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Abstract: The transferability of adversarial examples has been proven to be a potent tool for successful
attacks on target models, even in challenging black-box environments. However, the majority of
current research focuses on non-targeted attacks, making it arduous to enhance the transferability of
targeted attacks using traditional methods. This paper identifies a crucial issue in existing gradient
iteration algorithms that generate adversarial perturbations in a fixed manner. These perturbations
have a detrimental impact on subsequent gradient computations, resulting in instability of the
update direction after momentum accumulation. Consequently, the transferability of adversarial
examples is negatively affected. To overcome this issue, we propose an approach called Adversarial
Perturbation Transform (APT) that introduces a transformation to the perturbations at each iteration.
APT randomly samples clean patches from the original image and replaces the corresponding patches
in the iterative output image. This transformed image is then used to compute the next momentum.
In addition, APT could seamlessly integrate with other iterative gradient-based algorithms, incurring
minimal additional computational overhead. Experimental results demonstrate that APT significantly
enhances the transferability of targeted attacks when combined with traditional methods. Our
approach achieves this improvement while maintaining computational efficiency.

Keywords: adversarial examples; transferability; perturbation transform; targeted attacks

1. Introduction

In recent years, deep learning has rapidly developed and found applications in various
fields, such as autonomous driving [1,2] and face recognition [3,4]. However, deep neural
networks (DNNs) face the threat of adversarial examples [5,6]. Attackers can fool DNNs
by adding some imperceptible disturbances to the input images. Given the susceptibility
of neural networks to adversarial examples, DNNs encounter significant challenges in
real-world applications. Several defenses [7–11] have been proposed to defend against
adversarial examples. Additionally, numerous adversarial attack methods [6,7,12,13] have
been developed to evaluate the robustness of DNNs.

However, in the real world, it is difficult for attackers to access all the information of
the target model. So, white-box attack methods [6,7,12,13] are hard to apply in realistic
scenarios. With decision-based black-box attacks [14,15], attackers do not need to grasp
the internal structure of the model and have a certain viability, but it will take a large
number of queries and time consumption. This will trigger the security system’s vigilance.
If the defender limits the number of queries, the black-box attack will not succeed. The
transferability of adversarial examples enables real-world attacks in black-box scenarios,
where attackers lack knowledge of the model’s structure and parameters and are not
required to query the target model.
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In general, attack methods can be divided into two categories: targeted and non-
targeted attacks. Targeted attacks aim to misidentify adversarial examples as a specific
class, while non-targeted attacks focus on decreasing the accuracy of the victim model.
Recent studies have proposed methods to enhance the transferability of non-targeted
attacks [16–20], with the objective of reducing the accuracy of the target model. However,
the success rate of transferable targeted attacks, where the attackers must deceive the
victim model to produce a predetermined specific outcome, still remains lower than that of
non-targeted attacks.

Overfitting to the source model is a primary factor contributing to the limited trans-
ferability of adversarial examples. To address this issue, several techniques have been
proposed to enhance the transferability of adversarial examples. These techniques include
input transformations [21], translation invariant attacks [22], advanced gradient computa-
tion [17,22,23], and advanced loss functions [24,25]. Among these, input transformation
stands out as one of the most effective methods, drawing inspiration from data augmenta-
tion techniques used in model training [26]. By applying diverse transformations to input
images, this approach aims to prevent adversarial examples from overfitting to the proxy
model. However, most existing methods focus solely on diversifying individual input
images, and these fixed transformations may still overfit to the internal environment of the
source model, rendering them unsuitable for unknown black-box models.

Existing gradient iteration algorithms, such as MI-FGSM [17], have limitations in terms
of generating adversarial perturbations with high transferability. These limitations arise
due to the excessive consistency and redundancy in the perturbations generated during
the iterative attack process, which is constrained by a perturbation budget. This consis-
tency leads to a high degree of redundancy between successive perturbations, resulting in
momentum accumulation in a fixed direction. As a result, the update direction becomes
unstable, negatively impacting the transferability of adversarial examples.

The proposed Adversarial Perturbation Transform (APT) method aims to overcome
these limitations and enhance the transferability of targeted attacks. APT randomly selects
perturbed patches from the input image at each iteration and restores them to their original
state, creating an admixed image. Then, this admixed image is included in the gradient cal-
culation process. This approach effectively prevents excessive consistency and redundancy
between successive perturbations, leading to a more stable update direction.

In summary, our main contributions are as follows:

• We identify the redundancy and consistency of adversarial perturbations generated
during iterative attacks. They have a negative impact on the stability of the update
direction.

