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Abstract: Prohibited item detection plays a significant role in ensuring public safety, as the timely and
accurate identification of prohibited items ensures the safety of lives and property. X-ray transmission
imaging technology is commonly employed for prohibited item detection in public spaces, producing
X-ray images of luggage to visualize their internal contents. However, challenges such as multiple
object overlapping, varying angles, loss of details, and small targets in X-ray transmission imaging
pose significant obstacles to prohibited item detection. Therefore, a dual attention mechanism
network (DAMN) for X-ray prohibited item detection is proposed. The DAMN consists of three
modules, i.e., spatial attention, channel attention, and dependency relationship optimization. A
long-range dependency model is achieved by employing a dual attention mechanism with spatial and
channel attention, effectively extracting feature information. Meanwhile, the dependency relationship
module is integrated to address the shortcomings of traditional convolutional networks in terms of
short-range correlations. We conducted experiments comparing the DAMN with several existing
algorithms on datasets containing 12 categories of prohibited items, including firearms and knives.
The results show that the DAMN has a good performance, particularly in scenarios involving small
object detection, detail loss, and target overlap under complex conditions. Specifically, the detection
average precision of the DAMN reaches 63.8%, with a segmentation average precision of 54.7%.

Keywords: deep learning; object detection; prohibited item detection; spatial attention; channel
attention

1. Introduction

Prohibited item detection is a crucial means of ensuring public safety. With the rapid
development of public transportation, such as civil aviation aircraft, high-speed trains,
subways, and metro systems, convenient and efficient travel options are provided to people.
However, this progress also brings security risks. The significant flow of passengers exposes
public transport areas to serious safety hazards. Any accidents occurring in such areas
can pose severe threats to both lives and property. Therefore, conducting prohibited item
detection in public places is of the utmost importance.

Currently, prohibited item detection primarily relies on X-ray security screening tech-
nology. X-rays can penetrate objects and generate perspective images, enabling a clear
observation and examination of items within the baggage. This effectively prevents situa-
tions where passengers may carry restricted items such as knives, firearms, ammunition,
and lighters that could pose threats to passengers or transportation systems. However, the
current practice of manually discerning prohibited items from X-ray images still heavily
relies on the professional knowledge, experience, and condition of security personnel [1].
Prolonged work hours can lead to visual fatigue among security personnel, thereby increas-
ing the risk of false positives and false negatives. Furthermore, the workload and intensity
of security screening are substantial, especially during periods of high passenger flow. As
the volume of items to be inspected increases, security personnel find it challenging to make
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quick judgments. This can result in passenger delays and congestion and may even lead to
safety and public health concerns. To enhance the efficiency and accuracy of prohibited
item detection, it is imperative to further develop automated detection technology. By
integrating advanced deep learning techniques, the automatic detection and recognition
of prohibited items within X-ray images can be achieved. This will alleviate the burden
on security personnel, enhance the speed and accuracy of security checks, and thus better
ensure the safety of public spaces.

Over the past few years, deep learning techniques have found widespread applica-
tions across various domains [2]. In the field of prohibited item detection, researchers
have attempted to construct intelligent convolutional neural networks for prohibited item
recognition. The aim is to reduce both false negatives and false positives while simultane-
ously enhancing the speed and accuracy of prohibited item detection. However, traditional
deep-learning-based image object detection methods primarily object ordinary optical
images. As the imaging principles of X-ray penetrating objects differ from those of ordinary
optical images, and the scenarios for danger detection are distinct, existing methods cannot
be directly applied to prohibited item detection in X-ray images. Firstly, when multiple
objects overlap, X-rays penetrate these objects, resulting in overlapped image contours and
a more complex depiction of the image contours. This complexity makes differentiating
between objects and accurately extracting boundaries more challenging. Secondly, the
placement angles and positions of baggage items are different, leading to varying imaging
angles of objects, which drastically change from different perspectives, which increase the
detection difficulty and need algorithms to handle objects from various angles and poses.
Furthermore, while X-ray imaging easily captures object contour information, it may cause
a loss of surface detail features. This loss of detail might lead to difficulties in distinguishing
specific features of objects, thereby affecting the accurate detection of prohibited items.
Moreover, X-ray imaging cannot directly capture object color information. Instead, it uses
measurements of high- and low-energy X-rays to determine an object’s atomic number,
distinguishing between organic and inorganic substances and, finally, coloring the object.
So, other features instead of color need to be used to detect prohibited items. Additionally,
for the purpose of concealment, most prohibited items are typically small and hidden
in intricate environments, posing a more challenging task for detection. To recap, X-ray
transmission imaging faces challenges in prohibited item detection, including multiple
object overlaps, varying angles, loss of detail features, and small objects. Addressing these
challenges requires the targeted design and optimization of algorithms to improve the
accuracy and efficiency of prohibited item detection.

