
Citation: Fan, Y.; Li, B.; Sataer, Y.;

Gao, M.; Shi, C.; Gao, Z. Addressing

Long-Distance Dependencies in AMR

Parsing with Hierarchical Clause

Annotation. Electronics 2023, 12, 3908.

https://doi.org/10.3390/

electronics12183908

Academic Editor: Arkaitz Zubiaga

Received: 3 August 2023

Revised: 1 September 2023

Accepted: 14 September 2023

Published: 16 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Addressing Long-Distance Dependencies in AMR Parsing with
Hierarchical Clause Annotation
Yunlong Fan 1,2 , Bin Li 1,2 , Yikemaiti Sataer 1,2, Miao Gao 1,2, Chuanqi Shi 1,2 and Zhiqiang Gao 1,2,*

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;
fanyunlong@seu.edu.cn (Y.F.); lib@seu.edu.cn (B.L.); yikmat@seu.edu.cn (Y.S.); miaogao@seu.edu.cn (M.G.);
chuanqi_shi@seu.edu.cn (C.S.)

2 Key Laboratory of Computer Network and Information Integration, Ministry of Education,
Southeast University, Nanjing 211189, China

* Correspondence: zqgao@seu.edu.cn

Abstract: Most natural language processing (NLP) tasks operationalize an input sentence as a se-
quence with token-level embeddings and features, despite its clausal structure. Taking abstract
meaning representation (AMR) parsing as an example, recent parsers are empowered by transform-
ers and pre-trained language models, but long-distance dependencies (LDDs) introduced by long
sequences are still open problems. We argue that LDDs are not actually to blame for the sequence
length but are essentially related to the internal clause hierarchy. Typically, non-verb words in a clause
cannot depend on words outside of it, and verbs from different but related clauses have much longer
dependencies than those in the same clause. With this intuition, we introduce a type of clausal feature,
hierarchical clause annotation (HCA), into AMR parsing and propose two HCA-based approaches,
HCA-based self-attention (HCA-SA) and HCA-based curriculum learning (HCA-CL), to integrate
HCA trees of complex sentences for addressing LDDs. We conduct extensive experiments on two
in-distribution (ID) AMR datasets (AMR 2.0 and AMR 3.0) and three out-of-distribution (OOD)
ones (TLP, New3, and Bio). Experimental results show that our HCA-based approaches achieve
significant and explainable improvements (0.7 Smatch score in both ID datasets; 2.3, 0.7, and 2.6 in
three OOD datasets, respectively) against the baseline model and outperform the state-of-the-art
(SOTA) model (0.7 Smatch score in the OOD dataset, Bio) when encountering sentences with complex
clausal structures that introduce most LDD cases.

Keywords: hierarchical clause annotation; long-distance dependencies; AMR parsing; self-attention;
curriculum learning

1. Introduction

Most natural language processing (NLP) tasks operationalize an input sentence as
a word sequence with token-level embeddings and features, which creates long-distance
dependencies (LDDs) when encountering long complex sentences such as dependency pars-
ing [1], constituency parsing [2], semantic role labeling (SRL) [3], machine translation [4],
discourse parsing [5], and text summary [6]. In previous works, the length of a sentence
has been blamed for LDDs superficially, and several universal methods are proposed to
cure this issue, e.g., hierarchical recurrent neural networks [7], long short-term memory
(LSTM) [8], attention mechanism [9], Transformer [10], implicit graph neural networks [11],
etc.

Abstract meaning representation (AMR) parsing [12], or translating a sentence to a
directed acyclic semantic graph with relations among abstract concepts, has made strides
in counteracting LDDs in different approaches. In terms of transition-based strategies,
Peng et al. [13] propose a cache system to predict arcs between distant words. In graph-
based methods, Cai and Lam [14] present a graph ↔ sequence iterative inference to
overcome inherent defects of the one-pass prediction process in parsing long sentences.

Electronics 2023, 12, 3908. https://doi.org/10.3390/electronics12183908 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183908
https://doi.org/10.3390/electronics12183908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5027-3686
https://orcid.org/0000-0002-1038-7494
https://doi.org/10.3390/electronics12183908
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183908?type=check_update&version=1

Electronics 2023, 12, 3908 2 of 20

In seq2seq-based approaches, Bevilacqua et al. [15] employ the Transformer-based pre-
trained language model, BART [16], to address LDDs in long sentences. Among these
categories, seq2seq-based approaches have become mainstream, and recent parsers [17–20]
employ the seq2seq architecture with the popular codebase SPRING [15], achieving better
performance. Notably, HGAN [20] integrates token-level features, syntactic dependencies
(SDP), and SRL with heterogeneous graph neural networks and has become the state-of-
the-art (SOTA) in terms of removing extra silver training data, graph-categorization, and
ensemble methods.

However, these AMR parsers still suffer performance degradation when encountering
long sentences with deeper AMR graphs [18,20] that introduce most LDD cases. We argue
that the complexity of the clausal structure inside a sentence is the essence of LDDs, where
clauses are the core units of grammar and center on a verb that determines the occurrences
of other constituents [21]. Our intuition is that non-verb words in a clause typically cannot
depend on words outside, while dependencies between verbs correspond to the inter-clause
relations, resulting in LDDs across clauses [22].

To prove our claim, we demonstrate the AMR graph of a sentence from the AMR 2.0
dataset (https://catalog.ldc.upenn.edu/LDC2017T10, accessed on 11 June 2022) and distin-
guish the AMR relation distances in terms of different segment levels (clause/phrase/token)
in Figure 1. Every AMR relation is represented as a dependent edge between two abstract
AMR nodes that align to one or more input tokens. The dependency distances of inter-token
relations are subtractive results from the indices of tokens aligned to the source and target
nodes, while those of inter-phrase and inter-clause relations are calculated by indices of the
headwords in phrases and the verbs in clauses, respectively. (The AMR relation distances
between a main clause and a relative/appositive clause are decided by the modified noun
phrase in the former and the verb in the latter). As can be observed:

• Dependency distances of inter-clause relations are typically much longer than those of
inter-phrase and inter-token relations, leading to most of the LDD cases. For example,

the AMR relation anxious
:ARG0−o f−−−−−−→ go-01, occurring in the clause “I get very anxious”,

and its relative clause “which does sort of go away . . . ”, has a dependency distance of 6
(subtracting the 9th token “anxious” from the 15th token “go”).

• Reentrant AMR nodes abstracted from pronouns also lead to far distant AMR relations.

For example, the AMR relation wait-01 :ARG0−−−→ I has a dependency distance of 33
(subtracting the 1st token “I” from the 34th token “wait”).

6

If I do not check , I get very anxious , but often the anxiety is so much that I can not wait that long .which does sort of go away after 15-30 mins ,

sort go-01 away after 15–30 mins thatpossible-01 - wait-01 long-03I get-03 very anxious- check-01

1

6

1

2 1

1

22

1 1 1

often anxiety much

32

19

Phrase

Token

Index 0 1 2 3 4 5

If I do not check ,

If I do not check ,

6 7 8 9 10

I get very anxious ,

I get very ,anxious

 23 24 25 26 27 28 29

but often the anxiety is so much

but often the is muchanxiety so

 30 31 32 33 34 35 36 37

that I can not wait that long .

that I can that long .not wait

,

,

11 12 13 14 15 16 17 18–20 21 22

Clause

which does sort of go away after 15–30 mins

which aftergo awaydoes sort of 15–30 mins

AMR node

AMR relation
& distance

I

3

I

33

33

Sentence If I do not check, I get very anxious, which does sort of go away after 15–30 mins, but often the anxiety is so much that I can not wait that long.

2

Figure 1. AMR relation dependency distances in different segment levels of an AMR 2.0 sentence.
The input sentence is placed at the (bottom), and the sentence’s clause/phrase/token-level segments
are positioned in the (middle) along with the token indices. The corresponding AMR graph is
displayed at the (top), where AMR relations are represented as directed edges with a dependency
distance, i.e., the indices’ subtraction of two tokens mapping to the source/target AMR nodes. Inter-
clause/phrase/token relations are distinguished in separate colors, corresponding to the segment
levels’ colors. Note that two virtual AMR nodes in dashed boxes of the reentrant node “I” are added
for simplicity.

https://catalog.ldc.upenn.edu/LDC2017T10

Electronics 2023, 12, 3908 3 of 20

Based on the findings above, we are inspired to utilize the clausal features of a sentence
to cure LDDs. Rhetorical structure theory (RST) [23] provides a general way to describe
the coherence relations among clauses and some phrases, i.e., elementary discourse units,
and postulates a hierarchical discourse structure called discourse tree. Except for RST,
a novel clausal feature, hierarchical clause annotation (HCA) [24], also captures a tree
structure of a complex sentence, where the leaves are segmented clauses and the edges are
the inter-clause relations.

Due to the better parsing performances of the clausal structure [24], we select and
integrate the HCA trees of complex sentences to cure LDDs in AMR parsing. Specifically, we
propose two HCA-based approaches, HCA-based self-attention (HCA-SA) and HCA-based
curriculum learning (HCA-CL), to integrate the HCA trees as clausal features in the popular
AMR parsing codebase, SPRING [15]. In HCA-SA, we convert an HCA tree into a clause
adjacency matrix and a token visibility matrix to restrict the attention scores between tokens
from unrelated clauses and increase those from related clauses in masked-self-attention
encoder layers. In HCA-CL, we employ curriculum learning with two training curricula,
Clause-Number and Tree-Depth, with the assumption that “the more clauses or the deeper
clausal tree in a sentence, the more difficult it is to learn”.

