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Abstract: Individuals suffering from motor dysfunction due to various diseases often face challenges
in performing essential activities such as grasping objects using their upper limbs, eating, writing,
and more. This limitation significantly impacts their ability to live independently. Brain–computer
interfaces offer a promising solution, enabling them to interact with the external environment in
a meaningful way. This exploration focused on decoding the electroencephalography of natural
grasp tasks across three dimensions: movement-related cortical potentials, event-related desynchro-
nization/synchronization, and brain functional connectivity, aiming to provide assistance for the
development of intelligent assistive devices controlled by electroencephalography signals generated
during natural movements. Furthermore, electrode selection was conducted using global coupling
strength, and a random forest classification model was employed to decode three types of natural
grasp tasks (palmar grasp, lateral grasp, and rest state). The results indicated that a noteworthy
lateralization phenomenon in brain activity emerged, which is closely associated with the right or
left of the executive hand. The reorganization of the frontal region is closely associated with external
visual stimuli and the central and parietal regions play a crucial role in the process of motor execution.
An overall average classification accuracy of 80.3% was achieved in a natural grasp task involving
eight subjects.

Keywords: natural grasp task; movement-related cortical potentials; event-related (de)synchronization;
brain functional connections; electroencephalography; random forest

1. Introduction

Individuals afflicted by conditions such as stroke, spinal cord injuries, and other
ailments often experience motor impairments, leading to limitations or a loss of limb mo-
bility [1,2]. These difficulties can significantly disrupt their daily lives and place burdens
on both the patients and their families. Remarkably, despite these challenges, the cogni-
tive capabilities of these patients remain akin to those of healthy individuals. They can
effectively employ electroencephalography (EEG) signals to interact with the external envi-
ronment [3,4]. Hence, decoding the intricate real-time dynamics underlying natural grasp
tasks across multiple dimensions not only aids in comprehending the brain’s dynamic
reorganization but also introduces innovative concepts for intelligent assistance grounded
in brain–computer interfaces (BCIs). Such innovations have the potential to assist patients
in surmounting motor limitations and alleviate the family’s burden [3,5,6].

An EEG signal is a multirhythmic nonlinear signal that holds abundant information
within the time and frequency domains. The brain achieves efficient cognitive processing
through the intricate exchange of time and frequency domain information among different
brain regions [7]. Movement-related cortical potentials (MRCPs) delineate the dynamic
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changes in EEG signal amplitude over time during movement. These potentials exhibit a
distinct pattern: a negative deflection emerges during the preparation period of movement,
reaching its peak negativity at movement initiation, and subsequently gradually return-
ing to the baseline level [8–13]. The dynamic evolution of EEG signal power over time
within a specific frequency band is assessed using event-related desynchronization (ERD)
and event-related synchronization (ERS). The ERD(S) phenomenon is notably observed in
the alpha (8–13 Hz) and beta (13–30 Hz) frequency bands during the execution of move-
ments [14–19]. Moreover, functional brain connectivity reveals the process of information
transmission among brain regions during movement. Time–frequency cross mutual infor-
mation (TFCMI), a typical method for analyzing brain functional connectivity, effectively
leverages the time–frequency domain characteristics of EEG signals. This approach enables
the evaluation of potential linear and nonlinear correlations among these signals, providing
a more precise and comprehensive explanation of information propagation within the
intricate brain network [20–23].

The majority of brain–computer interfaces utilized for controlling assistive devices
depend on abstract imagery [5,6,24]. For instance, repetitive foot movements may be
employed to regulate exoskeletal movements in the left forearm of a subject [24]. However,
these strategies are not inherently linked to the intended movements they aim to produce,
potentially imposing an increased cognitive burden on the brain [25]. In recent years,
a prominent trend has emerged in research, with studies increasingly emphasizing the
utilization of EEG signals derived from authentic movements. The objective is to implement
more intuitive control strategies for intelligent assistive devices [8,26–30]. Reference [26]
initially down-sampled the signal to 16 Hz and employed the individual shrinkage-based
linear discriminant classification model (sLDA) to classify grasping activities, ultimately
achieving a classification accuracy of 61.3% [26]. In contrast, Reference [8] employed low-
frequency time domain features ranging from 0.3 to 13 Hz to classify grasping activities,
resulting in an impressive accuracy of 72.4% [8]. Reference [27] adopted a joint feature
approach encompassing both time and frequency domains to classify grasping activities,
achieving a classification accuracy of 65% [27]. And Reference [30] focused on classifying
two-handed grasping activities using time domain features ranging from 0.3 to 3 Hz,
culminating in a classification accuracy of 38.6% [30]. Nevertheless, relying solely on low-
frequency time domain data or a singular combination of time and frequency domains for
decoding EEG signals during movement proves insufficient. By introducing wavelet packet
decomposition, an extension of the wavelet transform, to extract EEG energy features, a
comprehensive approach is established that skillfully leverages both time and frequency
domain information. This, in turn, facilitates a more accurate decoding of EEG signals
during movement.