This paper presents a dual attention mechanism network (DAMN) designed for X-ray
prohibited item detection by incorporating a fused dual attention mechanism. The central
goal is to extract crucial information from key target areas, thereby elevating the precision
and efficiency of X-ray prohibited item detection. The primary components of this paper
are outlined as follows:

Section 1 provides a concise overview of X-ray prohibited item detection. In Section 2,
the focus is on the exploration of X-ray prohibited item detection methods based on deep
learning techniques. Section 3 discusses the principle and structure of the proposed dual
attention mechanism for X-ray prohibited item detection (a DAMN). Section 4 conducts
experimental comparisons and performance evaluations of the proposed DAMN algorithm
with classical algorithms such as YOLOv5, RetinaNet, Mask R-CNN, Cascade Mask R-CNN,
and SDANet for X-ray prohibited item detection. Section 5 concludes with a summary of
the findings and an outlook for future research directions.

2. Related Work

Traditional machine learning methods for X-ray prohibited item image detection
rely on manual feature extraction and classifier-based classification. The localization
information is obtained using a sliding window approach [3]. While effective for processing
small batches of data with prominent features, these methods exhibit limited accuracy and
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generalization capabilities when it comes to recognizing complex and dynamic prohibited
items. In contrast, the evolution of deep learning techniques has led to the application of
methods like convolutional neural networks (CNNs) in X-ray image detection. These deep
learning approaches excel by enabling nonlinear feature learning, rendering them suitable
for large-scale datasets and intricate background scenarios. The inherent strengths of deep
learning methods lie in their potent representational capacity, adaptability, and flexibility,
which manifest remarkably in tasks such as classification and detection, particularly within
intricate environments. As a result, deep learning techniques have been extensively applied
in the field of X-ray prohibited item detection, markedly enhancing the accuracy and
robustness of detection. This development provides an effective means to bolster security
measures in public spaces.

In 2016, Akcay et al. [4] pioneered the integration of deep learning into X-ray baggage
security image detection. They addressed the image classification problem using transfer
learning and the AlexNet architecture, demonstrating remarkable detection performance
and robustness. Subsequently, Mery et al. [5] explored various techniques, including
classical methods, the bag-of-words model, sparse representation, and deep learning. They
achieved high detection performance on both the AlexNet and GoogleNet architectures.
In 2017, Akcay et al. [6] further employed transfer learning and compared the detection
performance of CNN models based on sliding windows with detection models based on
candidate regions on the ImageNet dataset. They found that the candidate-region-based
model exhibited a higher detection accuracy. In 2018, Akcay et al. [7] conducted prohibited
item detection experiments using various deep learning classification models and the bag-
of-words model. The results demonstrated that, compared to traditional machine learning
approaches, deep learning methods were better suited for X-ray prohibited item detection,
showcasing greater practicality and superiority. In 2019, Jinyi Liu et al. [8] introduced
a color-based foreground–background segmentation method that addressed brightness
differences between the foreground and background, reducing color information loss and
enhancing the classification and localization performance of prohibited item detection.
Also, in the same year, Neelanjan Bhowmik et al. [9] employed the TIP (texture inpainting
with prior) method to synthesize images and utilized the R-CNN and ResNet-101CNN
architectures to enhance the detection capabilities of overlapping prohibited items. In 2020,
Subramani [10] proposed the RetinaNet network, which tackled the challenges of missed
detections and false alarms for small object prohibited items. Similarly, in the same year,
Zhigang Su et al. [11] utilized the ASPC (atrous spatial pyramid convolution) module for
multiscale feature extraction within the shallow layers of the VGG16 architecture, effectively
addressing the issue of detail information loss. In 2021, Jian Gu [12] improved the Canny
edge detection algorithm to remove background noise interference and incorporated the
SPP (spatial pyramid pooling) module into the YOLOv3 network, enhancing the detection
capabilities for small object prohibited items. In 2022, Yishan Dong et al. [13] introduced
a weighted bounding box fusion algorithm into the YOLOv5 network, enhancing the
detection accuracy of X-ray prohibited item datasets. In 2023, Song Li et al. [14] employed
the MixUP data augmentation method to improve the clarity of overlapping image contours.
They also utilized the MobileNet ViTv3 block to extract more features on a global scale,
thereby reducing instances of missed detection for overlapping prohibited items. Overall,
deep learning methods have demonstrated significant potential and advantages in X-ray
prohibited item detection, continuously driving advancements in the field, as summarized
in Table 1.
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Table 1. Summary of X-ray prohibited item detection studies based on deep learning techniques.