We conduct extensive experiments on two in-distribution (ID) AMR datasets
(i.e., AMR 2.0 and AMR 3.0 (https://catalog.ldc.upenn.edu/LDC2020T02, accessed on 11
June 2022)) and three out-of-distribution (OOD) ones (i.e., TLP, New3, and Bio) to evaluate
our two HCA-based approaches. In ID datasets, our parser achieves a 0.7 Smatch F1 score
improvement against the baseline model, SPRING, on both AMR 2.0 and AMR 3.0, and
outperforms the SOTA parser, HGAN, by 0.5 and 0.6 F1 scores for the fine-grained metric
SRL in the two datasets. Notably, as the clause number of the sentence increases, our parser
outperforms SPRING by a large margin and achieves better Smatch F1 scores than HGAN,
indicating the ability to cure LDDs. In OOD datasets, the performance boosts achieved by
our HCA-based approaches are more evident in complicated corpora like New3 and Bio,
where sentences consist of more clauses and longer clauses. Our code is publicly available
at https://github.com/MetroVancloud/HCA-AMRparsing (accessed on 3 August 2023).

The rest of this paper is organized as follows. The related works are summarized in
Section 2, and the proposed approaches are detailed in Section 3. Then, the experiments of
AMR parsing are presented in Section 4. Next, the discussion of the experimental results is
presented in Section 5. Finally, our work is concluded in Section 6.

2. Related Work

In this section, we first introduce the open problem of LDDs and some universal
methods. Then, we summarize the four main categories of parsers and the LDD cases in
AMR parsing. Finally, we introduce the novel clausal feature, HCA.

2.1. Long-Distance Dependencies

LDDs, first proposed by Hockett [25], describe an interaction between two (or more)
elements in a sequence separated by an arbitrary number of positions. LDDs are related to
the rate of decay of statistical dependence of two points with increasing time intervals or
spatial distances between them [26]. In recent linguistic research into LDDs, Liu et al. [22]
propose the verb-frame frequency account to robustly predict acceptability ratings in
sentences with LDDs, indicating the affinities between the number of verbs and LDDs
in sentences.

In recent advances in NLP tasks, hierarchical recurrent neural networks [7], LSTM [8],
attention mechanism [9], Transformer [10], and implicit graph neural networks [11] are
proposed to cure LDDs. Specifically, the attention mechanism has been showcased with
successful applications to address LDDs in diverse environments. For instance, Xiong and
Li [27] designed an attention mechanism to enable the neural model to learn relevant and
informative words that contain topic-related information in students’ constructed response
answers. It solved long-distance dependencies by focusing on specific parts of the input

https://catalog.ldc.upenn.edu/LDC2020T02
https://github.com/MetroVancloud/HCA-AMRparsing

Electronics 2023, 12, 3908 4 of 20

sequence that are most relevant to the task at hand. Zukov-Gregoric et al. [28] proposed a
self-attention mechanism in the multi-head encoder–decoder neural network architecture
that allows the network to focus on important resolution information from long writings,
enabling it to perform better in named entity recognition. Li et al. [29] also employed
a bidirectional LSTM model with a self-attention mechanism to enhance the sentiment
information derived from existing linguistic knowledge and sentiment resources in the
sentiment analysis task.

These universal neural models all represent the input sequence with token-level
embeddings from pretrained language models in most NLP tasks.

2.2. AMR Parsing

AMR parsing is a challenging semantic parsing task since AMR is a deep semantic
representation consisting of many special annotations (e.g., abstract concept nodes, named
entities, co-references, and such) [12]. The aim of AMR parsing is translating a sentence to
a directed acyclic semantic graph with relations among abstract concepts, where the two
main characteristics are:

1. Abstraction: Assigns the same AMR to sentences with the same basic meaning and also
brings a challenge for alignments between input tokens and output AMR nodes [12],
e.g., the token “can” and its corresponding AMR node possible-01 in Figure 1.

2. Reentrancy: Introduces the presence of nodes with multiple parents and represents
sentences as graphs rather than trees [30], causing some LDD cases, e.g., the AMR
node “I” in Figure 1.

Existing AMR parsers can be summarized into four categories:

1. Graph-based: Directly predict nodes and edges in either two-stage procedures [31–33] or
incremental one-stage [14,34] procedures. The SOTA graph-based model, AMR-gs [14],
enhances the incremental graph construction with an AMR graph↔ sequence iterative
inference mechanism in one-stage procedures.

2. Seq2seq-based: Model the task as transduction of the sentence into a linearization of
the AMR graph [15,17–20,35–38]. SPRING [15] is a popular seq2seq-based codebase
that employs transfer learning by exploiting a pretrained encoder–decoder model,
BART [16], to generate a linearized graph incrementally with a single auto-regressive
pass of a seq2seq decoder. The subsequent models, ANCES [17], HCL [18], ATP [19],
and HGAN [20] all follow the architecture of SPRING, and HGAN integrates SDP and
SRL features with heterogeneous graph neural networks to achieve the best perfor-
mance in the tasks of removing extra silver training data, graph re-categorization, and
ensemble methods.

3. Transition-based: Predict a sequence of actions that generate the graph while processing
tokens left-to-right through the sentence [39–45]. The SOTA transition-based model,
StructBART [45], explores the integration of general pre-trained sequence-to-sequence
language models and a structure-aware transition-based approach.

4. Grammar-based: Peng et al. [46] introduce a synchronous hyperedge replacement
grammar solution. Pust et al. [47] regard the task as a machine translation problem,
while Artzi et al. [48] adapt combinatory categorical grammar. Groschwitz et al. [49]
and Lindemann et al. [50] view AMR graphs as the structural AM algebra.

Despite different architectures, most AMR parsers employ word embeddings from
pretrained language models and utilize token-level features like part-of-speech (POS), SDP,
and SRL. However, these parsers still suffer performance degradation [18,20] when parsing
complex sentences with LDDs due to the difficulties of aligning input tokens with output
AMR nodes in such a long sequence.

2.3. Hierarchical Clause Annotation

RST [23] provides a general way to describe the coherence relations among parts in a
text and postulates a hierarchical discourse structure called a discourse tree. The leaves of

Electronics 2023, 12, 3908 5 of 20

a discourse tree can be a clause or a phrase without strict definitions, known as elementary
discourse units. However, the performances of RST parsing tasks are unsatisfactory due
to the loose definitions of elementary discourse units and abundant types of discourse
relations [51,52].

Syntactic dependency parse trees (SDPT) and constituency parse trees (CPT) are exist-
ing syntactic representations that provide hierarchical token-level annotations. However,
AMR has the unique feature, abstraction, summarized in Section 2.2, indicating the challenge
of alignments between input tokens and output AMR nodes. When encountering long and
complex sentences, the performance of parsing SDPT [1] and CPT [2] degrade, and these
silver token-level annotations also contribute more noise for “token-node” alignments in
AMR parsing.

In addition to RST, Fan et al. [24] also propose a novel clausal feature, HCA, which
represents a complex sentence as a tree consisting of clause nodes and inter-clause relation
edges. The HCA framework is based on English grammar [21], where clauses are elemen-
tary grammar units that center around a verb, and inter-clause relations can be classified
into two categories:

1. Coordination: An equal relation shared by clauses with the same syntactic status,
including And, Or, and But relations.

2. Subordination: Occurs in a matrix and a subordinate clause, including Subjective,
Objective, Predicative, Appositive, Relative, and nine sublevel Adverbial relations.

Inter-clause relations have appropriate alignments with AMR relations, where nominal
clause relations correspond to the frame arguments (e.g., Subjective vs. :ARG0), and adverbial
clause relations are mapped to general semantic relations (e.g., Adverbial_of_Condition
vs. :condition). Figure 2 demonstrates the segmented clauses and the HCA tree of the
same sentence in Figure 1.

If I do not check, C1C1 I get very anxious, C2C2

which does sort of go away after 15–30 mins, C3C3

but the anxiety is so much C4C4 that I can not wait

that long. C5C5

C2

C1 C3

C4

C5

BUT

cnd rel

op

res

op

Figure 2. Segmented clauses and the HCA tree of a sentence in AMR 2.0. Clauses C2 and C4 are con-
trasted and coordinated, dominated by the node BUT. Clauses C1, C3, and C5 are subordinated to their
matrix clauses, where cnd, rel, and res represent the inter-clause relations of Adverbial_of_Condition,
Relative, and Adverbial_of_Result, respectively.

Based on well-defined clauses and inter-clause relations, Fan et al. provide a manually
annotated HCA corpus for AMR 2.0 and high-performance neural models to generate silver
HCA trees for more complex sentences. Therefore, we select and utilize the HCA trees as
clausal features to address LDDs in AMR parsing.

3. Model

In this paper, we propose two HCA-based approaches, HCA-SA (Section 3.1) and
HCA-CL (Section 3.2), to integrate HCA trees in the popular AMR parser codebase SPRING
for addressing LDDs in AMR parsing.

3.1. HCA-Based Self-Attention

Existing AMR parsers (e.g., SPRING) employ Transformer [10] as an encoder to obtain
the input sentence representation. However, in the standard self-attention mechanism
adopted by the Transformer model, every token needs to attend to all other tokens, and the
learned attention matrix A is often very sparse across most data points [53]. Inspired by
the work of Liu et al. [54], we propose the HCA-SA approach, which utilizes hierarchical

Electronics 2023, 12, 3908 6 of 20

clause annotations as a structural bias to restrict the attention scope and attention scores.
We summarize this method in Algorithm 1.