The objective of this study was to decode the dynamic changes occurring within
the brain during various grasp tasks from a multidimensional perspective. Compara-
tive analyses were conducted on MRCPs and ERD(S) across three types of natural grasp
tasks. Simultaneously, the study explored the functional connectivity among different
brain regions during movement states, employing the TFCMI approach. Furthermore, an
assessment was conducted on the coupling strengths of brain-region connections during
different movement periods within the same movement state. This investigation could
reveal the dynamic process of brain functional connectivity changes throughout the pro-
gression of movement. In the final stage, the global coupling strengths derived from TFCMI
were employed to pinpoint electrode data that that demonstrated a robust correlation with
grasp tasks. Subsequently, wavelet packets were then employed to extract energy features,
followed by the application of random forest algorithms to decode the EEG signals for
three types of natural grasp tasks.

Compared to previous research, our contributions are summarized as follows: Firstly,
we conducted the simultaneous decoding of EEG signals from grasping tasks in three
dimensions: MRCPs, ERD(S), and functional connectivity. This comprehensive approach
allowed for a profound analysis of the dynamic brain changes during grasping tasks. In
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our analysis, we introduced considerations of attention and cognitive processes during
the motor preparation period, leading to a more coherent understanding of the evolving
EEG signals during motor processes. Secondly, we leveraged brain functional connectivity
strength to carefully select EEG electrodes, effectively reducing data dimensionality. Ad-
ditionally, we harnessed wavelet packet analysis to extract energy features, resulting in a
substantial enhancement of classification accuracy through random forest decoding. The
structure of this paper is as follows: Section 2 provides an introduction to the principles of
MRCPs, ERD(S), TFCMI, and the random forest classification method, respectively. Sec-
tion 3 presents and analyzes the experimental results. Section 4 discusses the experimental
findings. Finally, Section 5 concludes the paper.

2. Materials and Methods

The raw EEG signals of palmar grasp, lateral grasp, and rest state were decoded from
the three dimensions of MRCPs, ERD(S), and brain functional connectivity. Following this,
EEG electrodes were chosen based on the coupling strength of brain functional connectivity.
The extraction of EEG signal energy was accomplished through wavelet packet analysis,
with the subsequent application of a random forest algorithm for the classification of the
three task tasks.

2.1. Data and Preprocessing

The data that underpin the results of this study were sourced from the Institute of
Neural Engineering at Graz University of Technology [26]. The experimental procedure
unfolded as follows: the participant grasped an object—either an empty can (palmar grasp)
or a can with a spoon (lateral grasp)—positioned at an equidistant point. Before initiating
the grasping action, a 1–2 s period was dedicated to fixing one’s gaze on the target object.
Subsequently, following the successful grasp of the object, they were also required to sustain
the grasping action for an additional 1–2 s. An illustration of the experimental process is
depicted in Figure 1. Three types of EEG signals were recorded during this experiment:
palmar grasp, lateral grasp, and rest state. The data were acquired from a group of 8 healthy
individuals, all of whom were right-handed. For each participant, a total of 58 channels
of EEG signals were recorded, alongside 6 channels of electrooculography (EOG) signals.
These EOG signals encompassed the inferior and superior orbits of both eyes, in addition
to the external corners of the eyes. The data were sampled at a frequency of 256 Hz, with
the right earlobe utilized as the reference electrode and the electrode AFz serving as the
grounding point. The spatial distribution of the 58 channels is illustrated in Figure 2.
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EEG signals are characterized by their low amplitude and susceptibility to various
interferences, including baseline drift, respiratory disturbances, and ocular artifacts. Con-
sequently, it becomes imperative to reprocess the acquired signals to obtain clean data as
much as possible. In this study, a 4th-order Butterworth bandpass filter was applied to
the raw EEG, restricting the passband range to 0.3 to 40 Hz. Additionally, the reference
was converted into an averaged reference to reduce the potential influence of lateralization
effects. In order to minimize EOG interference, the fast Independent Component Analysis
(Fast ICA) algorithm, based on negative entropy maximization [31], was employed. The
EEG signal underwent decomposition into independent IC components using the Fast ICA
algorithm. Subsequently, the correlation between each IC component and the EOG signal
was quantified. IC components exhibiting an absolute correlation coefficient exceeding
0.5 were identified as those strongly associated with the EEG. Following this, the specific
IC components were nullified, effectively producing an EEG signal devoid of electroocu-
logram interference. Furthermore, to address the potential impact of volume conduction
effects on the functional connectivity and enhance the depiction of authentic connectivity
among brain regions, this study adopted Current Source Density (CSD) estimation [32].
This approach not only amplifies the local information within channels of interest but
also reduces common noise across each channel. Figure 3b visually demonstrates the
comprehensive preprocessing procedure, employing a single instance of a grasping activity
to exemplify the process.