Dataset
Network

Framework
Method Contribute References Year

Firearms
(17,419)

AlexNet CNN using transfer learning
Higher detection

performance and robustness
Akcay, etc. [4] 2016

GDXray
(1950)

AlexNet GoogleNet
Compared to traditional

machine learning methods

Deep learning methods
achieve higher detection

accuracy
Mery, etc. [5] 2016

Baggage security
(11,627)

SW-CNN
R-CNN

Faster-RCNN
CNN for transfer learning

Improve real-time
applicability of detection

Akcay, etc. [6] 2017

Baggage security
(3080)

SSD
Design SSD detectors and

tracking managers
Improve the multiobject

detection accuracy
Han [15] 2018

Baggage security
(12,700)

SSD
New feature maps generated
by MF are fed into ATM and

DCM

Better detection accuracy for
multiple obstructed

prohibited items
Zhang, etc. [16] 2020

Baggage security
(550)

SSD
Lightweight network

integration into feature
pyramid layer

Better small object detection
accuracy

Zhang, etc. [17] 2020

Baggage security
(2026)

YOLOv5

CBAM
Incorporating adaptive

feature fusion (ASFF) and
attention mechanism (CBAM)

Higher accuracy of small
object detection

Ren [18] 2021

SIXray
(8900)

YOLOv4
Adding attention mechanism

to hollow dense
convolutional modules

Better detection accuracy for
multiple obstructed

prohibited items
Mu, etc. [19] 2021

SIXray_OD
(8718)

Faster-RCNN
Introducing dilation

convolution to construct a
multiscale detection network

Improving the detection
accuracy of small object

prohibited items
Kang, etc. [20] 2022

OPIXray (8885)
HiXray (45,364), etc.

YOLOv5
Add the CBAM attention

mechanism

Improve detection
capabilities for overlapping

prohibited items
Dong, etc. [13] 2022

HiXary (9565)
CLCXray (45,364)

YOLOv7
Add Mobile

NetViTv3 block

Reduce the missed detection
rate of overlapping

prohibited items
Li, etc. [14] 2023

3. Proposed Method
3.1. Network Architecture

We proposed a deep-learning-assisted X-ray prohibited item detection method (a
DAMN) aimed at achieving enhanced detection performance and accuracy in this domain.
The fundamental architecture comprises a backbone network, a feature pyramid network
(FPN) [21], attention mechanisms, and a region proposal network (RPN), as illustrated in
Figure 1.
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Figure 1. X-ray detection of prohibited item network based on dual attention mechanism.

The backbone network is ResNet-101-FPN, a type of deep residual network comprising
101 layers, utilized for extracting rich high-level features from input X-ray images, which
was constructed by stacking residual blocks, employing skip connections and residual
connections to mitigate the gradient vanishing problem during deep network training,



Electronics 2023, 12, 3934 5 of 16

effectively capturing image details and semantic information. Furthermore, to enhance
the network’s ability to represent multiscale features, a feature pyramid network (FPN)
was introduced. FPN establishes connections between feature maps at different levels,
facilitating the fusion of multiscale information. This multiscale feature fusion strategy
is instrumental in addressing the diversity of prohibited items’ images, encompassing
variations in category and size.

We employed a dual attention module combined with spatial attention and channel at-
tention modules in parallel. The spatial attention module aims to learn spatial dependencies
within the feature map, enhancing the precise localization of prohibited items by empha-
sizing crucial regions. On the other hand, the channel attention module focuses on the
interchannel correlations within the feature map, bolstering the network’s discriminative
capability toward prohibited item detection.

To further enhance the network’s performance in prohibited item detection tasks, a
dependency relationship optimization module (DROM) was introduced, which aims to
extract relationships between channels within the feature map and integrate these relation-
ships into the positional representation of feature information. This strategy effectively
captures the detailed features and contextual information of prohibited items, resulting in
a significant improvement in detection accuracy.

In the DAMN, we adopted cross-entropy loss [22] as the optimization objective during
the training process. The core capability of this loss function lies in its ability to precisely
assess the disparity between the model’s predicted outcomes and the actual labels, thereby
propelling the model to learn and optimize toward greater accuracy. By incorporating the
cross-entropy loss into the model’s training, the convergence speed is increased, and the
classification performance is also improved.