Algorithm 1 HCA-Based Self-Attention

Require: Attention head number h, attention matrices Q, K, and V, token visibility matrices
Mvis and Mdeg, matrix that maps the attention head indices to clause relations Mrel

Ensure: Multi-head attention weights AMultiHead with embedded HCA features
1: Initialization: Multi-head attention weights AMultiHead, attention layer index i← 0
2: repeat
3: Mvis

i ← MvisMrel
i . select a certain type of clause relation of this attention head

4: Mdeg
i ← MvisMrel

i

5: Smask
i ← Softmax(QK>√

d
Mdeg

i + Mvis
i) . mask the attention scores with HCA

6: Amask
i ← Smask

i V
7: AMultiHead ← Concat(AMultiHead, Amask

i) . concatenate each attention weight
8: i← i + 1
9: until i = h

3.1.1. Token Visibility Matrix

For the example sentence in Figure 2, its HCA tree can be transferred into a clause
adjacency matrix in Figure 3a by checking if two clauses have an inter-clause edge (not
meaning that they are adjacent in the source sentence), where adjacent clauses have specific
correlations (pink) and non-adjacent ones share no semantics (white). Each clause has the
strongest correlation with itself (red).

Furthermore, we transform the clause adjacency matrix into token visibility matrices
by splitting every clause into tokens. As shown in Figure 3b,c, the visibility between tokens
can be summarized into the following cases:

• Full Visibility: tokens in the same clause are fully mutually visible;
• Partial Visibility: tokens from two adjacent clauses C1 and C2 share partial visibility;
• No Visibility: tokens from non-adjacent clauses C2 and C5 are invisible to each other;
• Global Visibility: tokens with a pronoun POS (e.g., “I” in C5) are globally visible for the

linguistic phenomena of co-reference;
• Additional Visibility: tokens that are clausal keywords (i.e., coordinators, subordinators,

and antecedents) share additional visibilities with the tokens in adjacent clauses (e.g.,
“if” in C1 to tokens in C2).

Therefore, we introduce two token visibility matrices Mvis and Mdeg, where the former
signals whether two tokens are visible mutually, and the latter measures the visibility degree
between them:

Mvis
i,j =

{
−∞ wi ⊗ wj

0, otherwise
(1)

Mdeg
i,j =

0 wi ⊗ wj

1, wi � wj

λ0, wi 	 wj

λ1, wi 	 wj ∧ Key(wi/wj)

µ, PRN(wi/wj),

(2)

where ⊗, �, and 	 mean that the corresponding two tokens, wi and wj, are positioned
in two nonadjacent (No Visibility), similar (Full Visibility), and adjacent (Partial Visibility)
clauses, respectively. Key(wi/wj) indicates that at least one of wi and wj is a clausal
keyword token, while PRN(wi/wj) denotes the existence of at least one pronoun in wi and
wj. Values of the hyperparameters λ0, λ1, and µ are in (0, 1), and λ1 > λ0.

Electronics 2023, 12, 3908 7 of 20

<latexit sha1_base64="Iw1gZOBeqoNWURm+SOs4RAMb9S8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbRrVe+qWru7rNQv8jiKcAKncA4eXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO4qo1j</latexit>

C1

<latexit sha1_base64="Iw1gZOBeqoNWURm+SOs4RAMb9S8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbRrVe+qWru7rNQv8jiKcAKncA4eXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO4qo1j</latexit>

C1

<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2

<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2

<latexit sha1_base64="OAmLNfCcF729qzBzORDo5LFIZ/4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBqEcSLh4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY1+d++4lrI2L1iJOE+xEdKhEKRtFKD/V+tV8suWV3AbJOvIyUIEOjX/zqDWKWRlwhk9SYrucm6E+pRsEknxV6qeEJZWM65F1LFY248aeLU2fkwioDEsbalkKyUH9PTGlkzCQKbGdEcWRWvbn4n9dNMbz1p0IlKXLFlovCVBKMyfxvMhCaM5QTSyjTwt5K2IhqytCmU7AheKsvr5NWpexdlyv3V6VaNYsjD2dwDpfgwQ3U4A4a0AQGQ3iGV3hzpPPivDsfy9ack82cwh84nz+7so1l</latexit>

C3

<latexit sha1_base64="OAmLNfCcF729qzBzORDo5LFIZ/4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBqEcSLh4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY1+d++4lrI2L1iJOE+xEdKhEKRtFKD/V+tV8suWV3AbJOvIyUIEOjX/zqDWKWRlwhk9SYrucm6E+pRsEknxV6qeEJZWM65F1LFY248aeLU2fkwioDEsbalkKyUH9PTGlkzCQKbGdEcWRWvbn4n9dNMbz1p0IlKXLFlovCVBKMyfxvMhCaM5QTSyjTwt5K2IhqytCmU7AheKsvr5NWpexdlyv3V6VaNYsjD2dwDpfgwQ3U4A4a0AQGQ3iGV3hzpPPivDsfy9ack82cwh84nz+7so1l</latexit>

C3

<latexit sha1_base64="0pgYsLh/TZGqWtjnWENWvN8LcV4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEcSLh4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+txvP6HSPJaPZpKgH9Gh5CFn1Fjpod6v9oslt+wuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/9KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWpexdlyv31VLtKosjD2dwDpfgwQ3U4A4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+9No1m</latexit>

C4

<latexit sha1_base64="0pgYsLh/TZGqWtjnWENWvN8LcV4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEcSLh4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+txvP6HSPJaPZpKgH9Gh5CFn1Fjpod6v9oslt+wuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/9KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWpexdlyv31VLtKosjD2dwDpfgwQ3U4A4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+9No1m</latexit>

C4

<latexit sha1_base64="pGazn5bW5+45XpvMyfGNNW/OHBw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbxeSTh4hGjPBLYkNmhFybMzm5mZk0I4RO8eNAYr36RN//GAfagYCWdVKq6090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjCqzfzWEyrNY/loxgn6ER1IHnJGjZUear2rXrHklt05yCrxMlKCDPVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14a0/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL3rcuX+slS9yOLIwwmcwjl4cANVuIM6NIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w++uo1n</latexit>

C5

<latexit sha1_base64="pGazn5bW5+45XpvMyfGNNW/OHBw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbxeSTh4hGjPBLYkNmhFybMzm5mZk0I4RO8eNAYr36RN//GAfagYCWdVKq6090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjCqzfzWEyrNY/loxgn6ER1IHnJGjZUear2rXrHklt05yCrxMlKCDPVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14a0/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL3rcuX+slS9yOLIwwmcwjl4cANVuIM6NIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w++uo1n</latexit>

C5

Same clause

Adjacent clauses

Non-adjacent clauses

(a) Clause Adjacency Matrix

If Ido no
t

ch
ec
k

ge
t

ve
ry

ve
ry

an
xi
ou
s

I

If
I
do
not

check

get
very
very

anxious

I
<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2

<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2

<latexit sha1_base64="Iw1gZOBeqoNWURm+SOs4RAMb9S8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbRrVe+qWru7rNQv8jiKcAKncA4eXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO4qo1j</latexit>

C1

<latexit sha1_base64="Iw1gZOBeqoNWURm+SOs4RAMb9S8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbRrVe+qWru7rNQv8jiKcAKncA4eXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO4qo1j</latexit>

C1

Pronoun in one of two tokens

Clausal keyword in one of two tokens

Tokens in two adjacent clauses

Tokens in a same clause

(b) Token Adjacency Matrix—Adjacent

get
very
very

anxious

I

that
I

can
not
wait
that
long

I ge
t

ve
ry

ve
ry

an
xi
ou
s

th
at
I ca
n

no
t

w
ai
t

th
at
lo
ng

<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2

<latexit sha1_base64="pGazn5bW5+45XpvMyfGNNW/OHBw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbxeSTh4hGjPBLYkNmhFybMzm5mZk0I4RO8eNAYr36RN//GAfagYCWdVKq6090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjCqzfzWEyrNY/loxgn6ER1IHnJGjZUear2rXrHklt05yCrxMlKCDPVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14a0/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL3rcuX+slS9yOLIwwmcwjl4cANVuIM6NIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w++uo1n</latexit>

C5

<latexit sha1_base64="zZzL5VkaOKTBJVjFIGMoFa1ZsMQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMdCLx4r2g9oQ9lsJ+3SzSbsboQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkMfM7j6g0j+WDmSboR3QkecgZNVa6bwxqg3LFrbpzkFXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgU6mfakwom9AR9iyVNELtZ/NTn8iZVYYkjJUtachc/T2R0UjraRTYzoiasV72ZuJ/Xi814Y2fcZmkBiVbLApTQUxMZn+TIVfIjJhaQpni9lbCxlRRZmw6JRuCt/zyKmnXqt5VtXZ3Walf5HEU4QRO4Rw8uIY63EITWsBgBM/wCm+OcF6cd+dj0Vpw8plj+APn8we6Lo1k</latexit>

C2
<latexit sha1_base64="pGazn5bW5+45XpvMyfGNNW/OHBw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbxeSTh4hGjPBLYkNmhFybMzm5mZk0I4RO8eNAYr36RN//GAfagYCWdVKq6090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjCqzfzWEyrNY/loxgn6ER1IHnJGjZUear2rXrHklt05yCrxMlKCDPVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14a0/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL3rcuX+slS9yOLIwwmcwjl4cANVuIM6NIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w++uo1n</latexit>

C5

Tokens in two non-adjacent clauses

(c) Token Adjacency Matrix—Non-adjacent

Figure 3. Overview of our hierarchical clause annotation (HCA)-based self-attention approach that
integrates the clausal structure of input sentences. In (a), red blocks mean that clauses have the
strongest correlation with themselves; the pink/white ones mean that the corresponding two are
adjacent/non-adjacent in the HCA tree. In (b,c), the adjacency between two clauses is concretized in
a token visibility matrix. Pink circles with a red dotted border mean one of the two corresponding
tokens is a pronoun, while those with a blue solid border indicate the existence of a clausal keyword
(i.e., coordinator, subordinator, or antecedent).