In this study, data within the time range of [−2 5] s, relative to the initiation of
movement, were selected as the study window for subsequent investigation. For the rest
data, a window spanning 7 s, with intervals of 0.5 s, was employed. Ultimately, a total of 556
valid trials were extracted for each motor state type across all eight subjects. To decode the
dynamic changes in EEG signals during the entire grasp task more comprehensively, with
particular emphasis on capturing subtle changes during movement transitions, the study
window was partitioned into 13 distinct segments, as illustrated in Figure 1. Importantly,
there was a 0.5 s overlap of data between consecutive segments. Furthermore, in order to
better analyze the brain functional connectivity, the 58-channel electrodes were divided
into 10 brain regions, as shown in Table 1.
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Table 1. Distribution of electrodes in each brain region.

Cortical location Channels

Left frontal area (LF) F3, FFC3h
Middle frontal area (MF) F1, FZ, F2, FFC1h, FFC2h

Right frontal area (RF) F4, FFC4h

Left central area (LC) FC5, FC3, FCC5h, FCC3h, C5, C3, CCP5h,
CCP3h, CP5, CP3

Middle central area (MC) FC1, FCz, FC2, FCC1h, FCC2h, C1, Cz, C2,
CCP1h, CCP2h, CP1, CPz, CP2

Right central area (RC) FC4, FC6, FCC4h, FCC6h, C4, C6, CCP4h,
CCP6h, CP4, CP6

Left parietal area (LP) CPP5h, CPP3h, P5, P3
Middle parietal area (MP) CPP1h, CPP2h, Pz, P1, P2

Right parietal area (RP) CPP4h, CPP6h, P4, P6
Occipital area (O) PPO1h, PPO2h, POz

2.2. Movement-Related Cortical Potentials

Movement-related cortical potentials are a type of event-related potential that can
depict the dynamic processing stages of movement preparation, movement execution,
and movement termination [13,33,34]. The typical composition of MRCPs predominantly
comprises the Readiness Potential (RP) and the Movement Execution Potential (MEP). RP,
also known as Bereitschaftspotential (BP), signifies the potential shifts occurring in the brain
cortex before the initiation of movement. This phenomenon materializes as a gradually
intensifying negative potential, indicative of the brain’s strategic planning and preliminary
arrangements for the impending movement [35]. Conversely, MEP emerges during the
actual execution of the movement, reflecting the activation of the brain cortex [36,37]. Given
the consistent waveform nature of MRCPs, this study performed an average overlay of
preprocessed EEG signals from the eight participants to heighten the signal-to-noise ratio of
EEG signals and mitigate the impact of random EEG components on MRCPs. Additionally,
this procedure aids in reducing variability in EEG waveforms caused by variations in
grasp task speeds among participants. As a result, it facilitates a clearer observation of the
dynamic changes in EEG signals during the progression of grasp tasks [38].
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2.3. Event-Related Desynchronization and Synchronization

Event-related desynchronization (ERD) and synchronization (ERS) are employed to
gauge the changes in power within specific frequency bands of the EEG provoked by different
tasks [39]. In this framework, ERD corresponds to the diminishing process of EEG rhythmic
power, whereas synchronization denotes an increasing process. The standard calculation
method is outlined as follows: Initially, the preprocessed EEG signal underwent band-pass
filtering, within the ranges of the alpha band (8–13 Hz) and beta band (13–30 Hz), respectively.
Subsequently, the square of the wave amplitude of the EEG data was computed to derive
its power data signalpower. Next, the power samples from the same task were averaged to
yield the average power data, referred to as Avgsignalpower. Then, the mean of the average
power samples within the time interval [−2 to −1] seconds was chosen as the baseline
baselinepower. This step aimed to enhance data smoothness and minimize experimental
variability [15,40]. Lastly, the average power data Avgsignalpower were compared to the
baseline power samples baselinepower, and the relative change in power was calculated as
a percentage or ratio. Based on the description provided above, Equation (1) is defined
as follows:

