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Abstract: Excessive nitrogen oxide (NOx) emissions result in growing environmental problems and
increasingly stringent emission standards. This requires a precise control for NOx emissions. A
prerequisite for precise control is accurate NOx emission detection. However, the NOx measurement
sensors currently in use have serious lag problems in measurement due to the harsh operating
environment and other problems. To address this issue, we need to make long-term prediction for
NOx emissions. In this paper, we propose a long-term prediction model based on LSTM–Transformer.
First, the model uses self-attention to capture long-term trend. Second, long short-term memory
network (LSTM) is used to capture short-term trends and as secondary position encoding to provide
positional information. We construct them using a parallel structure. In long-term prediction,
experimental results on two real datasets with different sampling intervals show that the proposed
prediction model performs better than the currently popular methods, with 28.2% and 19.1% relative
average improvements on the two datasets, respectively.

Keywords: NOx emission; long-term prediction; transformer; LSTM; rotary kiln

1. Introduction

Nitrogen oxide (NOx) is one of the major exhaust pollutants causing atmospheric
pollution, which is dominated by NOx emissions from industrial sources, accounting for
40.9% of total NOx emissions [1]. A large amount of NOx generated from rotary kilns
during the sintering process is one of the major sources of NOx emissions from industrial
sources. Excessive NOx emissions can endanger the ecosystem and human health. Due
to the pressure from environmental problems, NOx emission standards also have become
increasingly strict [2,3]. Therefore, this poses a major challenge for NOx emission control
in rotary kilns.

For rotary kilns, to reduce the emissions of NOx from combustion, there are currently
two main methods [4]: low NOx emission combustion technology and flue gas denitri-
fication technology. Using the former alone does not allow NOx emissions to meet the
requirements of the standard. Among the latter, selective catalytic reduction (SCR) is
widely used for flue gas removal due to its economy with its very high nitrogen removal
efficiency [5]. The principle of SCR technology is that a suitable dose of reductant (such as
ammonia) is given according to the NOx concentration at the reactor outlet, which reacts
with NOx to produce nitrogen gas and water. Insufficient ammonia injection can result
in not effectively removing NOx. Excessive ammonia injection can result in ammonia
pollution due to ammonia leakage, and its by-products (such as H4HSO4) can endanger
equipment performance and safety operation issues. Continuous emission monitoring
system (CEMS) is now widely used in rotary kilns to obtain NOx emission concentrations.
However, due to the performance of the flue gas analyzer and the length of the flue gas
sampling pipe, there is a certain degree of lag error in the measured values. Furthermore,
the harsh working environment can lead to aging or damage of the measurement compo-
nents, which means that satisfactory measurement accuracy cannot be guaranteed [6,7].
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Meanwhile, using expensive, high-precision measuring equipment is not practical, consid-
ering the economy and the actual production needs. Therefore, establishing an accurate
NOx emission concentration prediction model is essential to achieve low NOx emission.

Researchers have proposed a variety of methods for predicting NOx emissions. These
methods can be mainly classified into mechanism-based and data-driven types. The
mechanism-based method is computationally expensive and requires expert knowledge.
For some complex systems, it is difficult to obtain their expressions, which undoubtedly
makes NOx emission prediction very difficult. In contrast, data-driven methods do not
require a priori knowledge and use data to model the mapping relationships between
variables. Due to the ability to model complex nonlinear systems, support vector machine
(SVM) and artificial neural network (ANN) are widely used to predict NOx emissions.
Some works from the literature [8,9] constructed a NOx emission prediction model for coal-
fired boilers based on SVM. Other studies [10–12] used ANN to construct NOx emission
prediction models. Although SVM and ANN have good nonlinear modeling capabilities,
ANN’s network structure and parameters are difficult to determine and suffer from over-
fitting problems. For SVM, a large number of input variables and datasets can make the
training process computationally difficult as well as for obtaining optimal solutions, with
both difficulties hindering the capture of temporal features in time series.

