dc vnside of imposing a substantial escalation in computational
reg’  ments. £ nce the relat _nal hypergraph structure naturally incorporates higher-order

~ssocia. s, " - cfficient learning of node representations using only one layer of

ShINN. v further simplify the formula for hypergraph convolution operation as follows:
R 1 S R

H=D,*HD,*H'D, * (7)

EU+Y) = AED (8)

wherc H denotes relational hypergraph’s Laplacian spectral normalization matrix. The
output of layer ! denoted as E/+1).

Furthermore, we design a personalized weight operation to enhance the accuracy of
learning user and bundle representations. Inspired by the hypergraph attention opera-
tor [42], we make improvements to the similarity-overlap matrix in Equation (5). Taking
Su as an example, the similarity between user u; and user u; can be computed in following
manner:

exp(o(sim(ui u5)))
7™ Lken; exp(o(sim(u;, u)))

where S;; € Sy. N; is the neighborhood set of user u;. o(-) is the nonlinear activation func-
tion like LeakyReLU [47] and eLU [48], enhancing the learning ability of neural networks.
The similarity function sim(-,-) is used to calculate the similarity between two vertices.
This function is presented as follows:

©)

sim (uj, u;) = aT[ui||uj] (10)
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Here, a represents a weight vector that is utilized to generate a scalar value indi-
cating similarity. Likewise, we compute the similarity between bundles. Through the
above computations, we can obtain the user similarity-overlap matrix Sy; and the bundle
similarity-overlap matrix Sg.

4.3. Matrix Propagation Rule

Combining the application scenario of the bundle recommendatior and the Sk, 'R
model, we propose a specialized matrix propagation rule to achieve t* : embedding pr. -
agation of the entire relational hypergraph. In order to simulate tkie ¢ ‘vlex interactic
logic between three types of entities, we define the relational hv' ~redge . ~cency matr x
as follows:

_1
A = HseD, *Hi- (11)

where Hgc is the relational hypergraph matrix we cor structe  ‘n.".quation ). The Lapla-
cian matrix L based on the relational hypergraph r utrix Hgc ce. e definer as:

D,
D, = { " Dy, (12)
N N Iy 0 I D V2A,D1V?
L= DU 1/2ADU 1/2+ |: Ou / J — D—l/ZAL;D—l/', u Ill; B (13)
B u

where Ay and Agp are the relatic 1l hyperedge adj cency matrix of users and bundles,
respectively. Ay and Ap together . stitute the re’ .cional hyperedge adjacency matrix A.

Dy and Dg are the node degree mati. ~fue=and bundles, respectively. I;; € RIU/*IU|
and I € RIBIXIBl are’ . lentity matrix. inspired by LightGCN, the purpose of adding
the identity matrix is t¢ conni = awn nodes.

4.4. Model Prediction and 't ‘a’’.ing

In#.c1c. 1 of hypers -aph convolution, traditional methods like hypergraph neural
netws cks [41] | se the emb: 17ings from the final layer as their ultimate representation.
Hewe v whe'« the quantity of layers augments, the embeddings incline towards excessive

_noothy IMidmag _easonable to use only the last layer embeddings as the ultimate
representa. . In existing bundle recommendation models, BGCN [18] concatenates em-
beddings fron ! l-yers to merge information obtained from neighbors at different depths

¢ prediction, 1 otentially intensifying training challenges. Inspired by LightGCN [13],
w_ hoose to incorporate embeddings from different layers as the ultimate representation.
This  wreach captures the information from different layers to enrich the semantics of the
final r¢ resentation. Next, we combine the embeddings from each layer. By merging the
embeudings of each layer, we are able to generate comprehensive representations of each
ser and bundle:

K K
ew =Y, el ep = Y. ﬂékff;(,k) (14)
k=0 k=0

where oy > 0 represents the significance of the embedding of the /-th layer in forming the
ultimate embedding. To ensure fairness in contribution, we assign a; as 1/ (K + 1).

Ultimately, we define the inner production of final user representations and bundle
representations as our model prediction:

Jup = ey (15)

The ranking scores for generating recommendations rely on the final results. Observa-
tions indicate that when there is a interaction (e.g., purchase, click) between the user and
the bundle, it can be inferred that this user has an interest in the bundle as a whole or in a
majority of its individual items. Conversely, if a user does not interact with a bundle, it can
be assumed that the user is not aware of that bundle. In order to predict bundles, we classify
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bundles with interactions as positive samples and randomly choose an unobserved bundle
as a negative sample. In conclusion, a pairwise framework for learning is established, and
the Bayesian personalized ranking loss is applied to predict bundles:

Lbundle = (1 - “) Z 11’10'(?]‘3 - yje) +a Z IHO'(:/V\/'f - y]f) (16)
(je)eR* (.f)eR™

where R = {(j,e,f)|(j,e) € RT,(j,f) € R™}. RT denotes bundles th.t has interactic 3
with user u;, while R~ denotes bundles that have no interactions wi..  ser u;. We rega;
(j, e) as a positive sample and (j, f) as a negative sample. ¢ (-) derotesa. moid functic .
To prevent the model from overfitting, we add L, regularizati .n in.o the lo. ™inction
Subsequently, the AdamW optimizer [49] is employer t0 minithize the Ic. “ur _tion,
which iteratively updates neural networks’ weights usiry, > provis _{' training ata.