• We introduce the inclusion of clean patches from the original input image to boot-
strap the computation of gradients, presenting an effective method for enhancing the
transferability of targeted attacks.

• Our method is compatible with most algorithms based on MI-FGSM and incurs
minimal additional computational overhead. Empirical evaluations demonstrate that
APT significantly improves the transferability of targeted attacks.

2. Related Work

The vulnerability of deep neural networks (DNNs) to adversarial examples was first
mentioned by [5]. These adversarial images can exploit the vulnerability of the models
to fool them, inducing the model to classify the samples into the wrong classes with high
probability.

Szegedy et al. [5] initially used the LBFGS to generate adversarial examples. Due to
the high computational cost, Goodfellow et al. [6] proposed the fast gradient sign method
(FGSM), which effectively generates adversarial examples by performing a single gradient
step. Kurakin et al. [27] used an iterative method ( I-FGSM ) to extend FGSM. To avoid
local minima to improve transferability, ref. [17] incorporated the momentum iterative
gradient method to boost the transferability effect of the generated adversarial examples.
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Several techniques have been proposed to improve transferability by helping the
image avoid falling into local minima and prevent overfitting to the specific source model.
DI (Diverse Input) [21] randomly resizes and fills the image for each input. Zou et al. [28]
introduced a three-stage pipeline, resizing diverse input, diversity ensemble, and region
fitting, which work together to enhance the transferability. TI (Translation Invariant) [29]
generates several translated versions of the current image and uses a convolution to
approximate the gradient fusion. SI (Scale Invariant) [22] exploits the scale-invariant
property of CNNs and uses multiple scale copies from each input image. Admix [30]
randomly samples a set of images from other classes and computes the gradient of the
original image mixed with a small portion of additional images while using the original
labels of the input to make more transferable examples. Reference [31] trains a CNN as an
adversarial transformation network, which neutralizes the adversarial perturbations and
thus constructs more powerful adversarial examples. ODI (object-based diverse input) [32]
renders images onto different 3D target objects and classifies the rendered objects into
target classes, including different lighting and viewpoints, while it also requires additional
computational overhead.

Lin et al. [22] incorporated the Nesterov accelerated gradient method into an iterative
gradient-based attack to mitigate the issue of local optima in the optimization process.
Wang et al. [23] addressed the instability of the update direction by considering the gradient
variance from the previous iteration. They adjusted the current gradient based on this
variance, which helped stabilize the update direction and improved the performance of
the attack. The choice of loss function also plays a significant role in the effectiveness
of targeted attacks. Li et al. [24] observed that using cross-entropy loss (CE) can lead to
gradient vanishing during an attack. To increase targeted transferability, they proposed
using Poincare distance as the loss function. However, Zhao et al. [25] argued that using
Poincare distance can result in a large step size and a coarse loss function surface, leading
to worse results compared to cross-entropy loss in different architecture models. They
suggested using a simple logit loss for targeted attacks and emphasized the importance of
conducting a sufficient number of iterations to generate effective adversarial examples.

3. Methodology

This paper focuses on the transferability of targeted attacks. It firstly describes the
attack target and notation, then introduces details of the APT method and the motivation.

3.1. Preliminary

The attack method for generating adversarial examples can be considered an optimiza-
tion problem. Let x be the input image with the ground-truth label y. f (·) indicates the
neural network classifier, J be the loss function, and generated adversarial examples xadv

with target label ytarget. And the perturbation is constrained by the `∞-norm which can
be formulated as

∥∥xadv − x
∥∥

∞ ≤ ε. Then, the targeted attack aims to solve the following
optimization problem, presented by Equation (1).

arg min
xadv

J
(

f (xadv), ytarget
)

s.t.
∥∥∥xadv − x

∥∥∥
∞
≤ ε.

(1)

Here, we use the logit loss as the loss function [25]. The formulation is Equation (2).

J
(

f (xadv), ytarget
)
= −ltarget( f (x)), (2)

where ltarget(.) denotes the logit output with respect to the target class.
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3.2. Adversarial Perturbation Transform

Adversarial Perturbation Transform (APT) is a data enhancement technique that
involves the following steps: Firstly, the input image x is divided into several patches
denoted as Ω = {u0, u1, . . . , ui, . . . , um}m

i=0, where m represents the total amount of patches
in the image and ui ∈ R3×n×n with n being the dimensions of each patch. Secondly, during
each iteration, a proportion p of clean patches is randomly sampled from the input image
to obtain ξp,t ⊂ Ω. This process results in an image xclean

t with p ·m clean patches, where t
denotes the t-th iteration. Mathematically, this can be represented as

xclean
t = x� Rp

t (3)