Deep learning techniques have been developed rapidly in recent years and are widely
used for time series prediction tasks. Recurrent neural network (RNN) [13] is one of the
most popular deep learning methods used for time series prediction. In the literature [14,15],
virtual sensors for NOx emission prediction were constructed based on RNN. Although
RNN can model short-term dependencies effectively, it has problems modeling long-term
dependencies due to the gradient vanishing and explosion problem [16]. Hochreiter and
Schmidhuber proposed a long short-term memory network (LSTM) [17], which addresses
the problem of long-term dependencies to some extent. It can capture long-term dependen-
cies through gating mechanisms with memory units while maintaining the ability to model
short-term dependencies. It has become the main method currently used to predict NOx
emissions. Tan et al. [18] constructed a single-step prediction model for NOx emissions
from coal-fired boilers based on LSTM. Yang et al. [19] studied a NOx emission prediction
method combining principal component analysis (PCA) and LSTM. He et al. [20] proposed
and validated a NOx emission prediction model based on CNN-LSTM [21], where CNN
is used to extract features from multi-dimensional data, and LSTM is used to identify
relationships between different time steps. Xie et al. [7] used the maximal information
coefficient (MIC) as a method for feature selection and designed a sequence-to-sequence
(S2S) multi-step NOx emission prediction model with an attention mechanism (AM) based
on LSTM. Wang et al. [22] constructed a hybrid model for NOx emission prediction based
on complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) with
AM and LSTM. The network structure of S2S usually consists of two parts, the encoder
and the decoder [23–26]. The encoder encodes the input data as a fixed-length vector,
and the decoder decodes the vector to generate the desired output. This structure has
been successful in natural language processing (NLP) because of the ability to combine
contextual information and achieve variable-length output without being limited to the
length of the input sequence. However, the problem with S2S network architecture is that
the performance of the encoder–decoder deteriorates rapidly as the length of the input
sequence increases [25]. To solve this problem, scholars [27,28] proposed an S2S structure
with an attention mechanism. This attention mechanism can calculate the correlations
between the hidden states of the encoder and decoder to highlight the most valuable
information, thus improving the performance of the S2S structure for long-sequence inputs.

In practical applications, there is a certain delay between the input and target variables
due to the large hysteresis and inertia of rotary kilns and the influence of measurement lag
errors. Therefore, we expect an accurate long-term prediction of NOx emissions to control in
advance and thus overcome the impact of delay. However, the task of long-term prediction
is hugely challenging, and it demands models that can effectively capture long-term
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dependencies. Although LSTM networks for NOx emission prediction are continuously
improving, the structure of LSTM limits the ability to make long-term prediction. The
literature [29] noted that as the prediction time range becomes longer, the inference speed
of the LSTM network decreases rapidly, and the model starts to fail.

The Transformer architecture [30] has been widely used for NLP and has achieved state-
of-the-art results in many tasks due to its demonstrated power in processing sequential data.
Benefiting from the self-attention mechanism, it has a strong performance in capturing long-
term dependencies, which brings the possibility to solve long-term prediction tasks. But it
may not be appropriate to use Transformer directly for time series prediction tasks, due to
the following reasons: (1) Transformer is mainly proposed for NLP and is a classification
task rather than a regression task; (2) the self-attention mechanism can disrupt the continuity
of the time series, which leads to the loss of correlation; (3) the sin–cos method is used in
the transformer structure to encode the position of the sequential data, but this method
does not provide enough position information [31].

Most of the current work focuses on short-term prediction, and there are currently
limited research studies in the literature on NOx emission prediction using Transformer. In
this study, we propose a long-term prediction model for NOx emission based on LSTM–
Transformer. The improvements are as follows: (1) The model uses self-attention to capture
long-term dependencies and uses LSTM to capture short-term dependencies. The simulta-
neous consideration of long-term and short-term patterns enables the model to not lose
crucial fine-scale information and thus make accurate long-term predictions. (2) In view
of the shortcomings of the self-attention and sin–cos position encoding in the time series
prediction task, LSTM can be used to maintain the temporal continuity of the time series
data and to learn the position information. Finally, (3) parallel-designed structures can
improve computational efficiency.

The rest of this paper is organized as follows. Section 2 describes the investigated rotary
kiln. Section 3 details the proposed model. Section 5 presents the detailed experimental
results and discussion. Section 6 concludes the study.