ERD(S) =
Avgsignalpower − baselinepower

baselinepower
× 100% (1)

2.4. Brain Functional Connectivity

Brain functional connectivity unveils the process of information transfer between
different regions of the brain during movement. Time–frequency cross mutual information
(TFCMI) is a research approach rooted in information theory, without making assumptions
about the signal adhering to any specific probability distribution [20,21,23,41,42]. Its under-
lying principle involves utilizing wavelet transform to extract amplitude information from
the signals and employing the mutual information method to assess potential linear and
nonlinear relationships between the signals within a specific frequency band. By applying
this approach to analyze brain functional connectivity across the 13 target segments during
natural grasp, a more accurate evaluation of the dynamic reorganization process of brain
functional connectivity during natural movement can be attained.

The Morlet wavelet demonstrates a unique capability in multiresolution analysis. Its
application to EEG signal analysis effectively extracts time-varying band information [43],
enabling it to adeptly capture the transient changes that unfold during movement processes.
In parallel, mutual information is an information-theoretic metric, gauging the level of
nonlinear interdependence among signals. This metric excels in providing a more precise
insight into the intricate information propagation mechanisms between various brain
regions during movement. Consider the data from the ith channel at time instant t, denoted
as xi(t). The associated Morlet wavelet transformation can be expressed as:

Wxi (t, f ) =
∫

xi(λ)·
(

φ∗t, f (t− λ)
)

dλ (2)

In this context, Wxi (t, f ) represents the amplitude information at frequency f for the
ith channel at time t.

The Morlet wavelets are

φt, f (λ) =
(

σ
√

2
)−1/2

ei2π f (λ−t)·e
−(λ−t)2

2σ2
(3)

where their time spread is defined by σ = 8
2π f . φ∗t, f (λ) are the complex conjugates of

φt, f (λ).
Let us represent the averaged amplitude of the ith channel as a random variable Fi,

with its probability density function (pdf) denoted as P(Fi,b). Similarly, we computed the
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joint pdf between the ith and jth EEG channels as P
(

Fi,b, Fj,b

)
. The calculation of TFCMI

between two random variables Fi and Fj proceeded as follows:

TFCMI
(

Fi, Fj
)
=

n

∑
b=1

P
(

Fi,b, Fj,b

)
ln

P
(

Fi,b, Fj,b

)
P(Fi,b)P

(
Fj,b

) (4)

where b denotes the index of the sampling bins employed to create the approximate
probability density function (pdf). Accurate estimation of both the pdf and joint pdf from
the data histogram is essential for mutual information calculation. In EEG analysis, it is
common practice to utilize a range of 40 to 60 bins when constructing these histograms [44].

The TFCMI matrix exhibits a reciprocal nature, with its elements representing the
magnitude of mutual coupling between EEG electrodes. Normalizing these elements
using diagonal values aids in better understanding the interdependence between channels.
By calculating the average cumulative coupling strengths across the 13 segments, the
global coupling strength of the brain is determined, reflecting the information exchange
process among electrodes during movement. The greater the global coupling strength of
an electrode, the more extensive its information exchange with other electrodes, indicating
a higher relevance to the task. Therefore, the global coupling strength is utilized for
channel selection, which reduces data volume and enhances classification efficiency during
subsequent recognition of grasping activities.

2.5. Classification
2.5.1. Wavelet Packet Decomposition

Wavelet packet decomposition is an extension of the wavelet transform, addressing
the limitations of wavelet decomposition by encompassing both low and high-frequency
components of a signal. It features multiscale analysis, high time–frequency resolution, and
energy concentration [45]. Through wavelet packet decomposition, the changing informa-
tion within EEG signals during the grasp process at different moments and across various
frequency bands can be effectively captured. This enables a more precise decoding of the
dynamic evolution. Wavelet packet decomposition orthogonalizes the signal’s energy into
adjacent, nonoverlapping frequency bands, following the principle of energy conservation.
Thus, the energy of wavelet packets can reflect the magnitude of corresponding frequency
band energy. Leveraging the multiscale characteristics and energy concentration inherent
in wavelet packet decomposition, utilizing the extracted energy as classifier features could
effectively mitigate the influence of redundant information, subsequently reducing feature
dimensions and computational complexity, and thereby enhancing classifier performance
and robustness. Furthermore, the adaptive analytical capability of wavelet packet decompo-
sition enables the extracted energy features to exhibit strong generalizability for classifying
EEG signals across different tasks. In this study, the Daubechies 4 wavelet (db-4 wavelet)
was chosen as the foundational basis function, with a decomposition depth of 3 layers.
Following the preprocessing of the EEG signal, the energy of the wavelet packet associated
with the i node subsequent to three layers of wavelet packet decomposition is as follows:

Ei =
N

∑
i=1
|ηi|2 (5)

where N represents the quantity of coefficients in the corresponding frequency band, while
ηi denotes the wavelet packet coefficients of the corresponding band.