In Equation (3), the Hadamard product is denoted by the symbol �. We use a binary
matrix Rt in our algorithm, which consists of tiny matrices with a randomly distributed
pattern of 0 and 1. The proportion of 1 s in Rt is represented by p. In the next step, we
remove the patches from the perturbed images that correspond to the 0 elements in Rt.
This results in an image xperturb

t with only (1− p) ·m perturbed patches. Mathematically,
we achieve this using the following equation:

xperturb
t = xadv

t � (I − Rp
t ) (4)

In Equation (4), I denotes the matrix with all elements equal to 1. In the final step, we
combine xclean and xperturb into a composite image, which consists of p ·m clean patches
and (1− p) ·m perturbed patches. This fusion process can be achieved using the following
equation, Equation (5):

xmix
t = xclean

t + xperturb
t (5)

Finally, xmix
t is fed into the proxy model to participate in the gradient calculation, and

we show the APT method involved in the MI-FGSM [17] attack process as an example in
Algorithm 1.

Algorithm 1 APT-MI-FGSM

Require: a classifier f ; the logit loss function J;
Require: a clean image x; the target label ytarget;
Require: iterations T; decay factor µ; the max perturbation ε; step size α.
Ensure: an adversarial example xadv

1: g0 = 0; xadv
0 = x

2: for t = 0→ T − 1 do
3: generate the mix image xmix

t by Equations (3)–(5)
4: calculate the gradient ĝ = ∇xadv

t
J
(

f (xmix
t ), ytarget)

5: update gt+1 = µ · gt + ĝ/‖ĝ‖1
6: update xadv

t+1 = xadv
t − α · sign(gt+1)

7: end for
8: xadv = xadv

T
9: return xadv

3.3. Motivations

Most existing gradient optimization methods [21,28,29,32] utilize MI-FGSM [17] as
the baseline, which introduces momentum in the iterative attack process. This momentum
helps to stabilize the update direction and prevents the convergence to poorer local maxima.
However, generating more robust target adversarial examples requires a sufficient number
of iterations [25]. The fixed perturbation input leads to redundancy during momentum
accumulation, limiting the effectiveness within the perturbation budget. Figure 1 presents
the gradient and momentum cosine similarity between iterative attacks. Figure 1a illustrates
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cases where the cosine similarity between two successive gradients is less than 0 when using
MI-FGSM, indicating opposite directions. Consequently, the momentum after gradient
accumulation does not converge sufficiently, resulting in an unstable update direction
(Figure 1b).

Data augmentation is an effective technique for enhancing the transferability of adver-
sarial examples [21,22,28–30,32]. However, most existing input transformation methods
focus on a single perturbed input image with relatively fixed transformations. While these
methods alleviate over-fitting to some extent, the issue of gradient redundancy persists.
DI-TI [21,29] transformation partially addresses the gradient direction problem (Figure 1c).
However, part of the gradients in consecutive calculations remain highly similar, and the
accumulated momentum is still insufficient for convergence (Figure 1d). The algorithm
improved by APT makes the two continuous gradients maintain a low similarity, which
ensures the momentum’s direction is more stable.

(a) (b)

(c) (d)

Figure 1. Analysis of gradient and momentum cosine similarity between iterative attacks: (a) Cosine
similarity between two successive gradients. (b) Cosine similarity between two successive momen-
tums. (c) Cosine similarity between two successive gradients. (d) Cosine similarity between two
successive momentums.

The transferability of adversarial examples can be seen as analogous to generalization
in model training. While the latter trains a robust model for classification, the former aims to
train a robust sample capable of successfully attacking various models. To simulate different
unknown black-box environments, we introduce perturbation distortion by eliminating
some perturbations and require the generated adversarial examples to resist this distortion.

We address the issue of gradient redundancy by randomly selecting reduced adver-
sarial patches, making adjacent iterations of the input perturbation completely different.
Calculating gradients for mixed patches has the potential to enhance the transferability of
targeted attacks. It is important to note that APT differs from SI and Admix methods in
that APT only changes part of the image, while SI and Admix change the whole image and
generate multiple copies to calculate so that APT is more efficient.
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4. Experiment
4.1. Experimental Settings

Dataset. We used a dataset compatible with ImageNet from the NIPS2017 Adversarial
Attack and Defense Competition [33]. The dataset consists of 1000 images with dimensions
299× 299 and labels corresponding to ImageNet’s target class tasks for targeted attacks.