2. Model Object Description

In this paper, an alumina rotary kiln is used as a research object to investigate the
problem of NOx emission concentration prediction at the outlet of the SCR reactor. The
alumina rotary kiln components and process flow are shown in Figure 1.
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Figure 1. Sintering process diagram of alumina rotary kiln.

2.1. Continuous Emission Monitoring System

Continuous emission monitoring system (CEMS) are currently used to measure NOx
emissions inside rotary kilns. For NOx measurement, the extraction condensation method
is usually used. The principle is to measure the NOx content in the flue gas using UV
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absorption, measure the wet oxygen content via electrochemical methods, and then cal-
culate the dry flue gas concentration of NOx by wet–dry conversion. When measuring
NOx emission concentrations, the gas is sampled by the sampling probe and then sent
through the sampling line to the gas pollutant analyzer. For other operating parameters,
for example, the temperature of the flue gas is measured using a temperature sensor, the
flue gas pressure is measured using a pressure sensor, the flue gas flow rate is measured
using the Pitot tube method, and the humidity of the flue gas is measured using the capaci-
tance/resistance method. All measurement signals are fed into the data acquisition and
processing system.

2.2. Statement of Existing Problems

It is difficult to set the CEMS analyzer near the sampling point in engineering appli-
cations, resulting in a longer heat tracing sampling line. This can result in a long delay in
sampling the flue gas. The delay of the measurement link makes the ammonia injection
unable to respond to the concentration change of NOx in time. In the SCR reactor, the ad-
sorbed fly ash in the flue gas adheres to the catalyst, reducing the contact area of the catalyst
with the flue gas and the efficiency of denitration reaction. In air preheaters, they absorb
moisture from flue gas to clog and corrode equipment. This will lead to an increase in fan
power consumption, affecting the safe operation of the unit, or even limit the load-carrying
capacity of the unit. Reactors often accompany a decrease in denitrification efficiency
after a period of operation.The main reasons for the deactivation of SCR denitrification
catalysts include mechanical wear, clogging, sintering aging, and catalyst poisoning. In
summary, the ammonia injection control target has a large delay due to the delay in the
CEMS measurements and in the SCR chemical reaction process.

3. The Proposed NOx Prediction Model
3.1. LSTM

The LSTM structure is proposed to solve the problem that RNN cannot handle long-
term dependencies efficiently. LSTM mainly uses a gating mechanism to control informa-
tion updates. Figure 2 illustrates the specific structure of the LSTM unit, which consists
of three gate structures, the forget gate, the input gate, and the output gate, and uses the
memory cell to store historical information. Among them, the forget gate removes unim-
portant information from the memory cell, the input gate controls the new information that
will be added to the memory cell, and the output gate determines the output based on the
cell state. The specific calculation process is expressed as follows:

ft = σ(Wx f xt + Wh f ht−1 + b f ) (1)

it = σ(Wxixt + Whiht−1 + bi) (2)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt + Whcht−1 + bc) (3)

ot = σ(Wxoxt + Whoht−1 + bo) (4)

ht = ot ⊗ tanh(ct) (5)

where ct and ht are the cell state and hidden state at time t, respectively. ft, it, and ot are
the forget gate, the input gate, and the output gate, respectively. Wx· represents the weight
matrix connected to the input layer; Wh· represents the weight matrix connected to the
hidden; and b· is the bias vector. ⊗ represents element-wise multiplication.
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Figure 2. Structure of LSTM.

3.2. Self-Attention Mechanism

The self-attention mechanism simulates the ability of a human to focus on processing
information, which enables the machine to selectively allocate attention resources to more
critical parts rather than the whole, thus improving the quality and efficiency of information
acquisition and the performance of the model.

Transformer is based solely on the self-attention mechanism without recurrence and
convolutions. The attention used by Transformer is the standard dot product attention, and
the input consists of the query (Q), key (K), and value (V). Suppose there is a sequence of
inputs X ∈ Rl×dmodel , then Q, K, and V can be obtained by linear transformation, as follows:

Q = XWq K = XWk V = XWv (6)

where Wq ∈ Rdmodel×dk , Wk ∈ Rdmodel×dk , and Wv ∈ Rdmodel×dv are the parameter matrices,
then Q ∈ Rl×dk , K ∈ Rl×dk , and V ∈ Rl×dv .