3.1.2. Masked-Self-Attention

To some degree, the token visibility matrices Mvis and Mdeg contain the structural
information of the HCA tree. For vanilla transformers employed in existing AMR parsers,
stacked self-attention layers inside can not receive Mvis and Mdeg as inputs, so we modify
this to Masked-Self-Attention, which can restrict the attention scope and attention scores
according to Mvis and Mdeg. Formally, the masked attention scores Smask and the masked
attention matrix Amask are defined as:

Smask = Softmax(
QK>√

d
Mdeg + Mvis) (3)

Amask = SmaskV, (4)

where self-attention inputs are Q, K, V ∈ RN×d; N is the length of the input sentences; and
scaling factor d is the dimension of the model. Intuitively, if token wi is invisible to wj, the
attention scores Smask

i,j will be masked to 0 due to the value −∞ of Mvis
i,j and the value 0 of

Mdeg
i,j . Otherwise, Smask

i,j will be scaled according to Mdeg
i,j in different cases.

3.1.3. Clause-Relation-Bound Attention Head

In every stacked self-attention layer of Transformer, multi-head attention allows the
model to jointly attend to information from different representation subspaces at different
positions [10]. It also provides us the possibility of integrating different inter-clause relations
in different attention heads. Instead of masking the attention matrix with non-labeled HCA
trees, we propose a clause-relation-bound attention head setting, where every head attends
to a specific inter-clause relation.

In this setting, we increase the visibility between tokens in two adjacent clauses with
interrelation reli in the attention matrix Amask

reli
of the bound head, i.e., increasing λ0 to 1 in

Electronics 2023, 12, 3908 8 of 20

Equation (2). Therefore, the final attention matrix AMultiHead of each stacked self-attention
layer is defined as:

AMultiHead = Concat(Amask
rel1

, . . . , Amask
reli

, . . . , Amask
relh

)WO, (5)

where the parameter matrix WO ∈ RhN×d, and h is the attention head number mapping
to 16 inter-clause relations in HCA [24].

3.2. HCA-Based Curriculum Learning

Inspired by the idea of curriculum learning [55], which suggests that humans handle
difficult tasks from easy examples to hard ones, we propose an HCA-CL approach for
training an AMR parser, in which the clause number and the tree depth of a sentence’s
HCA are the measurements of learning difficulty. Referring to the previous work of Wang
et al. [18], we set two learning curricula, Clause-Number and Tree-Depth, in our HCA-CL
approach demonstrated in Figure 4.

If I do not check, C1C1 I get very anxious, C2C2

which does sort of go away after 15–30

mins, C3C3 but the anxiety is so much C4C4

that I can not wait that long. C5C5

C2

C1 C3

C4

C5

BUT

cnd rel

op

res

op

!"#$%&'

C2
obj

The American military stated C1C1 that its priority

is to ensure C2C2 that the weapons were not

unloaded from the ship C3C3 and sold to Islamist

insurgents in Somalia. C4C4
AND

C3 C4

C1

op op

obj !"#$%&(

Training Episodes

C
la

u
se

 N
u
m

b
er

C5

Clause-Number
Curriculum

Training Episodes

T
re

e
D

ep
th

Tree-Depth
Curriculum

D1

D2

D3

D4

DM

C1

C2

C3

C4

CN

Figure 4. Overview of our hierarchical clause annotation (HCA)-based curriculum learning approach
with two curricula, Clause-Number and Tree-Depth. The learning difficulties of the two curricula are
set by the clause number and the tree depth of a sentence’s HCA in the (left) and (right) charts. Two
example sentences from AMR 2.0 and their HCAs are demonstrated in the middle.

3.2.1. Clause-Number Curriculum

In the Clause-Number (CN) curriculum, sentences with more clauses that involve
more inter-clause relations and longer dependency distances (demonstrated in Figure 1)
are considered to be harder to learn. Given this assumption, all training sentences are
divided into N buckets according to their clause number {Ci : i = 1, . . . , N}, where Ci
contains sentences with the clause number i. In the training epoch of the Clause-Number
curriculum, there are N training episodes with Tcn steps individually. At each step of the
i-th episode, the training scheduler samples a batch of examples from buckets {Ij : j ≤ i}
to train the model.

3.2.2. Tree-Depth Curriculum

In the Tree-Depth (TD) curriculum, sentences with deeper HCA trees that correspond
to deeper hierarchical AMR graphs are considered to be harder to learn. Given this
assumption, all training sentences are divided into M buckets according to their clause
number {Di : i = 1, . . . , M}, where Di contains sentences with the clause number i. In the
training epoch of the Clause-Number curriculum, there are M training episodes with Ttd
steps individually. At each step of the i-th episode, the training scheduler samples a batch
of examples from buckets {Ij : j ≤ i} to train the model.

4. Experiments

In this section, we describe the details of datasets, environments, model hyperparame-
ters, evaluation metrics, compared models, and parsing results for the experiments.

Electronics 2023, 12, 3908 9 of 20

4.1. Datasets

For the benchmark datasets, we choose two standard AMR datasets, AMR 2.0 and
AMR 3.0, as the ID settings and three test sets, TLP, New3, and Bio, as the OOD settings.

For the HCA tree of each sentence, we use the manually annotated HCA trees for
AMR 2.0 provided by [24] and auto-annotated HCA trees for the remaining datasets, which
were all generated by the HCA Segmenter and the HCA Parser proposed by [24].

4.1.1. In-Distribution Datasets

We first train and evaluate our HCA-based parser on two standard AMR parsing
evaluation benchmarks:

• AMR 2.0 includes 39,260 sentence–AMR pairs in which source sentences are collected
from: the DARPA BOLT and DEFT programs, transcripts and English translations of
Mandarin Chinese broadcast news programming from China Central TV, text from
the Wall Street Journal, translated Xinhua news texts, various newswire data from
NIST OpenMT evaluations, and weblog data used in the DARPA GALE program.

• AMR 3.0 is a superset of AMR 2.0 and enriches the data instances to 59,255. New
source data added to AMR 3.0 include sentences from Aesop’s Fables, parallel text
and the situation frame dataset developed by LDC for the DARPA LORELEI program,
and lead sentences from Wikipedia articles about named entities.

The training, development, and test sets in both datasets are a random split, and
therefore we take them as ID datasets as in previous works [15,17,18,20,45].

4.1.2. Out-of-Distribution Datasets

To further estimate the effects of our HCA-based approaches on open-world data that
come from a different distribution, we follow the OOD settings introduced by [15] and
predict based on three OOD test sets with the parser trained on the AMR 2.0 training set:

• New3 (Accessed at https://catalog.ldc.upenn.edu/LDC2020T02, accessed on 11 Au-
gust 2022): A set of 527 instances from AMR 3.0, whose source was the LORELEI
DARPA project (not included in the AMR 2.0 training set) consisting of excerpts from
newswire and online forums.

• TLP (Accessed at https://amr.isi.edu/download/amr-bank-struct-v3.0.txt, accessed
on 12 October 2022; note that the annotators did not mention the translators of this
English version applied in the annotation): The full AMR-tagged children’s novel
written by Antoine de Saint-Exupéry, The Little Prince (version 3.0), consisting of
1562 pairs.

• Bio (https://amr.isi.edu/download/2016-03-14/amr-release-test-bio.txt, accessed on
15 October 2022): the test set of the Bio-AMR corpus, consisting of 500 instances,
featuring biomedical texts [56].

4.1.3. Hierarchical Clause Annotations

For the hierarchical clausal features utilized in our HCA-based approaches, we use
the manually annotated HCA corpus for AMR 2.0 provided in [24]. Moreover, we employ
the HCA segmenter and the HCA parser proposed in [24] to generate silver HCA trees for
AMR 3.0 and three OOD test sets. Detailed statistics of the evaluation datasets in this paper
are listed in Table 1.

https://catalog.ldc.upenn.edu/LDC2020T02
https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
https://amr.isi.edu/download/2016-03-14/amr-release-test-bio.txt

Electronics 2023, 12, 3908 10 of 20

Table 1. Main statistics of five AMR parsing benchmarks. “ID” and “OOD” denote in-distribution
and out-of-distribution settings, respectively. “#Snt.” and “#HCA” represent the total number of
sentences and complex sentences with hierarchical clause annotations in each split set.

Dataset
Training Development Test

#Snt. #HCA #Snt. #HCA #Snt. #HCA

ID AMR 2.0 36,521 17,886 1368 741 1371 753
AMR 3.0 55,635 36,921 1722 1243 1898 1258

OOD
New3 - - 527 286
TLP - - 1562 825
Bio - - 500 367

4.2. Baseline and Compared Models

We compare our HCA-based AMR parser with several recent parsers:

• AMR-gs (2020) [14], a graph-based parser that enhances incremental graph construc-
tion with an AMR graph ↔ sequence (AMR-gs) iterative inference mechanism in
one-stage procedures.