Models. We evaluated both undefended models (trained normally) and defended
models as target models. For the undefended models, we selected Resnet50 (Res50) [34],
DenseNet121 (Den121) [35], VGG16 [36], Inception-v3 (Inc-v3) [37], MobileNet-v2 (Mob-
v2) [38], and Inception-Resnet-v2 (IR-v2) with different architectures. As for the defended
models, we chose three adversarially trained models [39]: ens3-adv-Inception-v3 (Inc-v3-
ens3), ens4-adv-Inception-v3 (Inc-v3-ens4), and ens-adv-Inception-Resnet-v2 (IR-v2-ens4).

Baselines. Since a simple transformation alone does not yield satisfactory results in
terms of targeted transferability, we employed a composite method that combines several
classical algorithms, namely MI [17], DI [21], RDI [28], ODI [32], and TI [29], as baselines
for comparison.

Implementation details. We set the transformation probability pDI to 0.7 in DI and
randomly enlarged the image size within the range of [299, 330]. The kernel convolution
size in TI was set to 5. Regarding the hyperparameters used in the iterative process, we
set the decay factor µ to 1, the step size α to 2/255, the number of iterations to 300, and
the perturbation size to ε = 16/255. In the experiment evaluating APT attacks, we set the
patch size n to 10 and the hyperparameter p to 0.3.

Evaluation Metrics. We measured the success rate of targeted attacks (suc), which
indicates the percentage of instances where the black-box model was fooled into predicting
the specified category.

4.2. Attacking Naturally Trained Models

In reality, attackers have no access to grasp all the information of the target model.
Therefore, we set up experiments between different architectural models. This assumption
aligns more with the real-world scenario.

The results of the APT with baseline attacks are shown in Table 1. From the results,
APT is very effective in enhancing the transferability in targeted attacks. Taking ResNet50
as source model for example, the average performance improvements induced by APT
are 54.0% (DI-TI), 20.78% (RDI-TI), and 3.7% (ODI-TI), respectively. Comparing to the
ResNet50 and DenseNet121, all attacks generally achieve lower transferability when using
VGG-16 or Inception-v3 as the source models. This may be explained by the fact that
skip connections in ResNet50 and DenseNet121 improve the transferability [40]. APT’s
improvement of the effectiveness of adversarial attacks using weak transferability models
is more obvious. For example, when Inception-3 was the source model, APT improved the
average performance with 246.2% (DI-TI), 125.8%(RDI-TI), and 32.3% (ODI-TI). However,
for DenseNet121 and VGG16 as the source models, APT also consistently boosted the
transferability under all cases.

In Figure 2, we present visual comparisons of the adversarial examples generated by
the DI-TI and APT-DI-TI attacks, using ResNet50 as the proxy model. The results demon-
strate that there is little difference in the degree of perturbations between the adversarial
examples generated by the two methods.
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Table 1. Targeted fooling rates (%) of different attacks against various architectural models. The best
results are highlighted in blue. * Indicates white-box attacks.

Source Attack Res50 Den121 VGG16 Inc-v3 Mob-v2 IR-v2 Average

Res50

DI-TI 98.7 * 72.8 61.8 8.7 28.5 13.7 37.1
RDI-TI 97.6 * 82.0 67.3 30.3 45.3 39.8 52.94
ODI-TI 99.1 * 85.1 75.6 56.7 57.4 60.0 66.96

APT-DI-TI 98.7 * 85.0 80.0 28.2 55.9 36.7 57.16
APT-RDI-TI 97.9 * 82.1 73.2 46.6 62.0 55.8 63.94
APT-ODI-TI 98.6 * 84.2 76.6 58.1 66.1 61.7 69.4

Den121

DI-TI 44.7 98.9 * 38.0 7.8 13.7 10.4 22.92
RDI-TI 56.5 98.6 * 41.7 22.0 20.9 29.9 34.2
ODI-TI 68.4 98.8 * 62.5 44.9 36.2 51.7 52.74

APT-DI-TI 68.8 98.1 * 63.4 22.3 31.7 29.9 43.22
APT-RDI-TI 67.7 97.3 * 57.9 36.6 37.9 47.1 48.36
APT-ODI-TI 70.5 98.2 * 65.6 48.1 48.3 53.1 57.12

VGG16

DI-TI 10.2 14.7 95.0 * 0.7 5.1 0.5 6.24
RDI-TI 30.2 34.8 94.7 * 6.6 19.5 7.9 19.8
ODI-TI 50.7 61.7 95.2 * 22.3 34.3 26.9 39.18

APT-DI-TI 26.0 29.2 95.0 * 3.4 14.1 4.3 15.4
APT-RDI-TI 41.0 45.3 95.4 * 11.4 28.4 12.8 27.8
APT-ODI-TI 55.4 63.5 94.8 * 29.3 43.3 30.5 44.4