3.2. Spatial Attention Module

In the computer vision field, there are two types of attention mechanisms, i.e., chan-
nel attention and spatial attention. The spatial attention mechanism employs a two-
dimensional weighting strategy to compress the feature map along the channel dimension
and assign independent weights to each pixel, as shown in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

is instrumental in addressing the diversity of prohibited items’ images, encompassing var-
iations in category and size. 

 
Figure 1. X-ray detection of prohibited item network based on dual attention mechanism. 

We employed a dual attention module combined with spatial attention and channel 
attention modules in parallel. The spatial attention module aims to learn spatial depend-
encies within the feature map, enhancing the precise localization of prohibited items by 
emphasizing crucial regions. On the other hand, the channel attention module focuses on 
the interchannel correlations within the feature map, bolstering the network’s discrimina-
tive capability toward prohibited item detection. 

To further enhance the network’s performance in prohibited item detection tasks, a 
dependency relationship optimization module (DROM) was introduced, which aims to 
extract relationships between channels within the feature map and integrate these rela-
tionships into the positional representation of feature information. This strategy effec-
tively captures the detailed features and contextual information of prohibited items, re-
sulting in a significant improvement in detection accuracy. 

In the DAMN, we adopted cross-entropy loss [22] as the optimization objective dur-
ing the training process. The core capability of this loss function lies in its ability to pre-
cisely assess the disparity between the model’s predicted outcomes and the actual labels, 
thereby propelling the model to learn and optimize toward greater accuracy. By incorpo-
rating the cross-entropy loss into the model’s training, the convergence speed is increased, 
and the classification performance is also improved. 

3.2. Spatial Attention Module 
In the computer vision field, there are two types of attention mechanisms, i.e., chan-

nel attention and spatial attention. The spatial attention mechanism employs a two-dimen-
sional weighting strategy to compress the feature map along the channel dimension and 
assign independent weights to each pixel, as shown in Figure 2. 

 
Figure 2. Spatial attention module. 

In the spatial attention module, the first step involves standardizing and fusing the 
multiscale features obtained from the feature pyramid. The feature maps with five differ-
ent sizes, [4, 256, 128, 120], [4, 256, 64, 60], [4, 256, 32, 30], [4, 256, 16, 15], and [4, 256, 8, 8], 
are adjusted to a unified size, resulting in a feature tensor f ∈ Rୠൈୡൈ୪ൈ୵ൈ୦. Here, b repre-
sents the batch size, c is the number of channels, w and h are the width and height, and 

Figure 2. Spatial attention module.

In the spatial attention module, the first step involves standardizing and fusing the
multiscale features obtained from the feature pyramid. The feature maps with five different
sizes, [4, 256, 128, 120], [4, 256, 64, 60], [4, 256, 32, 30], [4, 256, 16, 15], and [4, 256, 8,
8], are adjusted to a unified size, resulting in a feature tensor f ∈ Rb×c×l×w×h. Here, b
represents the batch size, c is the number of channels, w and h are the width and height,
and l = 5 indicates the presence of five scales of feature maps. Next, information is
extracted from feature maps of different dimensions using the nonlinear mappings of the
multilayer perceptron (MLP), which can reveal high-level semantics hidden within the
feature maps. Then, two distinct feature maps are generated through average pooling
and max pooling to describe spatial positional information in the image, aiding the model
in better understanding the relationships between different regions. Finally, the spatial
disparity information is extracted. These two feature maps are concatenated and operated
upon using depthwise separable convolution (DWConv) in combination with the MLP. This
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operation further extracts spatial disparity information. The design of DWConv combined
with the MLP captures finer-grained spatial variations.

The specific process is illustrated by Equations (1)–(3), where F̂ci represents the features
processed by the spatial attention mechanism, and Fi denotes the multiscale features output
from the feature pyramid RPN, which includes feature maps of different scales denoted by
Fi ∈ Rb×c×w×h, i ∈ [0, 4].

F̂ci = concat(resize(Fi)), ∀i (1)

F̂ci = concat
(
Max

(
MLP

(
F̂ci

))
, Avg

(
MLP

(
F̂ci

)))
(2)

F̂ci = resize
(
DWConv

(
MLP

(
F̂ci

)))
(3)

3.3. Channel Attention Module

Channel attention is a critical attention mechanism in the field of deep learning, em-
ployed to enhance the relationships between different channels within an image (e.g., color
or feature channels) to improve a model’s performance in specific tasks. In reference [23],
channel attention is applied to RGB-D image processing to amplify information in specific
channels, thus enhancing the feature representation of images and significantly boost-
ing detection performance. SENet [24] introduced the squeeze-and-excitation module,
which initially compresses spatial information and then learns weights to emphasize the
importance of different channels. Additionally, CBAM [25] combines channel attention
with spatial attention, dynamically weighting feature maps in other media and further
enhancing these feature maps at specific positions and scales, ultimately improving the
performance and generalization of convolutional neural network (CNN) models.