In the standard dot product attention, the dot product of Q and all of K is calculated
and scaled by

√
dk. The softmax function is used to obtain the weight of each value, which

is multiplied by V to select the attention assignment. It is defined as follows:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (7)

Transformer extends self-attention to multi-head attention, which uses N different
learned linear projections on Q, K, and V for N times, called N attention heads. The
different attention heads focus on different dimensions of information, which are computed
in parallel and are concatenated and projected again to obtain the final output value, which
can be defined as follows:

MultiHead(Q, K, V) = Concat(head1, ..., headN)WO (8)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (9)

where headi represents the self-attention distribution of head i. WQ
i , WK

i , and WV
i represents

the linear projection parameter matrices of head i, which are calculated similarly to the
self-attention mechanism, and WO represents the parameter matrix of the output projection.

3.3. LSTM–Transformer

The NOx emission prediction model proposed in this paper takes reference from
the traditional Transformer and improves its structure, as shown in Figure 3. Inside the
Transformer, LSTM is embedded in a parallel structure. These structural improvements
have the following specific effects:
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• Long-term dependencies are modeled using a self-attention mechanism, and short-
term dependencies are modeled using LSTM, thus simultaneously focusing on the
repetitive patterns of the time series data in the long- and short-term.

• The sin–cos position encoding method only considers the distance relationship but
not the direction relationship, both of which are equally important for time series
prediction tasks. And from the structure, LSTM has the feature of inputting and
transmitting information sequentially in a time sequence, so LSTM can be used to
learn the distance and direction information of the input data.

• The LSTM encoding can maintain the continuity of time series data in time, thus
reducing the decrease in model accuracy caused by the attention mechanism that
disrupts the continuity of time series data.

• Parallel-designed structures can improve computational efficiency.

QKV

Multi-Head 

Attention

QKV

Encoder Inputs Decoder Inputs

Multi-Head 

Attention

QKV

Add & Norm Add & Norm

Multi-Head 

Attention

Feed

Forward

Linear

Prediction

Add & Norm

Encoder

N

Decoder

LSTM

Position Encoding

LSTM

Position Encoding

Feed

Forward

Add & Norm

N

Figure 3. LSTM–Transformer model structure.

(a) Encoder

The encoder is composed of a stack of N identical encoder layers. Each encoder layer
contains three main layers. The first is an LSTM network, the second is a multi-head
self-attention, and the third is a feedforward layer. The residual connection layer [32] and
layer normalization [33] are used around these layers. The overall equations for the lth
encoder layer are summarized as Xl

en = Encoder
(

Xl−1
en

)
. Details are shown as follows:
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Xl
lstm,en = LSTM

(
Xl−1

en

)
(10)

Xl
mh,en = LayerNorm

(
Xl

lstm,en + Mhead

(
Xl−1

en

))
(11)

Xl
en = LayerNorm

(
Xl

mh,en + FeedForward
(

Xl
mh,en

))
(12)

where X0
en = Xen, Xen ∈ RL×dmodel represents the historical input sequence with input step

length L. Xl
lstm,en ∈ RL×dmodel represents the output after LSTM encoding in the lth encoder

layer. Xl
mh,en ∈ RL×dmodel represents the output after the first multi-head attention layer in

the lth encoder layer. Xl
en ∈ RL×dmodel represents the output of the lth encoder layer. Mhead

represents the multi-head self-attention mechanism.

(b) Decoder

The decoder is also composed of a stack of N identical decoder layers. The structure
is similar to that of the encoder. The overall equation for the lth decoder layer can be
summarized as Xl

de = Decoder
(

Xl−1
de , XN

en

)
. The decoder can be formalized as follows:

Xl
lstm,de = LSTM

(
Xl−1

de

)
(13)

Xl
mh,de = LayerNorm

(
Xl

lstm,de + Mhead

(
Xl−1

de

))
(14)

Xl
de = LayerNorm

(
Xl

mh,de + Mhead

(
Xl

mh,de, XN
en

))
(15)

where X0
de = Xde. Xl

mh,de ∈ RL×dmodel represents the output after the first multi-head
attention layer in the lth decoder layer. Xl

de ∈ RL×dmodel represents the output of the lth
decoder layer.