Inc-v3

DI-TI 2.5 5.0 2.8 99.0 * 1.8 9.1 4.24
RDI-TI 4.7 6.7 4.1 99.1 * 2.3 14.0 6.36
ODI-TI 14.5 23.7 11.3 99.1 * 9.2 37.8 19.3

APT-DI-TI 10.1 17.1 10.1 98.7 * 7.5 28.6 14.68
APT-RDI-TI 9.9 14.4 8.4 98.2 * 8.3 30.8 14.36
APT-ODI-TI 19.5 30.0 18.3 98.5 * 15.3 44.6 25.54

cl
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G

SM
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Figure 2. Visualization of adversarial images generated on ResNet50.
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4.3. Attacking Adversarially Trained Models

Adversarial training, proposed by Tramer et al. [39], is widely recognized as an ef-
fective defense method against adversarial attacks, especially targeted attacks. Fooling
adversarially trained models into predicting the target class successfully is a challenging
task. In this study, we employed an ensemble of white-box models, including Resnet50,
DenseNet121, VGG16, and Inception-v3, which were trained naturally. The results pre-
sented in Table 2 illustrate the success rates of attacks on the adversarially trained models.
Our findings demonstrate that the adversarially trained models effectively resisted the ad-
versarial examples. However, APT increased the average success rate of the state-of-the-art
(SOTA) method from 1.13% to 5.56%, indicating that adversarially trained defense models
may still be vulnerable to adversarial attacks.

Table 2. Targeted fooling rates (%) of black-box attacks against three defense models under multi-
model setting. Best results are highlighted in blue.

Attack Inc-v3-ens3 Inc-v3-ens4 IR-v2-ens4

DI-TI 0.0 0.0 0.0
RDI-TI 0.3 0.1 0.1
ODI-TI 1.5 1.6 0.3

APT-DI-TI 0.1 0.1 0.0
APT-RDI-TI 2.0 2.1 0.4
APT-ODI-TI 8.2 6.6 1.9

4.4. Ablation Study

In this section, we conduct ablation experiments to study the influence of the hyper-
parameter p on the performance of three algorithms and different proxy models. These
experiments enable an investigation into the sensitivity of our proposed method to the
hyperparameter p and offer insights into the optimal value of p for achieving the highest
performance.

Figure 3 demonstrates the average success rates of the three distinct methods across
various hyperparameter values of p. Notably, APT-DI-TI, APT-RDI-TI, and APT-ODI-TI
correspond to DI-TI, RDI-TI, and ODI-TI when p = 0, respectively. Upon observation,
it becomes apparent that discarding a small portion of adversarial patches leads to a
noteworthy improvement in transferability. Nevertheless, an excessive discarding of
patches results in a substantial loss of gradient information, consequently leading to a
reduction in transferability. The findings indicate that the optimal value of p depends on
the specific baseline algorithm employed. Specifically, APT-DI-TI achieved the highest
performance at p = 0.4, APT-RDI-TI exhibited the best performance at p = 0.3, and APT-
ODI-TI performed optimally at p = 0.2. The results show that the value of p is very critical
when using different baseline algorithms.

In addition, we observed variations in the selection of the optimal p value for different
proxy models. Considering APT-DI-TI as the study object, it achieved the highest perfor-
mance with p = 0.3 when Resnet 50 was the source model. For Densenet21 or VGG16 as
the proxy model, the optimal p value increased to p = 0.4. Furthermore, if Inception-v3
was the proxy model, APT-DI-TI performed best with p = 0.5. These results highlight
the close relationship between proxy model selection and adjusting p, offering valuable
guidance for further performance optimization.
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(a) (b) (c) (d)

Figure 3. Impact of p on targeted transferability between different architectural models. (a) Targeted
attack success rates under different hyperparameters p against the source model Resnet50. (b) Tar-
geted attack success rates under different hyperparameters p against the source model DenseNet121.
(c) Targeted attack success rates under different hyperparameters p against the source model VGG16.
(d) Targeted attack success rates under different hyperparameters p against the source model
Inception-v3.

5. Conclusions

In this paper, we identify the limitations of current gradient iteration algorithms for
targeted attacks. We introduce a novel approach by considering the gradient information
of clean patches in the image and proposing an improved method to enhance the transfer-
ability of adversarial examples. Our extensive experiments on ImageNet demonstrate that
our proposed method, APT, achieves significantly higher success rates against black-box
models compared to traditional attack methods. As a result, our method can serve as
an effective benchmark for evaluating future defense mechanisms. For future work, we
intend to consider other transforms and to investigate theoretical explanations for the high
transferability of targeted attacks of perturbations.
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