• APT (2021) [44], a transition-based parser that employs an action-pointer transformer
(APT) to decouple source tokens from node representations and address alignments.

• StructBART (2021) [45], a transition-based parser that integrates the pre-trained lan-
guage model, BART, for structured fine-tuning.

• SPRING (2021) [15], a fine-tuned BART model that predicts a linearized AMR graph.
• HCL (2022) [18], a hierarchical curriculum learning (HCL) framework that helps the

seq2seq model adapt to the AMR hierarchy.
• ANCES (2022) [17], a seq2seq-based parser that adds the important ancestor (ANCES)

information into the Transformer decoder.
• HGAN (2022) [20], a seq2seq-based parser that applies a heterogeneous graph attention

network (HGAN) to argument word representations with syntactic dependencies
and semantic role labeling of input sentences. It is also the current SOTA parser
in the settings of removing graph re-categorization, extra silver training data, and
ensemble methods.

Since SPRING provides a clear and efficient seq2seq-based architecture based on a
vanilla BART, recent seq2seq-based models HCA, ANCES, and HGAN all select it as the
codebase. Therefore, we also choose SRPING as the baseline model to apply our HCA-
based approaches. Additionally, we do not take the competitive AMR parser, ATP [19], into
consideration for our compared models since it employs syntactic dependency parsing and
semantic role labeling as intermediate tasks to introduce extra silver training data.

4.3. Hyper-Parameters

For the hyper-parameters of our HCA-based approaches, we list their layer, name,
and value in Table 2. To pick the hyper-parameters employed in the HCA-SA Encoder,
i.e., λ0, λ1, and µ, we use a random search with a total of 16 trials in their search spaces
(λ0: [0.1, 0.6], λ1: [0.4, 0.9], µ: [0.7, 1.0], and stride +0.1). According to the results of these
experimental trials, we selected the final pick for each hyper-parameter. All models are
trained until reaching their maximum epochs, and then we select the best model checkpoint
on the development set.

Electronics 2023, 12, 3908 11 of 20

Table 2. Final hyper-parameter configuration of the clause segmentation model. “HCA-SA En-
coder” indicates the HCA-based self-attention approach user in the encoder, and “HCA-CL Strategy”
represents the HCA-based curriculum learning approach used before the normal training epochs.

Layer Hyper-Parameter Value

Word Embedding BART-large 1024

HCA-SA Encoder

layer 12
head 16

λ0 0.5
λ1 0.8
µ 1

Decoder layer 12
head 16

HCA-CL Strategy Tcn 500
Ttd 1500

Trainer

optimizer RAdam
weight decay 4× 10−3

loss function Cross-entropy
learning rate 5× 10−5

batch size 500
dropout 0.25

maximum epochs 30

Prediction beam size 5

4.4. Evaluation Metrics

Following previous AMR parsing works, we use Smatch scores [57] and fine-grained
metrics [58] to evaluate the performances. Specifically, the fine-grained AMR metrics are:

1. Unlabeled (Unlab.): Smatch computed on the predicted graphs after removing all
edge labels.

2. No WSD (NoWSD): Smatch while ignoring Propbank senses (e.g., “go-01” vs. “go-02”).
3. Named entity (NER): F-score on the named entity recognition (:name roles).
4. Wikification (Wiki.): F-score on the wikification (:wiki roles).
5. Negation (Neg.): F-score on the negation detection (:polarity roles).
6. Concepts (Conc.): F-score on the concept identification task.
7. Reentrancy (Reent.): Smatch computed on reentrant edges only, e.g., the edges of

node “I” in Figure 1.
8. Semantic role labelings (SRL): Smatch computed on :ARGi roles only.

As suggested in [18], Unlab., Reent, and SRL are considered to be structure-dependent
metrics, since:

• Unlab. does not consider any edge labels and only considers the graph structure;
• Reent. is a typical structure feature for the AMR graph. Without reentrant edges, the

AMR graph is reduced to a tree;
• SRL denotes the core-semantic relation of the AMR, which determines the core struc-

ture of the AMR.

Conversely, all other metrics are classified as structure-independent metrics.

4.5. Experimental Environments

Table 3 lists the information on the main hardware and software used in our experi-
mental environments. Note that the model in AMR 2.0 is trained for a total of 30 epochs for
16 h, while the model trained in AMR 3.0 is finished in a total of 30 epochs for 28 h given
the experimental environments.

Electronics 2023, 12, 3908 12 of 20

Table 3. Hardware and software used in our experiments.

Environment Value

Hardware

CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz
GPU NVIDIA RTX 2080Ti (11 G)

Memory 64 GB

Software

Python 3.8.16
Pytorch 1.13.0

Anaconda 4.10.1
CUDA 11.0

IDE PyCharm 2022.2.3

4.6. Experimental Results

We now report the AMR parsing performances of our HCA-based parser and other
comparison parsers on ID datasets and OOD datasets, respectively.

4.6.1. Results in ID Datasets

As demonstrated in Table 4, we report AMR parsing performances of the baseline
model (SPRING), other compared parsers, and the modified SPRING that applies our
HCA-based self-attention (HCA-SA) and curriculum learning (HCA-CL) approaches on ID
datasets AMR 2.0 and AMR 3.0. All the results of our HCA-based model have averaged
scores of five experimental trials, and we compute the significance of performance differ-
ences using the non-parametric approximate randomization test [59]. From the results, we
can make the following observations:

• Equipped with our HCA-SA and HCA-CL approaches, the baseline model SPRING
achieves a 0.7 Smatch F1 score improvement on both AMR 2.0 and AMR 3.0. The
improvements are significant, with p < 0.005 and p < 0.001, respectively.

• In AMR 2.0, our HCA-based model outperforms all compared models except ANCES
and the HGAN version that introduces both DP and SRL features.

• In AMR 3.0, consisting of more sentences with HCA trees, the performance gap
between our HCA-based parser and the SOTA (HGAN with DP and SRL) is only a 0.2
Smatch F1 score.

To better analyze how the performance improvements of the baseline model are
achieved when applying our HCA-based approaches, we also report structure-dependent
fine-grained results in Table 4. As claimed in Section 1, inter-clause relations in the HCA
can bring LDD issues, which are typically related to AMR concept nodes aligned with verb
phrases and reflected in structure-dependent metrics. As can be observed:

• Our HCA-based model outperforms the baseline model in nearly all fine-grained
metrics, especially in structure-dependent metrics, with 1.1, 1.8, and 3.9 F1 score
improvements in Unlab., Reent., and SRL, respectively.

• In the SRL, Conc., and Neg metrics, our HCA-based model achieves the best perfor-
mance against all compared models.

4.6.2. Results in OOD Datasets

As demonstrated in Table 5, we report the parsing performances of our HCA-based
model and compared models on three OOD datasets. As can be seen:

• Our HCA-based model outperforms the baseline model SPRING with 2.5, 0.7, and 3.1
Smatch F1 score improvements in the New3, TLP, and Bio test sets, respectively.

• In the New3 and Bio datasets that contain long sentences of newswire and biomedical
texts and have more HCA trees, our HCA-based model outperforms all compared models.

Electronics 2023, 12, 3908 13 of 20

• In the TLP dataset that contains many simple sentences of a children’s story and fewer
HCA trees, our HCA-based does not perform as well as HCL and HGAN.

Table 4. Smatch and fine-grained F1 scores (%) of our AMR parser and comparative ones on two in-
distribution (ID) evaluation test sets. The column “Feat.” means the extra features that an AMR parser
requires, where “DP”, “SRL”, and “HCA” indicate syntactic dependencies, semantic role labelings,
and hierarchical clause annotations, respectively. For comparison fairness, the performances of
compared parsers are the versions without graph re-categorization, extra silver training data, and
ensemble methods. The best result per measure across each test set is shown in bold, while that in the
baseline model (SPRING) and ours is underlined. “w/o” denotes “without”.

Model Feat. Smatch
Structure-Dependent Structure-Independent

Unlab. Reent. SRL NoWSDConc. Wiki. NER Neg.

A
M

R
2.

0

AMR-gs (2020) [14] - 78.7 81.5 63.8 74.5 79.2 88.1 81.3 87.1 66.1
APT (2021) [44] - 81.7 85.5 71.1 80.8 82.3 88.7 78.8 88.5 69.7

StructBART (2021) [45] - 84.3 87.9 74.3 - - - - - -
HCL (2022) [18] - 84.3 87.7 74.5 83.2 85.0 90.2 84.0 91.6 75.9

ANCES (2022) [17] - 84.8 88.1 75.1 83.4 85.3 90.5 84.1 91.8 74.0
HGAN (2022) [20] DP 84.4 - - - - - - - -
HGAN (2022) [20] DP, SRL 84.9 87.8 73.9 83.0 85.5 90.8 84.6 91.9 74.7

SPRING (2021) [15] - 83.8 86.1 70.8 79.6 84.4 90.2 84.3 90.6 74.4
Ours HCA 84.5 87.0 72.5 83.2 84.5 90.7 84.4 91.2 75.2

A
M

R
3.