The channel attention module is a one-dimensional weighting method, as shown in
Figure 3, which operates by compressing the spatial dimension of the feature map while
allocating distinct weights to each channel. The core concept is to accentuate the feature
information of crucial channels, enhancing the representation of essential characteristics.
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After obtaining multiscale information from the feature pyramid network (FPN), the
channel attention module first introduces scale standardization and feature fusion (similar
to 3.2), aligning and merging feature maps of different scales. Subsequently, global average
pooling (GAP) is applied to the fused feature maps for global information extraction. GAP
averages the features of each channel, reducing the spatial dimensions of the feature map
to one dimension, which diminishes reliance on spatial information and reduces redundant
data. The channel attention mechanism focuses the network more on the channel-level
significant features, thereby enhancing the network’s performance in object detection
tasks. Next, through multiple fully connected layers, weight adjustments, and activation
functions, the multilayer perceptron (MLP) learns complex mapping relationships of input
features, further extracting abstract and advanced prohibited-item-related characteristics
hidden within channel interactions.
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Finally, the feature F̂si is obtained through the processing of the channel attention
module. This process can be represented using Equations (4)–(6). Here, Fi represents the
multiscale features’ output from the feature pyramid RPN.

F̂si = concat(resize(Fi)), ∀i (4)

F̂si = Fi ×MLP
(
GAP

(
sum

(
F̂si

)))
(5)

F̂si = sum
(
F̂si

)
(6)

3.4. Dependency Refinement

Based on the foundation of channel and spatial attention, the feature map was further
refined using the dependency relationship optimization module, as shown in Figure 4.
This process generates highly discriminative feature maps capable of capturing long-range
dependencies within the image and aids in achieving a more accurate understanding of the
semantic content within prohibited items’ images.
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Figure 4. Dependency relationship module.

Firstly, by integration of channel and spatial attention mechanisms, we obtained
the aggregated feature Fsci, which not only emphasizes crucial channels and important
spatial positions but also enhances the feature’s expressive capability to a certain extent.
Furthermore, the dependency relationship optimization module was introduced with the
primary objective of further enhancing the discriminative capability of the feature map.
Within this module, a nonlocal representation method [26,27], as described in Equation
(8), was employed. By applying the convolutional operations to the resized feature map,
it effectively captures long-range dependencies within the image, thus better-expressing
feature information. By aggregating global contextual features, the overall image semantics
are well known. Moreover, establishing relationships between different channels further
reinforces channel correlations, enhancing feature distinctiveness. Finally, we used a fusion
module to fuse global contextual features into features across all positions, as shown
in Equation (9). Adding MLP-processed features to the original features to fuse global
contextual information can help obtain the feature map from global contextual information
at all positions, further enhancing its representational capacity.

The entire process can be further described using Equations (7)–(9), where F̂i represents
the features processed by the dependency relationship optimization module, and Fsci is the
aggregated feature obtained by combining channel and spatial attention.

Fsci = Fsi + Fci (7)

F̂i = resize(Fsci)×Conv(Fsci) (8)

F̂i = Fsci + MLP
(
F̂i
)

(9)
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4. Experiment and Performance Evaluation
4.1. Dataset

We used the PIDray hazardous material detection dataset [28] as our foundational
dataset. The image’s resolution was 1020 × 1040. The dataset was formatted in a COCO
format and was classified into 29,457 for the training set, 9482 for the easy test set, 3733
for the challenging test set, and 5005 for the hidden test set. The images within the easy
test set exclusively featured a single prohibited item, as illustrated in Figure 5a, while the
challenging test set comprised images containing multiple prohibited items, as depicted in
Figure 5b, and the hidden test set encompassed images intentionally concealing prohibited
items, as demonstrated in Figure 5c.
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4.2. Experimental Parameter Settings

To ascertain the effectiveness of the DAMN, we chose a few State-of-the-Art object
detection algorithms as baseline benchmarks for our experiments, including single-stage
YOLOv5, RetinaNet, two-stage Mask R-CNN, Cascade Mask R-CNN, and SDANet.