2.5.2. Random Forest

Random forest is a classifier constructed by combining multiple decision trees as its
foundational classifiers. Essentially, it is an ensemble learning method that aggregates the
outcomes of numerous decision trees, thereby providing enhanced classification accuracy.



Electronics 2023, 12, 3894 8 of 17

Additionally, this algorithm demonstrates exceptional adaptability to high-dimensional
data and robustness against noise and outliers, effectively reducing the risk of overfitting.
The specific implementation process unfolded as follows: Initially, a training sample set
undergoes repetitive random sampling with replacement, generating bootstrap sample
sets. This procedure is repeated k times. Subsequently, each bootstrap sample set is utilized
as a training dataset to cultivate an individual decision tree. Suppose there are a total of
M input features, and a positive integer m adheres to the condition m ≤ M, at each node
of the tree, m features are randomly selected from the M features for computation. The
optimal point of division is then determined from these m features, following the principle
of minimizing node impurity, which guides the growth of branches. Throughout the entire
progression of building the forest, m remains consistent. The individual trees are allowed
to grow comprehensively, ensuring that impurity at every node is minimized without
employing pruning techniques. Subsequently, the aforementioned steps are iterated until a
collection of k classification regression trees are generated. Lastly, the class predictions are
made through majority voting among the trees within the forest [46,47].

2.6. Difference Evaluation

The two-serial correlation coefficient is a statistical measure that assesses the differ-
ences among variables, with larger values denoting more significant disparities among
these variables [48]. In this study, it was utilized to analyze the differences of the three
tasks in MRCPs, ERD(S), and brain functional connectivity, which made the analysis results
not only obtained by observation but also reflected by data, which is more scientific. The
formula is as follows

Xr =

√
N+ · N−

N+ + N−
· mean(X−)−mean(X+)

std(X− ∪ X+)
(6)

3. Results
3.1. Motor Cortex-Related Potentials

Figure 4 illustrates the MRCPs for three types of grasp tasks, recorded via electrodes
C1, Cz, and C2. Specifically, Figure 4a portrays the MRCPs for palmar grasp, Figure 4b for
lateral grasp, and Figure 4c for the rest state. During the rest state, the MRCPs exhibited
relatively smooth patterns with random fluctuations around the baseline. For both grasp
tasks, a prominent positive peak emerged in the initial 0.5 s of the motor task (−1 S).
Subsequently, negative deflections followed suit, culminating in a negative peak at the
moment of motor onset (0 S). Approximately 300 ms after the onset of motor, a smaller
positive peak manifested. Prior to the grasp initiation (0.5–1 S), yet another substantial
positive peak materialized, followed by a gradual return to a level closely aligned with
the baseline.
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(−1.3 S), succeeded by a subsequent transition to a positive peak (−1 S). This positive peak
exhibited an extended duration, and concurrently, the amplitude of the positive peak before
the onset of grasp (0.5–1 S) was pronounced. In contrast, in the case of the lateral grasp,
the positive peak before the initiation of the grasp demonstrated a prolonged duration,
accompanied by a heightened amplitude of the positive peak at 300 ms. Furthermore, an
incidental positive peak fluctuation is observable at the negative maximum peak during
lateral grasp. It is worth noting that, in both grasp tasks, the magnitude of the positive
peak before the onset of movement, as well as the negative peak at the onset of movement,
was significantly higher at electrode C1 compared to electrode C2. These distinctions
were visualized and quantified using the two-series correlation coefficient, as depicted in
Figure 5.
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3.2. Event-Related Desynchronization and Synchronization

The ERD(S) for three types of grasp tasks at electrodes C1, Cz, and C2 are depicted in
Figure 6. In particular, Figure 6a–c correspond to the alpha band (8–13 Hz), while Figure 6d–f
represent the beta band (20–30 Hz). It is noteworthy that the rest state did not exhibit
any significant ERD(S) phenomena in either frequency band. However, for both types of
grasp tasks, a substantial ERD phenomenon became evident within the initial 1 s after the
onset of movement. Additionally, the ERD phenomenon at electrode C1 was markedly
more pronounced compared to C2. In the alpha band, the palmar grasp exhibited a minor
amplitude peak approximately 500 ms after the onset of movement, which persisted until
the initiation of the grasp (1 S). In the beta band, both grasp tasks demonstrated a larger
amplitude peak occurring between 1.5 S and 2.5 S. Notably, the duration of this peak was
more extended in the palmar grasp compared to the lateral grasp. Furthermore, a brief
amplitude peak emerged during the palmar grasp precisely at the moment of movement
onset (0 S). The differences among the three tasks were quantified using the two-series
correlation coefficient, and the results are presented in Figure 7.