(c) Output layer

After the decoder decodes the feature vector, it is passed through a fully connected
feedforward layer and then a linear layer to obtain the predicted output. The definition is
as follows:

Ypred = Linear
(

FeedForward
(

XN
de

))
(16)

FeedForward
(

XN
de

)
= ReLU

(
XN

deW1 + b1

)
W2 + b2 (17)

where W and b represent the trainable weight matrix and bias vector, respectively, and
Linear represents the linear layer. The predicted output is Ypred ∈ L×dy , and in this paper,
dy = 1.

In summary, determining the input step size L and then selecting d-specific charac-
teristic variables from the rotary kiln as model inputs X ∈ RL×d. Transforming the data
dimension to the model dimension using a nonlinear mapping, and then after position
encoding, we obtain the LSTM–Transformer’s original inputs Xen ∈ RL×dmodel . For the
nonlinear mapping, we set the activation function as ReLU. After entering the encoder
layer, this input simultaneously enters the multi-head attention layer and LSTM layer. Both
do not interfere with each other and perform calculations simultaneously. The output
Xmh,en ∈ RL×dmodel is obtained after the computation of multi-head attention layer and can
be used to model long-term dependencies. The output Xlstm,en ∈ RL×dmodel is obtained by
encoding in the LSTM layer, which can be used to model short-term dependencies and to
learn the position information of the input information and maintain the continuity of the
data. After both are computed, they are added and layer-normalized to obtain the feed-
forward layer input. Compared to the serial computing structure, the parallel computing
structure is designed to retain the high computational efficiency of the original Transformer,
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while utilizing the LSTM to add additional information to improve performance in time
series prediction. The feedforward layer is used to increase the nonlinear capability of the
model, and the residual network and layer normalization are used to optimize the model.
The decoder layer had a similar structure to the encoder layer. The position encoding is
calculated as follows:

PE(pos,2i) = sin(pos
/

100002i/dmodel) (18)

PE(pos,2i+1) = cos(pos
/

100002i/dmodel) (19)

where pos is the sequence length index, i is the dimension index.

4. Data Preprocessing
4.1. Datasets

The research data used in this paper came from Zhongzhou Aluminum Plant, Jiaozuo
City, Henan Province, China. We obtained the data directly from the distributed control
system (DCS) in the field. To ensure the coverage of most working conditions during the
operation of the alumina rotary kiln and to improve the reliability of the experimental
results, we used two datasets with different sampling intervals for the training and testing
of the prediction model. One dataset contains 8460 samples with a sampling interval of
10 s, covering the 24 h operating history of the studied subject, which we named “Data
10 s”. The other dataset contains 8460 samples with a sampling interval of 30 s, covering
the three-day running history of the studied subject, which we named “Data 30 s”. We
followed standard protocol to split all datasets into training, validation, and test set in the
ratio of 6:2:2.

4.2. Outlier Detection and Missing Values Handling

This paper uses the box plot method to detect the outliers [34]. The greatest advantage
of box plots is that they are not affected by outliers, and can accurately and consistently de-
scribe the discrete distribution of data, while also facilitating data cleaning. For outliers, we
treat them as missing values because the missing values can be filled in using information
from existing variables.

For missing values, we did not remove them directly, as this would lead to loss of
information. We used the KNN imputer to fill in the missing values. It finds several most
similar historical data in the missing value annex and fills in the missing values.

4.3. Feature Variable Selection

According to the production process of alumina rotary kiln and the generation mech-
anism of NOx, combined with the advice of experts on site, we finally selected thirteen
variables as inputs based on the measuring devices available at the industrial site: total air
rate, twin-tube rotation speed, kiln head temperature, kiln tail temperature, burning zone
temperature, blower rotation speed, smoke evacuator variable frequency current (two),
oxygen content, incoming kiln slurry pressure, incoming kiln slurry flow rate, and past
NOx emissions as the input variables of the prediction model.

4.4. Data Standardization

This paper uses Z-score normalization for each input variable. The formula is as follows:

x′ =
x− µ

σ
(20)

where µ and σ are the mean and standard deviation of the variable in the training set.
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5. Experiments
5.1. Evaluation Metrics

In this paper, the root-mean-squared error (RMSE) and mean absolute percentage error
(MAPE) are used to evaluate the model prediction quality as evaluation metrics, which can
be defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (21)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣× 100% (22)

where yi is the actual value, y′i is the predicted value, and n is the number of data samples.