5. Experiment
In this section, we perform experiments or' » public datase. 2 2 sess the SHCBR,
with the aim of answering following researc’ ques. ‘s:

*  RQI1: How does our SHCBR compa- in performa. to previous models?
e RQ2: How do key components i irluence the SHCBK . ~»{ormance?
*  RQ3: How do different param :ter settings affect the Sk CBR’s results?

5.1. Experiment Settings
5.1.1. Datasets and Metrics

We evaluate SHCBR and other . mo =" nods over two real-world datasets. The
training /test/validat “*s are randomuy divided in a ratio of 70%/20%/10%, and the
statistical data is indica ead 1. . "> 1.

Table 1. Dataset statistics.

Da et NetEase Youshu
Us or 18,528 8039
z 22,864 4771
2undle 123,628 32,770
Us. *em 1,128,065 138,515
User-b ule 302,303 51,337
Bundls -item 1,778,065 176,667
~. bundle interactions 16.32 6.39
£ item interactions 60.88 17.23
Avg. bundle size 77.80 37.03
User—item density 0.05% 0.05%
User-bundle density 0.07% 0.13%

¢ NetEase: This is a dataset constructed using data provided by a Chinese music
platform, Netease Cloud Music (http://music.163.com, accessed on 7 August 2017).
As a social music software, it allows users to freely choose their favorite songs and
add them to their favorites. Users can also choose to listen to playlists bundled with
different songs.

*  Youshu: This is a dataset constructed by the famous Chinese book review website
Youshu (https:/ /www.yousuu.com/, accessed on 7 August 2017). Youshu allows
users to create their own booklists with different styles and types. Additionally, it can
provide users with a bundle of related books.

To evaluate models’ recommendation performance, two commonly-adopted ranking
metrics are employed in experiments: Recall@K and NDCG@K. Recall@K and NDCG@K
are metrics used to assess the performance of information retrieval and recommendation


http://music.163.com
https://www.yousuu.com/

Electronics 2023, 12, 3952

11 of 17

systems. Recall@K measures how many of the actual target items are present among the
top-K recommended items. NDCG@K aims to measure the ranking quality and quantity of
truly relevant items within the top-K recommended items. It is worth mentioning that we
have set the values of K as: {20, 40, 80}. Recall and NDCG can be calculated as below:

Recall@K = w

17)
where K signifies that we are employing a top-K ranking approacb -or every user, \
produce a bundle list B containing K items. D represents a bundie sc  “at the user hi
previously interacted with. The symbol by refers to the bundle ! _ated at.  k-th positic a
in the generated bundle list B, while d denotes a bundle in #'.c bundle set Lt the < .ser
has indeed interacted with.

K 2hitk 1
D K = —_ = 1
1 b L
ity = [0 € (19)
. otherwise
DCG@K
N DCG@K = 75~ (20)

where IDCG@XK is typically used ¢ the denominator i : the calculation of NDCG@K to com-
pute the standardized NDCG valu  'DCG@K is cor puted by arranging the truly relevant
items in the ideal ranking order ana = calci!- .ng their cumulative discounted gains.

5.1.2. Baselines

To demonstrate the super.or . .mance of SHCBR, we conduct a comparison be-
tween it and the below m @ _is:

e MFoPK, [: Thisis a »opular MF model based on BPR loss optimization, which is
* idely usi 1 for implici “-edback.

* = 1. "N[5 " PCCN is a'method based on graph convolutional networks that is specifi-
call, ‘ssigneu i ...ndle multi-relational graphs.

e LightC N [13]: This is an efficient and lightweight model that incorporates both
graphne. '“ietworks and collaborative filtering ideas.
BundleNe' (5]: BundleNet constructs a tripartite graph consisting of users, bundles,
and items, which utilizes GNN to learn node representation of entities.

. *M28]: DAM is a deep learning model that incorporates attention mechanisms to
fa .litate the acquisition of comprehensive bundle representations.

¢ BGCN [18]: BGCN leverages the powerful ability of GNN in learning from higher-
order connections on graphs, modeling the complex relations between users, items,
and bundles.

e  MIDGN [19]: MIDGN designed a multi-view intent resolution graph network, using
a graph neural network to separate user intent from different perspectives.

5.1.3. Implementation Details and Environment

For SHCBR, we utilize the PyTorch framework (https://pytorch.org/, accessed on
January 2017) and optimize the model using the AdamW optimizer. In our experiments,
we set the embedding size to 128. A batch size of 2048 is used to process both datasets. The
search for the learning rate is conducted within the value set {1 x 1074,5x107%,1 x 1073,
5x1073,1 x 1072}. Based on the experiments, it is determined that the optimal choice is
5 x 1073. To address the issue of overfitting, we have implemented the use of L2-norm
with a specific value of 0.2. Moreover, we have also incorporated a dropout rate of 0.2
into our methodology. These measures aim to mitigate the potential negative impact of
overfitting on our outcome.
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To ensure experimental rigor, all experiments were performed on the same server. Our
server is equipped with Nvidia GeForce RTX <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>