In YOLOv5, we adopted the YOLOv5s architecture with an initial learning rate of
0.01. The input image size was 640 × 640, and each training batch contained 32 images.
We implemented the early stopping strategy and utilized the one-cycle policy for the
learning rate scheduling, resulting in training stopping at the 50th epoch. For RetinaNet,
we employed a ResNet50 backbone with an initial learning rate of 1 × 10−5. The input
image size was 608 × 608, and each training batch included two images. We applied the
reduced learning rate on the plateau strategy to ensure model convergence within 50 epochs
and halted training after achieving convergence. Regarding the two-stage networks, we
used a ResNet101 backbone pretrained on ImageNet, with a learning rate of 0.02. The input
image size was 500 × 500, and each training batch contained four images. In the case of
Mask R-CNN, Cascade Mask R-CNN, and SDANet, a step-wise learning rate strategy with
warm-up was employed, reducing the learning rate to one-third of its original value at the
25th and 40th epochs.

In the experiments, the “early stop” strategy was applied to all models, which entails
halting training when the models exhibit convergence. The training was conducted on two
NVIDIA GeForce 1080Ti GPUs, utilizing CUDA version 10.0 and CUDNN version 7.6.5 to
ensure consistency and stability within the experimental environment.

4.3. Experimental Results and Analysis

Table 2 presents a comparative analysis of the experimental results for various methods
on the PIDray dataset. As shown in Table 2, the DAMN demonstrates superior performance
in prohibited item detection. In our experiments, we conducted tests on the easy, hard, and
hidden subsets of the PIDray dataset, comparing the detection average precision (detection
AP) of six different methods: Mask R-CNN, Cascade Mask R-CNN, SDANet, YOLOv5,
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RetinaNet, and the DAMN. Additionally, we computed the segmentation average precision
(segmentation AP). In this context, the COCO mmAP (%) [29] was employed to evaluate
the method performance. Specifically, the AP signified the average precision calculated
across all 12 categories, and the resulting average values were obtained by considering
these categories’ mean average precision across 10 different IOU thresholds (ranging from
0.5 to 0.95, with an interval of 0.05).

Table 2. Comparison with other methods on the PIDray [28].

Method Backbone
Detection AP Segmentation AP

Easy Hard Hidden Overall Easy Hard Hidden Overall

Mask R-CNN ResNet-101-FPN 64.6 59.0 43.7 55.7 57.5 50.1 35.1 47.6
Cascade Mask R-CNN ResNet-101-FPN 70.8 63.0 47.0 61.0 59.1 51.4 36.1 48.8

SDANet ResNet-101-FPN 71.1 64.1 49.5 61.5 59.8 51.0 37.4 49.7
YOLOv5 CSP Darknet53 71.8 67.3 43.3 60.8 - - - -

RetinaNet ResNet50 64.0 58.6 41.4 54.7 - - - -
DAMN ResNet-101-FPN 72.7 66.6 52.1 63.8 64.0 58.6 41.4 54.7

The results from Table 2 clearly demonstrate that the DAMN achieved the best AP
performance in the easy, hidden, and overall subsets. Of particular note is the DAMN’s
remarkable performance in the most challenging hidden subset, where its detection AP is
2.6% higher than the second-ranked SDANet. This indicates that the DAMN effectively
leverages attention mechanisms to more efficiently extract feature information from con-
cealed items, leading to more accurate detection. Additionally, the DAMN’s segmentation
performance significantly outperforms the other networks, with an AP on the hidden
subset that surpasses the second-ranked SDANet by 4.0%. However, we also observe that
in the hard subset, YOLOv5 exhibits the best detection AP, outperforming the DAMN by a
marginal 0.7%. This is due to YOLOv5’s advantage in detecting objects of various sizes
with its multiscale features. Nonetheless, in the deliberately concealed prohibited items of
the hidden subset, the DAMN’s detection AP improves by an impressive 8.8% compared
to YOLOv5. These experimental results definitively establish that the DAMN method
achieved a significant breakthrough in prohibited item detection, particularly showcasing
exceptional performance in more challenging hidden scenarios.

Based on the Cascade Mask R-CNN [30], we performed four ablation experiments,
as shown in Table 3, to analyze the advantages of our modifications compared to other
attention modules.

Table 3. Ablation study of the proposed modules.

Method Channel
Attention

Spatial
Attention

Dependency
Refinement Detection AP

Cascade
Mask R-CNN 0.470

A
√

0.492
B

√
0.497

C
√ √

0.513
D

√ √
0.502

E(DAMN)
√ √ √

0.521

Method A only optimizes the channel attention module by adding a channel attention
module of Figure 2 between the FPN and RPN of the Cascade Mask R-CNN to increase the
model’s attention to different channels or feature maps, thereby helping the model select
and highlight the most critical feature channels.