3.3. Brain Functional Connectivity

Figure 8 illustrates the topography of coupling strength, as derived from the TFCMI,
across different movement periods for the palmar grasp, lateral grasp, and rest state, with
Figure 8a representing the alpha band (8–13 Hz) and Figure 8b corresponding to the beta
band (20–30 Hz). It can be seen that the coupling strength for the rest state showcased a
relatively smooth pattern in both the alpha and beta bands.

From Figure 8a, it can be observed that compared to the rest state, during the move-
ment preparation period (1–3), there was a noticeable decrease in coupling strength in the
left and middle of the central region, as well as the left and middle of the parietal region,
and the occipital region, whereas there was an evident increase in the right frontal region
and the areas adjacent to the frontal in the right central region. At the movement onset
(4–5), the coupling strength further weakened in the left and right central regions, right
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parietal region, and occipital region. Concurrently, the counterpart in the central region
and the right side of the frontal region strengthened. At the beginning of the grasp (6), the
coupling strength exhibited a more substantial reduction in the middle and right of the
frontal region, the left and right central region, and the right parietal region. Throughout
the grasp hold period (7–9), there was a notable enhancement in the coupling strength
in the central region, parietal region, and occipital region. Remarkably, at the onset of
the grasp (6) of the palmar grasp, the coupling strength in the middle and right frontal
region, left central region, right parietal region, and occipital region was significantly lower
compared to the lateral grasp. Conversely, during the grasp hold period (7–9), the lateral
grasp demonstrated notably lower coupling strength in the left central region, middle
parietal region, and occipital region compared to the palmar grasp.
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Observing Figure 8b, it is evident that, compared to the rest state, during the movement
preparation period (1–3), there was a significant decrease in coupling strength in the left and
middle of the frontal region, the left and middle of the central region, the left and middle of
the parietal region, and the occipital region. As the movement initiated (4–5), the coupling
strength further diminished in the right frontal region, the central region, the parietal
region, and the occipital region. At the onset of the grasp (6), there was an enhancement in
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coupling strength within the central region, the parietal region, and the occipital region.
Conversely, the counterpart in the right frontal region experienced notable weakening.
During the grasp hold period (7–9), an overall fortification in the brain’s coupling strength
became evident, particularly notable in the right frontal region, the central region, and the
parietal region. For the palmar grasp, the coupling strength in the right frontal region was
significantly lower at the onset of the grasp (6) compared to the lateral grasp, while it was
higher in the left occipital region than in the lateral grasp. However, during the grasp hold
period (7–9), the lateral grasp demonstrated notably lower coupling strength in the central
region and in the areas adjacent to the central part of the frontal regions compared to the
palmar grasp.
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Figure 9 depicts the outcomes of two-series correlation coefficient analysis, aimed at
quantifying differences in the coupling strength across the three tasks. Figure 9a represents
the 13 motor periods, while Figure 9b focuses on brain regions. Notably, the difference in
coupling strength between the rest state and the two grasp tasks was significantly greater
than the counterpart between the two distinct motor tasks, both in terms of motor period
and brain regions. As can be seen in Figure 9a, in the alpha band (8–13 Hz), the difference in
coupling strength between the two grasp tasks gradually decreased during the preparation
period (1–3), reaching its minimum at the moment of movement onset (4). Subsequently,
this difference increased at the initiation of the grasp task (6) and continued to rise during
the grasp maintain period (8), eventually regressing closer to the baseline. In the beta band
(20–30 Hz), the contrast between the two tasks was more pronounced at the beginning of
the grasp period (6) and during the grasp hold (8). From Figure 9b, it is evident that in the
alpha band (8–13 Hz), the differences in coupling strengths were more prominent in the left
central region, the left and right parietal regions, and the occipital region. Meanwhile, in
the beta band (20–30 Hz), the contrast in coupling strength was more substantial between
the left parietal area and the frontal area.