5.2. Baselines

In this paper, seven prediction models are selected for comparison, including Trans-
former, CEEMDAN-AM-LSTM, S2S-AM-LSTM, CNN-LSTM, LSTM, BPNN, and SVM.
Transformer changes the output layer network structure because it is a regression prob-
lem rather than a classification problem. S2S-AM-LSTM is defined as an LSTM-based
encoder–decoder network with an attention mechanism.

5.3. Implementation Details

Our proposed model contains three encoder layers and three decoder layers. During
the training period, mean square error (MSE) is used as the loss function. ADAM [35] is
used as the optimizer, where β1 = 0.9, β2 = 0.98 and ε = 10−8. The learning rate is 0.001,
the dropout is 0.1, the attention heads number is 1, and the model dimension is 128. For
Data 10 s, the batch size is set to 256, and for Data 30 s, the batch size is set to 128. For the
baseline models, the hyper-parameters were optimized by manual parameter adjustment
or grid search to ensure the validity of the experimental results. The early stop strategy
was used during training.

5.4. Results and Analysis

In this section, we will evaluate the effectiveness of LSTM–Transformer for NOx
emission concentration prediction in two datasets with different sampling intervals. The
results will be presented in the form of tables and figures.

5.4.1. NOx Concentration Emission Prediction

To compare the performance of the model in long-term prediction for different future
time horizons, we set the input length I = 36, and the prediction distance length O: 6, 12,
24, 48. The best result is shown in bold.

For Data 10 s, as shown in Table 1, for the long-term prediction task, LSTM–Transformer
achieves better performance in all benchmarks and all prediction distance settings. LSTM–
Transformer has an RMSE reduction of 20.3% (at O = 6), 33.9% (at O = 12), 26.8% (at O = 24),
and 31.7% (at O = 48). Overall, LSTM–Transformer yields a 28.2% average RMSE reduction.

For Data 30 s, as shown in Table 2, for the long-term prediction task, LSTM–Transformer
also achieves better performance in all benchmarks and all prediction distance settings.
LSTM–Transformer has an RMSE reduction of 15.8% (at O = 6), 18.9% (at O = 12), 20.4%
(at O = 24), and 21.1% (at O = 48). Overall, LSTM–Transformer yields a 19.1% average
RMSE reduction.

Based on the above results, the following could be observed:

(1) In the long-term prediction task, LSTM–Transformer significantly improves the predic-
tion performance in both datasets with different sampling intervals. This demonstrates the
success of the proposed model in enhancing long-term time series prediction capability.
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(2) LSTM–Transformer has better prediction accuracy than Transformer. The reason
for this is that LSTM can provide fine-grained short-term trend information and
provide position information. This demonstrates the effectiveness of the structure
we designed.

(3) The increase in the sampling interval time may ignore some changes in the data during
this increased time, which leads to the loss of information. This is the main reason
for the degradation of the model performance. Notably, the LSTM–Transformer still
has a better prediction accuracy as the sampling interval time increases. It means that
the LSTM–Transformer has better robustness, which is meaningful for the accurate
long-term prediction of NOx emission concentration.

(4) The transformer-based model has a better prediction accuracy. This demonstrates
the advantage of the self-attention in capturing long-term dependencies, as the self-
attention makes the path of signaling as short as possible.

(5) CEEMDAN-AM-LSTM has better performance in LSTM-based models and shows
a similar prediction accuracy as Transformer. This demonstrates the effectiveness of
the CEEMDAN method in time series preprocessing. We speculate that combining
CEEMDAN with the Transformer might have good results.

(6) We also find that LSTM–Transformer, Transformer, CEEMDAN-AM-LSTM, and S2S-
AM-LSTM gradually deteriorate with regard to prediction accuracy as the predic-
tion distance increases. This is due to the limitations of the encoder–decoder ar-
chitecture, which suffers from error accumulation when implementing dynamic
decoding inference.

Table 1. Prediction results of different models on Data 10 s.