Method B only optimizes the spatial attention module by adding a spatial attention
module of Figure 2 between the FPN and RPN of the Cascade Mask R-CNN to enhance
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the model’s perception of spatial information, which helps the model better recognize
and distinguish features at different positions in the input image, thereby improving the
detection and classification performance.

Method C combines channel attention and spatial attention for optimization while
focusing on different positions and channel features to capture input data information more
comprehensively and improve detection performance.

Method D introduces the CBAM [25] structure, in which the spatial attention module
and channel attention module are combined serially.

Method E is our proposed DAMN method. Unlike the CBAM, the channel attention
module and spatial attention module are parallel in the DAMN. Moreover, the DAMN
introduces the dependency module of Figure 4 and further optimizes the dependency
relationship between the internal features of the model to improve its performance and
understanding of the semantic content.

The results of the ablation experiment are shown in Table 3. As can be seen from
the figure, methods A, B, C, D, and E increased detection AP by 2.2%, 2.7%, 4.3%, 3.2%,
and 5.1%, respectively. It is worth noting that the DAMN achieved the most significant
performance improvement, reaching the highest detection AP of 52.1%. This series of
experimental results indicates that integrating spatial attention, channel attention, and
dependency optimization with dependency refinement can further improve the detection
accuracy of X-ray contraband based on the advantages of the original improvement.

We set the intersection over union (IOU) threshold between the predicted bounding
boxes and ground truth boxes to 0.5, meaning that when the IOU is greater than 0.5, the
prediction is correct.

We performed several experiments to compare the DAMN model with five existing
object detection algorithms on three different datasets, i.e., easy, hard, and hidden.

The specific experimental results are shown in Table 4 and Figures 6–8 below. On the
easy dataset, the DAMN exhibits outstanding performance with a mAP of 86.7%. Notably,
it excels in detecting common contraband items like the hammer, power bank, and bullet,
with mAP scores consistently exceeding 96%.

Table 4. Performance comparison of different models.

Method Backbone
Detection mAP@0.5

Easy Hard Hidden Overall

Mask R-CNN ResNet-101-FPN 83.6 83.6 66.2 77.8
Cascade Mask R-CNN ResNet-101-FPN 82.5 81.6 66.5 76.9

SDANet ResNet-101-FPN 84.1 82.7 66.6 77.8
YOLOv5 CSP Darknet53 85.1 88.3 59.0 77.5

RetinaNet ResNet50 77.8 79.7 57.6 71.7
DAMN ResNet-101-FPN 86.7 83.7 67.6 79.3
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On the hidden dataset, the DAMN also achieves the best performance, with an mAP
of 67.6%. It is important to note that on the hard dataset, the DAMN achieves an mAP of
83.7%, slightly lower than YOLOv5. This is primarily attributed to YOLOv5’s exceptional
performance in multiscale detection, enabling it to simultaneously detect objects of various
sizes, thus enhancing its overall robustness. However, in the hidden dataset, it is worth
noting that the DAMN outperforms YOLOv5 by an 8.6% increase in mAP. This significant
advancement can be attributed to the DAMN’s incorporation of a dual attention mechanism.
The spatial attention mechanism aids in precise target localization, even when objects are
occluded or disguised.

Simultaneously, the channel attention mechanism helps capture critical details of the
target. The fusion of these spatial and channel attention mechanisms equips the model with
a superior understanding of the context and semantics of hidden objects within the image,
leading to more accurate detection of concealed targets and reduced false positives. This
capability proves particularly advantageous in complex camouflage scenarios. When de-
tecting deliberately concealed items like the sprayer and the hammer, the DAMN continues
to excel, especially in scenarios where other models exhibit subpar performance.

In summary, the DAMN consistently demonstrates exceptional performance across
the board, achieving an overall mAP of 79.3%. This represents a noteworthy 2.96% average
improvement over the other five algorithms. These results underscore the remarkable
versatility and robustness of the DAMN, thanks to its integrated dual attention mechanism
in the context of X-ray contraband detection tasks.