3.4. Classification

Utilizing the global coupling strength computed via TFCMI, electrodes exhibiting
lower activity during the rest state yet displaying activity during the two grasp tasks were
systematically filtered out. This filtering process resulted in a final selection of 20 channel
electrodes, which are as follows: F3, F1, Fz, FFC3h, FC5, FC3, FC1, FCC3h, FCC2h, C1, Cz,
C2, CCP3h, CCP1h, CCP2h, CP5, CP1, CPP6h, P5, and P6.
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Figure 10 illustrates the confusion matrix showcasing the average classification out-
comes for the three states. Within this representation, Figure 10a portrays the data employ-
ing the complete electrodes with 58 channels, while Figure 10b showcases the data utilizing
the filtered electrodes with 20 channels. From the depiction in Figure 10a, it is apparent
that the rest state attained the highest recognition accuracy, standing at an impressive
98.2%. Subsequently, the lateral grasp achieved a recognition accuracy of 65.8%, followed
by palmar grasp with a recognition accuracy of 60.4%. The cumulative average accuracy
when utilizing the full 58 channels of EEG data amounted to 74.8%. Turning attention
to Figure 10b, the recognition accuracy for the resting state remained consistently high
at 98.2%. However, there was an improvement in accuracy for palmar grasp, reaching
73.9%, and for lateral grasp, achieving 68.8%. Through the utilization of 20 channels of
EEG data for classification, the recognition accuracy for the rest state remained unaltered,
yet the accuracy for both grasp tasks showed enhancement, culminating in an overall
average accuracy of 80.3%. Furthermore, Table 2 provides a comprehensive overview of
the individual classification results for each of the eight subjects.
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Table 2. Classification results for eight subjects.

Subject Palmar (%) Lateral (%) Rest (%) AVG (%)

G01 78.57 60.00 100.00 79.52
G02 85.71 78.57 92.86 85.71
G03 78.57 78.57 92.86 83.33
G04 85.71 66.67 92.86 81.75
G05 85.71 78.57 100.00 88.09
G06 71.43 73.33 100.00 81.59
G07 60.00 71.43 100.00 77.14
G08 63.64 63.64 91.67 72.98
STD 9.52 6.81 3.74 4.47

4. Discussion

In this study, the analysis focused on MRCPs and ERD(S) of three grasp tasks. The
waveform distribution of MRCPs was in line with previous reports in [8,26,27,30]. Research
has confirmed the connection between positive and negative potentials of EEG signals and
synaptic activity [49]. These negative deflections have been associated with the energy
demands or the level of effort required for movement planning or execution [50]. The
amplitude of the short-duration positive peak around 300 ms after the onset of movement
was greater for lateral grasp; in other words, before the onset of grasp, there was a larger
negative pullback of this positive peak. Simultaneously, the positive peak persisted longer
during the lateral grasp compared to the palmar grasp. This difference suggests that a
lateral grasp involves more intricate and nuanced activity compared to a palmar grasp,
resulting in heightened synaptic activity in the brain cortex. This, in turn, signifies a greater
energy demand or exertion during the execution of a lateral grasp. Moreover, a distinct
lateralization effect emerged in both MRCPs and ERD(S) for both grasp tasks; specifically,
the amplitude of MRCPs exhibited lower values while ERD(S) displayed higher values at
the onset of movement from electrode C1 compared to electrode C2. This phenomenon
corresponds to the left or right side of the motor executive hand and aligns with earlier
research findings [8,12,15,30,51].