0

AMR-gs (2020) [14] - 78.0 81.9 63.7 73.2 78.5 88.5 75.7 83.7 68.9
APT (2021) [44] - 80.3 - - - - - - - -

StructBART (2021) [45] - 83.2 - - - - - - - -
HCL (2022) [18] - 83.7 86.9 73.9 82.4 84.2 89.5 82.6 89.0 73.0

ANCES (2022) [17] - 83.5 86.6 74.2 82.2 84.0 89.5 81.5 88.9 72.6
HGAN (2022) [20] DP 83.5 - - - - - - - -
HGAN (2022) [20] DP, SRL 83.9 86.5 73.0 82.2 84.3 90.2 83.0 89.2 73.2

SPRING (2021) [15] - 83.0 85.4 70.4 78.9 83.5 89.8 82.7 87.2 73.0
Ours HCA 83.7 86.6 72.2 82.2 83.4 90.5 82.6 88.0 73.8

Table 5. Smatch F1 scores (%) of our HCA-based model and comparison models on out-of-distribution
(OOD) datasets. The best result for each test set is shown in bold.

New3 TLP Bio

SPRING (2022) [15] 73.7 77.3 59.7
HCL (2022) [18] 75.3 78.2 61.1

HGAN (2022) [20] 76.0 79.2 61.6
Ours 76.0 78.0 62.3

5. Discussion

As shown in the previous section, our HCA-based model achieves prominent im-
provements against the baseline model, SPRING, and outperforms other compared models,
including the SOTA model HGAN in some fine-grained metrics in ID and ODD datasets.
In this section, we further discuss the paper’s main issue of whether our HCA-based
approaches have any effect on curing LDDs. Additionally, the ablation studies and the case
studies are also provided.

5.1. Effects on Long-Distance Dependencies in ID Datasets

As claimed in Section 1, most LDD cases occur in sentences with complex hierarchical
clause structures. In Figure 5, we demonstrate the parsing performance trends of the
baseline model SPRING, the SOTA parser HGAN (we only use the original data published
in their paper to draw performance trends over the number of tokens, without performances

Electronics 2023, 12, 3908 14 of 20

in terms of the number of clauses), and our HCA-based model over the number of tokens
and clauses in sentences from AMR 2.0. It can be observed that:

• When the number of tokens (denoted as #Token for simplicity) >20 in a sentence, the
performance boost of our HCA-based model against the baseline SPRING gradually
becomes significant.

• For the case #Token > 50 that indicates sentences with many clauses and inter-clause
relations, our HCA-based model outperforms both SPRING and HGAN.

• When compared with performances trends for #Clause, the performance lead of our
HCA-based model against SPRING becomes much more evident as #Clause increases.

Sm
at
ch

F
1%

#Token

70

75

80

85

90

>50

HGAN
Ours
SPRING

1–10 11–20 21–30 31–40 41–50

(a)

Sm
at
ch

F
1%

#Clause

70

75

80

85

90

1 2 3 4 5 ≥6

Ours
SPRING

(b)

Figure 5. Performances trends of SPRING, HGAN, and Ours in the AMR 2.0 dataset over the number
of tokens (denoted as “#Token”) and clauses (denoted as “#Clause”) inside a sentence. (a) Performance
trends over the number of tokens. (b) Performance trends over the number of clauses.

To summarize, our HCA-based approaches show significant effectiveness on long
sentences with complex clausal structures that introduce most LDD cases.

5.2. Effects on Long-Distance Dependencies in OOD Datasets

As the performance improvements achieved by our HCA-based approaches are much
more prominent in OOD datasets than in ID datasets, we further explore the OOD datasets
with different characteristics.

Figure 6 demonstrates the two main statistics of three OOD datasets, i.e., the average
number of clauses per sentence (denoted as #C/S) and the average number of tokens per
clause (#T/C). These two statistics of the datasets both characterize the complexity of the
clausal structure inside a sentence, where

• #C/S shows the number of complex sentences with more than one clause;
• #T/C depicts the latent dependency distance between two tokens from different clauses.

We also present the performance boosts of our HCA-based parser against SPRING in
Figure 6. As can be observed, the higher the values of #C/S and #C/S in an OOD dataset,
the higher the Smatch improvements that are achieved by our HCA-based approaches.
Specifically, New3 and Bio seem to cover more complex texts from newswire and biomedical
articles, while TLP contains simpler sentences that are easy for children to read. Therefore,
our AMR parser performs much better on complex sentences from Bio and New3, indicating
the effectiveness of our HCA-based approaches on LDDs.

5.3. Ablation Study

In the HCA-SA approach, two token visibility matrices derived from HCA trees are
introduced to mask certain attention heads. Additionally, we propose a clause-relation-
bound attention head setting to integrate inter-clause relations in the encoder. Therefore,

Electronics 2023, 12, 3908 15 of 20

we conduct ablation studies by introducing random token visibility matrices (denoted
as “w/o VisMask”) and removing the clause-relation-bound attention setting (denoted as
“w/o ClauRel”). Note that “w/o VisMask” contains the case of “w/o ClauRel” because the
clause-relation-bound attention setting is based on the masked-self-attention mechanism.

A
ve
ra
ge

N
um

be
r
of
T
ok

en
s
pe

r
C
la
us
e

A
ve
ra
ge

N
um

be
r
of
C
la
us
es
p
er
S
en

te
nc

e
ΔSmatchF1%

0

5

10

15

20

25

30

1.6

1.75

1.9

2.05

2.2

2.35

2.5

0

0.5

1

1.5

2

2.5

3

TLP New3 Bio

1.84

2.14

1.73

9.97

19.5

5.98

2.3

2.6

0.7

Figure 6. Two important characteristics of three different out-of-distribution (OOD) test sets
(i.e., TLP, New3, and Bio) and performance boosts of our HCA-based parser on each test set. The
blue and green statistics of each dataset represent the average number of clauses per sentence and
tokens per clause, respectively. The red statistics show the improvements of our HCA-based model
against the baseline model, SPRING, on each OOD dataset.

In the HCA-CL approach, extra training epochs for Clause-Number and Tree-Depth
curricula serve as a warm-up stage for the subsequent training process. To eliminate the
effect of the extra epochs, we also add the same number of training epochs to the ablation
study of our HCA-CL approach.

As shown in Table 6:

• In HCA-SA, the clause-relation-bound attention setting (denoted as “ClauRel”) con-
tributes most in the SRL metric due to the mappings between inter-clause relations
(e.g., Subjective and Objective) and SRL-type AMR relations (e.g., :ARG0 and :ARG1).

• In HCA-SA, the masked-self-attention mechanism (denoted as “VisMask”) achieves
significant improvements in the Reent. metric by increasing the visibility of pronoun
tokens to all tokens.

• In HCA-CL, the Tree-Depth curriculum (denoted as “TD”) has no effects on the parsing
performances. We conjecture that sentences with much deeper clausal structures are
rare, and the number of split buckets for the depth of clausal trees is not big enough to
distinguish the training sentences.

5.4. Case Study

To further demonstrate the effectiveness of our HCA-based approaches on LDDs
in AMR parsing, we compare the output AMR graphs of the same example sentence in
Figure 1 parsed by the baseline model SPRING and by the modified SPRING that applies
our HCA-SA and HCA-CL approaches (denoted as Ours), respectively, in Figure 7.

For SPRING, it mislabels node “go-02” in subgraph G3 as the :ARG1 role of node
“contrast-01”. Then, it fails to realize that it is “anxious” in G2 that takes the :ARG1 role of
“go-02” in G3. Additionally, the causality between G4 and G5 is not interpreted correctly
due to the absence of node “cause-01” and its arguments.

In contrast, when integrating the HCA, Ours seems to understand the inter-clause
relations better. Although “possible-01” in subgraph G5 is mislabeled as the :ARG2 role of
node “contrast-01”, it succeeds in avoiding the errors made by SPRING. Another mistake in

Electronics 2023, 12, 3908 16 of 20

Ours is that the relation :quant between “much” and “anxiety” is reversed and replaced by
:domain, which barely impacts the Smatch F1 scores. The vast performance gap between
SPRING and our HCA-based SPRING in Smatch F1 scores (66.8% vs. 88.7%) also proves
the effectiveness of the HCA on LDDs in AMR parsing.

Table 6. F1 scores (%) of Smatch and three structure-dependent metrics achieved by our HCA-based
models in ablation studies on AMR 2.0. “w/o” denotes “without”. “VisMask” and “ClauRel” indicate
“token visibility matrices” and “clause-relation-bound attention head setting” in the HCA-based
self-attention (HCA-SA) approach. “CN” and “TD” represent the Clause-Number and Tree-Depth
curricula in the HCA-based curriculum learning (HCA-CL) approach. Bold figures indicate the best
performance achieved by our model with full features. Figures in red represent the most significant
performance degradation when removing a specific feature, while those in cyan denote the slightest
degradation.

Model Smatch Unlab. Reent. SRL

SPRING (2021) [15] 83.8 86.1 70.8 79.6

Ours

Full 84.5 87.0 72.5 83.2

w/o VisMask 84.1 86.5 70.9 81.2
w/o ClauRel 84.4 86.8 72.4 81.2

w/o CN 84.2 86.7 72.4 83.1
w/o TD 84.5 87.0 72.5 83.1

w/o CN,TD 84.2 86.7 72.4 83.1

anxiety

:ARG1-of

-wait-01

long-03

G4G4

G5G5:ARG6

:polarity

muchhave-quant-91
:ARG2

G1G1
check-01

-

:polarity

G2G2
get-03

I

anxious

very

:ARG1

:ARG2

:degree

G3G3
contrast-01

!ARG1 :ARG2

:ARG1-of

go-02

away sort

after
:direction :mod

:time

:condition

:ARG1

(a) SPRING

-

-

contrast-01

:ARG1-of

get-03

I anxious

go-01

away sort

after

very

G1G1

G2G2

G3G3 G4G4

G5G5
:ARG1 :ARG2

:degree

!direction :mod

!time

:ARG0

:ARG1-of

possible-01

wait-01 long-03

:polarity

:ARG1

anxiety

much

:domain

check-01

:polarity

:condition :ARG1-of

!ARG1 :ARG2

cause-01

so:degree

(b) Ours

Figure 7. Parsing results of the baseline model SPRING and the modified SPRING that applies our
HCA-based approaches (denoted as Ours) when encountering the same AMR 2.0 sentence in Section 1.
AMR nodes and edges in red are parsing errors compared to the gold AMR graph. Extra nodes and
edges, which are correctly parsed by both, are omitted.