4.4. Special Case Analysis
4.4.1. Detection of Small Prohibited Items

Figure 9 illustrates a comparative analysis of small object prohibited item detection. In
the graph, it is evident that the DAMN excels in detecting small prohibited items with less
prominent features and smaller sizes, such as lighters. In contrast to the potential instances
of missed detections by other methods, the DAMN consistently maintains high accuracy
and effectively identifies the precise location of items like lighters. This accomplishment
can be attributed to the multilayer perceptron (MLP) embedded within the spatial attention
mechanism, which demonstrates exceptional performance in extracting implicit texture
information. Leveraging its powerful spatial attention mechanism, the DAMN successfully
captures the precise positions of concealed prohibited items like lighters, achieving an
impressive detection accuracy of 0.99.
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This not only highlights the DAMN’s outstanding performance in detecting small
prohibited items but also demonstrates its robust detection capability when dealing with
inconspicuous objects. Such results once again strongly reaffirm the DAMN’s superior
performance in X-ray prohibited item detection tasks.

4.4.2. Detection of Prohibited Items with Easily Lost Details

For objects composed of multiple materials, such as a small knife made of both metal
and wood, the detailed features often tend to be lost. In this context, as shown in Figure 10,
except for the DAMN and YOLOv5, other methods exhibit instances of missed detection.
It is worth noting that although YOLOv5 wrongly identifies the small knife as a pair of
scissors during the detection process, the DAMN not only accurately detects the small knife
but also achieves a significant detection accuracy of 0.93. This outstanding performance is
attributed to the critical role of spatial attention, which effectively connects features across
different spatial locations. Particularly noteworthy is the fact that the spatial attention
mechanism enhances the relevant channels responsible for detecting materials like metal
and wood, enabling the DAMN to pinpoint the position of the small knife with high
precision. This enhancement effect is demonstrated in Figure 10, where even the subtle
features of the small knife’s handle are clearly discerned by the DAMN.
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This vividly demonstrates the DAMN’s significant breakthrough in detecting details
of objects composed of multiple materials. Not only does the DAMN exhibit high accuracy,
but it also captures highly challenging subtle features. This further validates the DAMN’s
superior performance in detecting prohibited items with easily lost details.

4.4.3. Detection of Overlapping and Occluded Prohibited Items

In scenarios involving overlapping and occluded prohibited items, as shown in
Figure 11, we can observe the overlapping of the prohibited items, and it is difficult to
distinguish the “knife” from the metallic occluder. In such cases, the knife is mis-detected
using SDANet, YOLOv5, and RetinaNet. It is even mis-detected as a bullet using Cascade
Mask R-CNN. However, the knife is detected successfully using the DAMN due to the
collaboration of spatial attention and channel attention.
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In conclusion, spatial attention focuses on extracting semantic and textural information
from objects, while channel attention enhances these crucial features and establishes their
interconnections. It is the synergistic collaboration of these two attention mechanisms that
form the foundation of the DAMN’s outstanding capability in detecting prohibited items
under complex circumstances.

5. Conclusions

X-ray prohibited item detection technology plays a crucial role in ensuring public
safety. However, the significant workload has made automated security screening a current
research focus. To address this, this paper introduces an innovative X-ray prohibited item
detection method referred to as the DAMN, which integrates spatial attention, channel
attention, and dependency optimization modules to significantly enhance detection per-
formance. Specifically, the DAMN offers the following advantages: Firstly, the DAMN
makes full use of the spatial attention mechanism, enabling the detector to focus more on
the semantic and textural information from various regions of the image, which enhances
sensitivity and discrimination. Secondly, the channel attention in the DAMN enhances the
representation of crucial features, thereby improving the detector’s accuracy and robustness
and helping mitigate the impact of interference and noise. Thirdly, the DAMN incorporates
a dependency optimization module, which effectively express the contextual relationships
among objects, which can improve the detector’s capability to handle complex scenes,
thereby reducing instances of false positives and missed detections.

In our experiment, the DAMN method comprehensively demonstrates its superior
performance across four different categories of datasets: easy, hard, hidden, and overall.
Whether dealing with small objects, details prone to loss, or situations involving overlap and
occlusion, the DAMN consistently achieves optimal detection accuracy. When compared
to mainstream detection algorithms, such as YOLOv5, RetinaNet, Mask R-CNN, Cascade
Mask R-CNN, and SDANet, the DAMN outperforms in every aspect, showcasing its
remarkable capabilities in the field of X-ray prohibited item detection.

In our future research, we will further incorporate multimodal data fusion with
information from other sensors, such as visible light images, infrared images, radar signals,
and more, to enhance detection accuracy and robustness, thereby expanding the horizon
for the development of X-ray prohibited item detection technology. To protect sensitive
data, we will take measures to ensure the privacy and legal compliance of information,
including removing identifiable information and adhering to relevant regulations, such as
the HIPAA, among others.
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