This study employed TFCMI to investigate brain functional connectivity in EEG
signals during motion states, confirming the close association of the alpha (8–13 Hz) and
beta (20–30 Hz) bands with subjects’ motor and cognitive behaviors [52]. During the
rest state, the coupling relationships between the brain regions remained relatively stable,
which is commonly referred to as the default mode network (DMN) [53]. In comparison
to the rest state, the coupling strengths within the central, parietal, and occipital regions
exhibited a notable decrease during the movement preparation period in both the alpha
(8–13 Hz) and beta (20–30 Hz) bands. Conversely, the coupling strength in the right frontal
region and the right side of the central region adjacent to the frontal region demonstrated
a substantial increase in the alpha band (8–13 Hz). This phenomenon occurred because
the subjects were instructed to direct their gaze toward the grasp target during the motor
preparation period, thereby introducing an external visual stimulus. Previous research
has demonstrated that the default mode activates when external stimuli are absent, while
the default mode network is inhibited and the Central Executive Network (CEN) becomes
active when subjects focus on external stimuli [54]. Furthermore, the increased coupling
strength observed between frontal regions and other brain regions in the presence of visual
stimuli might indicate improved communication during visual processing [55]. At the
onset of the movement, a distinct lateralization effect became evident, with notably lower
coupling strength observed in the left-brain region compared to the right. This observed
phenomenon aligns with earlier findings from studies focusing on MRCPs and ERDS. The
coupling strengths of both the central and parietal regions exhibited a significant weakening
at the onset of movement when contrasted with the movement preparation period. At the
beginning of the grasp, there was a further attenuation in coupling strength between the
central and parietal regions. Subsequently, throughout the grasp hold period, an increase
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in coupling strength within the central areas was observed. This is due to the fact that at
the onset of the movement, the brain assigns higher priority to the motor task compared
to the visual stimulus present during the preparation period. As a result, the DMN is
further suppressed, and the CEN is activated to execute the grasping activity. Throughout
the entire movement, the frontal regions remained consistently engaged, underscoring
their crucial role in visual processing. During palmar grasp, the connectivity within the
central region was more pronounced, while for lateral grasp, the connectivity within the
parietal region was more active. This suggests that both the central and parietal regions
are involved in motor-related activities, with the parietal region specifically overseeing
finer motor control [56–59]. Furthermore, during our brain functional connectivity analysis,
we divided the study window into 13 segments, each with a 0.5 s overlap. This decision
was made thoughtfully, considering both the experimental design and the duration of each
movement period. A window that is too brief might miss capturing the motor transition
process accurately, while an overly long window could span multiple motor periods,
potentially compromising the accuracy of motor transition depiction.

This study employed wavelet packet energy extraction and the random forest method
to effectively decode EEG signals. Prior studies [8,27,30,51] utilized 58 channels of EEG
signals during decoding, yet not all brain regions covered by these channels are relevant to
grasp tasks. Channels from non-motion-related areas do not significantly enhance classifica-
tion performance, thus rendering the data redundant. Additionally, excessive channels lead
to longer experiment preparation times, causing inconvenience for participants. Hence, in
this research, the global coupling strength derived from TFCMI was used to select 20 EEG
signal channels relevant to grasp tasks. These selected channels were used for energy
extraction and decoding with the random forest technique, ultimately achieving an average
accuracy of 80.3%.

It is important to highlight that the EEG data utilized in this study were derived from
healthy participants rather than individuals with upper limb motor dysfunction. This
distinction underscores the need for a further exploration of specific issues pertinent to
practical brain–computer interface (BCI) applications within the latter group. Moreover,
the dataset does not strictly enforce specific completion times for the various motor periods
of the participants. Instead, it solely relies on sensor calibration for delineation, leading to
a certain degree of error in delineating the different motor period. This imprecision can
subsequently impact the analysis of brain functional connectivity associated with these
motor states. It is important to highlight that this investigation primarily concentrates on
assessing the impact of varying EEG signal channel numbers on classification accuracy. It
does not delve deeply into a comprehensive comparison of different classification methods
and their effects on accuracy. The observed issue is that of significantly higher accuracy
during the classification of rest states compared to grasp tasks. This is mainly due to the
high similarity in movement processes between a palmar grasp and a lateral grasp. In our
upcoming studies, we will be dedicated to addressing this imbalance by distinguishing
between these closely related processes. Our plan involves the utilization of advanced
models and the exploration of new signal features to effectively tackle this challenge.

5. Conclusions

This study delved into the decoding of EEG signals associated with a palmar grasp,
a lateral grasp, and the rest state from various dimensions. The analysis encompassed
MRCPs and ERD(S), while also investigating the dynamic alterations in brain functional
connectivity during the grasp tasks via the employment of TFCMI. Moreover, relevant
electrodes were selected based on global coupling strength, energy features were extracted
using wavelet packets, and random forest was employed to decode three types of grasp
tasks, achieving an average classification accuracy of 80.3%. Introducing attention and
cognitive processes into the analysis of the movement preparation period enhances the
coherence and rationality of EEG signal analysis during the movement process. At the onset
of movement, noteworthy lateralization effects were observed in MRCPs, ERD(S), and brain
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functional connectivity, which could be attributed to the execution of the hand’s movement
on the left or right side. Notable differences in brain functional connectivity were observed
between different grasp tasks compared to the rest state. Additionally, distinct variations in
brain functional connectivity for the same grasp task at different time periods were evident.
These findings contribute to a deeper understanding of interregional information exchange
in real-world motor scenarios, providing a theoretical foundation for the utilization of
motion-related EEG signals to control intelligent assistive devices. Furthermore, they offer
novel insights for the development and application of BCI intelligent assistive devices.
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