6. Conclusions

We propose two HCA-based approaches, HCA-SA and HCA-CL, to integrate HCA
trees of complex sentences for addressing LDDs in AMR parsing. Taking AMR parsing
as an example, we apply our HCA-based framework to a popular AMR parser SPRING
to integrate HCA features in the encoder. In the evaluations on ID datasets, our parser
achieves prominent and explainable improvements against the baseline model, SPRING,
and outperforms the SOTA parser, HGAN, in some fine-grained metrics. Notably, as the
clause number of the sentence increases, our parser outperforms SPRING by a large margin
and achieves better Smatch F1 scores than HGAN, indicating the ability to cure LDDs. In
the evaluations of OOD datasets, the performance boosts achieved by our HCA-based
approaches are more evident on complicated corpora like New3 and Bio, where sentences
consist of more numerous and longer clauses.

Electronics 2023, 12, 3908 17 of 20

Author Contributions: Conceptualization, Y.F. and Z.G.; methodology, Y.F.; software, Y.F. and Y.S.;
writing—original draft, Y.F.; writing—review and editing, B.L., M.G., Y.S., C.S., and Z.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used in our experiments are publicly available: AMR
2.0 at https://catalog.ldc.upenn.edu/LDC2017T10 (accessed on 11 June 2022), AMR 3.0 and its
subset New3 at https://catalog.ldc.upenn.edu/LDC2020T02 (accessed on 11 August 2022), TLP
at https://amr.isi.edu/download/amr-bank-struct-v3.0.txt (accessed on 12 October 2022), Bio at
https://amr.isi.edu/download/2016-03-14/amr-release-test-bio.txt (accessed on 15 October 2022),
and the HCA features of all datasets at https://github.com/MetroVancloud/HCA-AMRparsing
(accessed on 3 August 2023).

Acknowledgments: Our code extends the GitHub repository SPRING at https://github.com/
SapienzaNLP/spring (accessed on 1 March 2022); thanks to them very much.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations
The following abbreviations are used in this manuscript:

AMR Abstract Meaning Representation
CL Curriculum Learning
CPT Constituency Parse Tree
HCA Hierarchical Clause Annotation
ID In-Distribution
IGNN Implicit Graph Neural Network
LDD Long-Distance Dependency
LSTM Long Short-Term Memory
NLP Natural Language Processing
OOD Out-of-Distribution
POS Part-of-Speech
RST Rhetorical Structure Theory
SA Self-Attention
SDP Semantic Dependency
SDPT Syntactic Dependency Parse Tree
SRL Semantic Role Labeling
SOTA State-of-the-Art

References
1. Li, Z.; Cai, J.; He, S.; Zhao, H. Seq2seq Dependency Parsing. In Proceedings of the 27th International Conference on Computational

Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 3203–3214.
2. Tian, Y.; Song, Y.; Xia, F.; Zhang, T. Improving Constituency Parsing with Span Attention. In Proceedings of the Findings of the

Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; pp. 1691–1703. [CrossRef]
3. He, L.; Lee, K.; Lewis, M.; Zettlemoyer, L. Deep Semantic Role Labeling: What Works and What’s Next. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; Volume 1,
pp. 473–483. [CrossRef]

4. Tang, G.; Müller, M.; Rios, A.; Sennrich, R. Why Self-Attention? A Targeted Evaluation of Neural Machine Translation
Architectures. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
31 October–4 November 2018; pp. 4263–4272. [CrossRef]

5. Jia, Y.; Ye, Y.; Feng, Y.; Lai, Y.; Yan, R.; Zhao, D. Modeling discourse cohesion for discourse parsing via memory network. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018;
Volume 2, pp. 438–443. [CrossRef]

6. Xu, J.; Gan, Z.; Cheng, Y.; Liu, J. Discourse-Aware Neural Extractive Text Summarization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5021–5031. [CrossRef]

7. Hihi, S.; Bengio, Y. Hierarchical Recurrent Neural Networks for Long-Term Dependencies. In Proceedings of the Advances in
Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1995; MIT Press: Denver, CO, USA, 1995; Volume 8.

8. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2020T02
https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
https://amr.isi.edu/download/2016-03-14/amr-release-test-bio.txt
https://github.com/MetroVancloud/HCA-AMRparsing
https://github.com/SapienzaNLP/spring
https://github.com/SapienzaNLP/spring
http://doi.org/10.18653/v1/2020.findings-emnlp.153
http://dx.doi.org/10.18653/v1/P17-1044
http://dx.doi.org/10.18653/v1/D18-1458
http://dx.doi.org/10.18653/v1/P18-2070
http://dx.doi.org/10.18653/v1/2020.acl-main.451
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Electronics 2023, 12, 3908 18 of 20

9. Salton, G.; Ross, R.; Kelleher, J. Attentive Language Models. In Proceedings of the Eighth International Joint Conference on
Natural Language Processing, Taipei, Taiwan, 1 December 2017; Volume 1, pp. 441–450.

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates, Inc.: Long Beach, CA, USA, 2017; Volume 30.

11. Gu, F.; Chang, H.; Zhu, W.; Sojoudi, S.; El Ghaoui, L. Implicit Graph Neural Networks. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Curran Associates, Inc.: Vancouver, BC, Canada,
2020; Volume 33, pp. 11984–11995.

12. Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt, K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; Schneider, N.
Abstract Meaning Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, Sofia, Bulgaria, 8–9 August 2013; pp. 178–186.

13. Peng, X.; Gildea, D.; Satta, G. AMR Parsing with Cache Transition Systems. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [CrossRef]

14. Cai, D.; Lam, W. AMR Parsing via Graph-Sequence Iterative Inference. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online, 15–20 July 2020; pp. 1290–1301. [CrossRef]

15. Bevilacqua, M.; Blloshmi, R.; Navigli, R. One SPRING to rule them both: Symmetric AMR semantic parsing and generation
without a complex pipeline. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 4–7 February 2021;
Volume 35, pp. 12564–12573.

16. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880. [CrossRef]

17. Yu, C.; Gildea, D. Sequence-to-sequence AMR Parsing with Ancestor Information. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 2, pp. 571–577. [CrossRef]

18. Wang, P.; Chen, L.; Liu, T.; Dai, D.; Cao, Y.; Chang, B.; Sui, Z. Hierarchical Curriculum Learning for AMR Parsing. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 2,
pp. 333–339. [CrossRef]

19. Chen, L.; Wang, P.; Xu, R.; Liu, T.; Sui, Z.; Chang, B. ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs. In
Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, USA, 10–15 July 2022;
pp. 2482–2496. [CrossRef]

20. Sataer, Y.; Shi, C.; Gao, M.; Fan, Y.; Li, B.; Gao, Z. Integrating Syntactic and Semantic Knowledge in AMR Parsing with
Heterogeneous Graph Attention Network. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [CrossRef]

21. Carter, R.; McCarthy, M. Cambridge Grammar of English: A Comprehensive Guide; Spoken and Written English Grammar and Usage;
Cambridge University Press: Cambridge, UK, 2006.

22. Liu, Y.; Ryskin, R.; Futrell, R.; Gibson, E. A verb-frame frequency account of constraints on long-distance dependencies in English.
Cognition 2022, 222, 104902. [CrossRef] [PubMed]

23. Mann, W.C.; Thompson, S.A. Rhetorical structure theory: Toward a functional theory of text organization. Text—Interdiscip. J.
Study Discourse 1988, 8, 243–281. [CrossRef]

24. Fan, Y.; Li, B.; Sataer, Y.; Gao, M.; Shi, C.; Cao, S.; Gao, Z. Hierarchical Clause Annotation: Building a Clause-Level Corpus for
Semantic Parsing with Complex Sentences. Appl. Sci. 2023, 13, 9412. [CrossRef]

25. Hockett, C.F. A formal statement of morphemic analysis. Stud. Linguist. 1952, 10, J39.
26. Mahalunkar, A.; Kelleher, J.D. Understanding Recurrent Neural Architectures by Analyzing and Synthesizing Long Distance

Dependencies in Benchmark Sequential Datasets. arXiv 2020, arXiv:1810.02966.
27. Xiong, J.; Li, F. Bilevel Topic Model-Based Multitask Learning for Constructed-Responses Multidimensional Automated Scoring

and Interpretation. Educ. Meas. Issues Pract. 2023, 42, 42–61. [CrossRef]
28. Zukov-Gregoric, A.; Bachrach, Y.; Minkovsky, P.; Coope, S.; Maksak, B. Neural Named Entity Recognition Using a Self-Attention

Mechanism. In Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston,
MA, USA, 6–8 November 2017 ; pp. 652–656. [CrossRef]

29. Li, W.; Qi, F.; Tang, M.; Yu, Z. Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment
classification. Neurocomputing 2020, 387, 63–77. [CrossRef]