Models LSTM–Transformer Transformer CEEMDAN-AM-LSTM S2S-AM-LSTM CNN-LSTM LSTM BPNN SVM

Metric RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

I = 36

6 0.455 1.397 0.571 1.732 0.694 2.331 1.667 6.511 1.177 4.154 2.044 7.502 2.125 8.135 2.109 8.244
12 0.450 1.344 0.681 2.241 0.726 2.379 1.706 6.514 1.225 4.306 2.070 7.525 2.064 7.667 2.136 8.270
24 0.512 1.476 0.699 2.388 0.746 2.468 1.756 6.628 1.274 4.639 1.650 6.234 2.072 8.144 2.160 8.642
48 0.523 1.528 0.766 2.442 0.814 2.542 1.779 6.713 1.363 4.992 2.565 9.238 2.175 8.378 2.325 9.097

Table 2. Prediction results of different models on Data 30 s.

Models LSTM–Transformer Transformer CEEMDAN-AM-LSTM S2S-AM-LSTM CNN-LSTM LSTM BPNN SVM

Metric RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

I = 36

6 0.702 1.370 0.834 1.773 1.039 2.758 2.688 7.549 1.653 4.649 2.885 8.046 3.289 9.159 3.276 10.035
12 0.727 1.419 0.896 2.147 1.098 2.872 2.806 8.090 1.731 4.758 2.647 7.189 3.000 8.786 3.480 9.868
24 0.970 2.514 1.269 3.595 1.219 3.230 2.829 8.133 1.782 5.160 2.947 8.703 3.105 9.424 4.017 11.954
48 1.077 2.713 1.369 4.098 1.365 3.963 2.852 8.179 1.829 5.313 3.657 9.965 3.416 10.056 5.975 15.270

5.4.2. Analysis of Generalization Capacity

Considering the practical application, the model needs to be adapted to the different
working conditions of the rotary kiln during operation. For Data 30 s, the test set coverage
time length is 14.4 h. In order to adequately verify the generalization performance of the
LSTM–Transformer, we additionally select other data of different time periods to test the
model. The test set sampling interval is still set to 30 s, and the length of coverage time is
increased to: 18 h, 24 h, and 36 h.

The results of the generalization performance tests are shown in Table 3. The results
show that the prediction performance of LSTM–Transformer remains stable as test set
coverage time length increases. This means that the model can be well adapted to different
working conditions during operation. It also has good adaptability to small external
perturbations, such as external operations by site staff. This proves that the model has
strong generalization ability.
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Table 3. Prediction results of LSTM–Transformer with different test set coverage lengths.

Input-36 18 h 24 h 36 h

Predict-O RMSE MAPE RMSE MAPE RMSE MAPE

6 0.713 1.394 0.690 1.336 0.755 1.692
12 0.718 1.391 0.731 1.559 0.797 1.729
24 0.873 2.113 0.864 1.991 0.949 2.468
48 0.996 2.677 1.059 2.738 1.137 2.872

6. Conclusions

This paper studies the problem of the long-term prediction of NOx emission concen-
tration, which is a pressing demand due to environmental issues. This paper takes an
alumina rotary kiln as the research object and proposes LSTM–Transformer for long-term
NOx emission prediction. Specifically, a model structure is designed that focuses on both
long-term and short-term trends, which can efficiently capture historical trend informa-
tion for long-term prediction. In the comparison of long-term prediction performance,
LSTM–Transformer has better results than the rest of the baseline models. Compared to the
baseline model, LSTM–Transformer yielded a 28.2% and 19.1% average RMSE reduction
on two datasets with different sampling intervals, respectively.

However, LSTM–Transformer may have some limitations in predicting longer dis-
tances. First, due to the large complexity of the standard dot-product self-attention, longer
prediction lengths can result in prediction failures due to out-of-memory and are limited
by computational and memory resources. Second, traditional dynamic decoding inference
methods suffer from error accumulation in long-sequence prediction and consume a lot of
inference time. Therefore, in future work, we will focus on sparse self-attention to reduce
complexity and memory usage while trying to improve the inference structure in order
to make the model suitable for long-sequence prediction tasks. Ultimately, we hope to
combine the prediction model with the intelligent control system to build an intelligent
rotary kiln flue gas denitrification system.
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