30. Szubert, I.; Damonte, M.; Cohen, S.B.; Steedman, M. The Role of Reentrancies in Abstract Meaning Representation Parsing.
In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16-20 November 2020;
pp. 2198–2207. [CrossRef]

31. Flanigan, J.; Thomson, S.; Carbonell, J.; Dyer, C.; Smith, N.A. A Discriminative Graph-Based Parser for the Abstract Meaning
Representation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD,
USA, 22–27 June 2014; Volume 1, pp. 1426–1436. [CrossRef]

32. Lyu, C.; Titov, I. AMR Parsing as Graph Prediction with Latent Alignment. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 397–407. [CrossRef]

http://dx.doi.org/10.1609/aaai.v32i1.11922
http://dx.doi.org/10.18653/v1/2020.acl-main.119
http://dx.doi.org/10.18653/v1/2020.acl-main.703
http://dx.doi.org/10.18653/v1/2022.acl-short.63
http://dx.doi.org/10.18653/v1/2022.acl-short.37
http://dx.doi.org/10.18653/v1/2022.findings-naacl.190
http://dx.doi.org/10.1109/ICASSP49357.2023.10097098
http://dx.doi.org/10.1016/j.cognition.2021.104902
http://www.ncbi.nlm.nih.gov/pubmed/34583835
http://dx.doi.org/10.1515/text.1.1988.8.3.243
http://dx.doi.org/10.3390/app13169412
http://dx.doi.org/10.1111/emip.12550
http://dx.doi.org/10.1109/ICTAI.2017.00104
http://dx.doi.org/10.1016/j.neucom.2020.01.006
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.199
http://dx.doi.org/10.3115/v1/P14-1134
http://dx.doi.org/10.18653/v1/P18-1037

Electronics 2023, 12, 3908 19 of 20

33. Zhang, S.; Ma, X.; Duh, K.; Van Durme, B. Broad-Coverage Semantic Parsing as Transduction. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3786–3798. [CrossRef]

34. Zhang, S.; Ma, X.; Duh, K.; Van Durme, B. AMR Parsing as Sequence-to-Graph Transduction. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 80–94. [CrossRef]

35. Konstas, I.; Iyer, S.; Yatskar, M.; Choi, Y.; Zettlemoyer, L. Neural AMR: Sequence-to-Sequence Models for Parsing and Generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4
August 2017; Volume 1, pp. 146–157. [CrossRef]

36. Peng, X.; Song, L.; Gildea, D.; Satta, G. Sequence-to-sequence Models for Cache Transition Systems. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 1842–1852.
[CrossRef]

37. Ge, D.; Li, J.; Zhu, M.; Li, S. Modeling Source Syntax and Semantics for Neural AMR Parsing. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, China, 10–16 August 2019 Volume 7, pp. 4975–4981.
[CrossRef]

38. Xu, D.; Li, J.; Zhu, M.; Zhang, M.; Zhou, G. Improving AMR Parsing with Sequence-to-Sequence Pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020;
pp. 2501–2511. [CrossRef]

39. Wang, C.; Xue, N.; Pradhan, S. A Transition-based Algorithm for AMR Parsing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31
May–5 June 2015; pp. 366–375. [CrossRef]

40. Ballesteros, M.; Al-Onaizan, Y. AMR Parsing using Stack-LSTMs. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 1269–1275. [CrossRef]

41. Vilares, D.; Gómez-Rodríguez, C. Transition-based Parsing with Lighter Feed-Forward Networks. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018), Brussels, Belgium, 1 November 2018; pp. 162–172. [CrossRef]

42. Naseem, T.; Shah, A.; Wan, H.; Florian, R.; Roukos, S.; Ballesteros, M. Rewarding Smatch: Transition-Based AMR Parsing with
Reinforcement Learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, 28 July–2 August 2019; pp. 4586–4592. [CrossRef]

43. Fernandez Astudillo, R.; Ballesteros, M.; Naseem, T.; Blodgett, A.; Florian, R. Transition-based Parsing with Stack-Transformers.
In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020;
pp. 1001–1007. [CrossRef]

44. Zhou, J.; Naseem, T.; Fernandez Astudillo, R.; Florian, R. AMR Parsing with Action-Pointer Transformer. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Online, 6–11 June 2021; pp. 5585–5598. [CrossRef]

45. Zhou, J.; Naseem, T.; Fernandez Astudillo, R.; Lee, Y.S.; Florian, R.; Roukos, S. Structure-aware Fine-tuning of Sequence-to-
sequence Transformers for Transition-based AMR Parsing. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021; pp. 6279–6290.

46. Peng, X.; Song, L.; Gildea, D. A Synchronous Hyperedge Replacement Grammar based approach for AMR parsing. In
Proceedings of the Nineteenth Conference on Computational Natural Language Learning, Beijing, China, 30–31 July 2015;
pp. 32–41. [CrossRef]

47. Pust, M.; Hermjakob, U.; Knight, K.; Marcu, D.; May, J. Parsing English into Abstract Meaning Representation Using Syntax-Based
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–22 September 2015; pp. 1143–1154. [CrossRef]

48. Artzi, Y.; Lee, K.; Zettlemoyer, L. Broad-coverage CCG Semantic Parsing with AMR. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–22 September 2015; pp. 1699–1710. [CrossRef]

49. Groschwitz, J.; Lindemann, M.; Fowlie, M.; Johnson, M.; Koller, A. AMR dependency parsing with a typed semantic algebra. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018;
Volume 1, pp. 1831–1841. [CrossRef]

50. Lindemann, M.; Groschwitz, J.; Koller, A. Compositional Semantic Parsing across Graphbanks. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 4576–4585. [CrossRef]

51. Gessler, L.; Behzad, S.; Liu, Y.J.; Peng, S.; Zhu, Y.; Zeldes, A. DisCoDisCo at the DISRPT2021 Shared Task: A System for Discourse
Segmentation, Classification, and Connective Detection. In Proceedings of the 2nd Shared Task on Discourse Relation Parsing
and Treebanking (DISRPT 2021), Punta Cana, Dominican Republic, 11 November 2021; pp. 51–62. [CrossRef]

52. Kobayashi, N.; Hirao, T.; Kamigaito, H.; Okumura, M.; Nagata, M. A Simple and Strong Baseline for End-to-End Neural RST-Style
Discourse Parsing. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, 7–11 December 2022; pp. 6725–6737.

53. Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating long sequences with sparse transformers. arXiv 2019, arXiv:1904.10509.
54. Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-bert: Enabling language representation with knowledge

graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 2901–2908.

http://dx.doi.org/10.18653/v1/D19-1392
http://dx.doi.org/10.18653/v1/P19-1009
http://dx.doi.org/10.18653/v1/P17-1014
http://dx.doi.org/10.18653/v1/P18-1171
http://dx.doi.org/10.24963/ijcai.2019/691
http://dx.doi.org/10.18653/v1/2020.emnlp-main.196
http://dx.doi.org/10.3115/v1/N15-1040
http://dx.doi.org/10.18653/v1/D17-1130
http://dx.doi.org/10.18653/v1/W18-6019
http://dx.doi.org/10.18653/v1/P19-1451
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.89
http://dx.doi.org/10.18653/v1/2021.naacl-main.443
http://dx.doi.org/10.18653/v1/K15-1004
http://dx.doi.org/10.18653/v1/D15-1136
http://dx.doi.org/10.18653/v1/D15-1198
http://dx.doi.org/10.18653/v1/P18-1170
http://dx.doi.org/10.18653/v1/P19-1450
http://dx.doi.org/10.18653/v1/2021.disrpt-1.6

Electronics 2023, 12, 3908 20 of 20

55. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum Learning. In Proceedings of the 26th Annual International
Conference on Machine Learning—ICML’09, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48. [CrossRef]

56. May, J.; Priyadarshi, J. SemEval-2017 Task 9: Abstract Meaning Representation Parsing and Generation. In Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, BC, Canada, 3–4 August 2017; pp. 536–545.
[CrossRef]

57. Cai, S.; Knight, K. Smatch: An Evaluation Metric for Semantic Feature Structures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, Sofia, Bulgaria, 4–9 August 2013; Volume 2, pp. 748–752.

58. Damonte, M.; Cohen, S.B.; Satta, G. An Incremental Parser for Abstract Meaning Representation. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 1,
pp. 536–546.

59. Riezler, S.; Maxwell, J.T. On Some Pitfalls in Automatic Evaluation and Significance Testing for MT. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, MI, USA,
25–30 June 2005; pp. 57–64.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.18653/v1/S17-2090

	Introduction
	Related Work
	Long-Distance Dependencies
	AMR Parsing
	Hierarchical Clause Annotation

	Model
	HCA-Based Self-Attention
	Token Visibility Matrix
	Masked-Self-Attention
	Clause-Relation-Bound Attention Head

	HCA-Based Curriculum Learning
	Clause-Number Curriculum
	Tree-Depth Curriculum

	Experiments
	Datasets
	In-Distribution Datasets
	Out-of-Distribution Datasets
	Hierarchical Clause Annotations

	Baseline and Compared Models
	Hyper-Parameters
	Evaluation Metrics
	Experimental Environments
	Experimental Results
	Results in ID Datasets
	Results in OOD Datasets

	Discussion
	Effects on Long-Distance Dependencies in ID Datasets
	Effects on Long-Distance Dependencies in OOD Datasets
	Ablation Study
	Case Study

	Conclusions
	References

