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Abstract: In recent decades, the need for advanced systems with good precision, low cost, and high-
time response for wildfires and smoke detection and monitoring has become an absolute necessity. In
this paper, we propose a novel, fast, and autonomous approach for denoising and tracking smoke
in video sequences captured from a camera in motion. The proposed method is based mainly on
two stages: the first one is a reconstruction and denoising path with a novel lightweight convolutional
autoencoder architecture. The second stage is a specific scheme designated for smoke tracking, and
it consists of the following: first, the foreground frames are extracted with the HSV color model
and textural features of smoke; second, possible false detections of smoke regions are eliminated
with image processing technique and last smoke contours detection is performed with an adaptive
nonlinear level set. The obtained experimental results exposed in this paper show the potential of the
proposed approach and prove its efficiency in smoke video denoising and tracking with a minimized
number of false negative regions and good detection rates.

Keywords: convolutional autoencoder; smoke detection; image quality enhancement; deep learning
models; level set models

1. Introduction

Wildfires are major natural disasters that can cause extensive damage to ecosystems
and threaten human lives. It is an uncontrollable and destructive fire that rapidly spreads
through vegetation, grasslands, or other flammable areas. Wildfires are typically trig-
gered by a combination of factors, including the presence of abundant dry vegetation and
favorable weather conditions like high temperatures, low humidity, and strong winds.
The sources of ignition for wildfires are diverse and can range from natural causes like
lightning strikes to human activities such as campfires, careless disposal of cigarettes, or
even intentional acts of arson. Besides the destructive nature of wildfires, the smoke from
wildfires can have severe human health risks and environmental consequences as it can
contribute to air quality degradation, disrupt the balance of ecosystems, and even impact
the behavior and survival of wildlife.

Early fire and smoke detection are crucial; some recent methods and tools focus on
smoke and fire detectors [1] due to their low cost. However, they have some limitations,
such as poor performance in open and wide areas and the detection time, which is depen-
dent on the distance between the detector and the smoke source [2]. Recent monitoring
systems such as remote sensing technologies, satellite imagery, and ground-based sensors
rely on artificial intelligence-based algorithms in detecting and monitoring the outbreak of
fires and their spread. In those systems, vision software runs at its core and automatically
detects the presence of an event.

In the last years, like other fields, computer vision-based fire and smoke detection
methods have attracted the attention of researchers [3–6]. Compared to conventional

Electronics 2023, 12, 3888. https://doi.org/10.3390/electronics12183888 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183888
https://doi.org/10.3390/electronics12183888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6642-2594
https://orcid.org/0000-0002-8174-6343
https://orcid.org/0000-0003-4270-421X
https://doi.org/10.3390/electronics12183888
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183888?type=check_update&version=1


Electronics 2023, 12, 3888 2 of 17

methods [7–11], they have many advantages like the large area coverage, the real-time
response, and the high accuracy.

Some of the existing approaches integrated various combinations of hand-crafted
traditional techniques to detect smoke image features like shape, color, and texture [12–14].
At the same time, others exploit the moving nature of smoke to extract the motion
characteristics [13,15,16] (motion value, direction, energy, convex hull), achieving good
results considering some particular cases.

In recent years, deep learning-based algorithms, especially CNNs [17–21], have gained
so much attention, and many researchers investigated those models and achieved good
precision results. Hence, the use of those methods is still challenging since they rely on su-
pervised learning and require huge databases for training, and their effectiveness depends
on various factors, including the strong hardware systems for implementation and the qual-
ity and diversity of the dataset used for training. A database is one of the bases of a deep
learning model, and the provided results largely depend on the comprehensiveness and the
authenticity of training data. Industries and institutions involved in deep learning spend
a lot of time and energy collecting datasets. The significant investment required to acquire
these datasets adds value to deep learning training and underscores their importance. The
availability of public smoke and fire databases with their ground truth labels is one of the
biggest challenges related to deep learning models. In addition, smoke and wildfire images
captured from fixed cameras, drones in motion, or other imaging devices are often affected
by noise, artifacts, or other imperfections that can affect their interpretation and analysis.
To address these challenges, Image processing techniques, such as noise reduction, image
enhancement, and image restoration, are employed to improve the quality of acquired
images, making them more suitable for interpretation.

In contrast to these previous methods and related challenges, a further solution
is described in this paper. In this study, we propose a fully automatic hybrid method
designated for noise removal and image quality improvement followed by smoke tracking
in video sequences. The proposed benchmark consists of two stages. In the first stage,
we construct an image denoising and quality enhancement path based on lightweight
convolutional encoder-decoder new architecture. In the second stage, we propose a novel
scheme for smoke tracking in videos provided by cameras in motion. The proposed
scheme consists of tracking the evolution of smoke that appears in different shapes and
from different angles in consecutive frames. First, a decision function to indicate the
appearance of smoke in the first frames in a recorded video based on hand-crafted features
like energy and color. The goal of those primary steps is to extract the foreground image
that contains possibly smoke region candidates. Second, smoke motion tracking with
a nonlinear adaptive level set framework. In this work, our main contributions are three
folds: (i) we develop a novel fully unsupervised pipeline for smoke tracking in videos
captured from a source camera in motion, (ii) we analyze the convolutional encoder-decoder
structures, and we suggest a novel view of its architecture that is designated especially to
reconstruct and denoise wildfire images, and (iii) we track the smoke regions evolution
starting from the small appearance regions in the first video frames. Besides giving good
detection results, the advantage of the proposed method is to be fully unsupervised, which
avoids the need for labeled, big, and high-resolution databases. In addition, in theory, it is
apt for deployment in real-world situations with low computational cost.

Extensive experiments and comparisons with the state-of-the-art methods confirm the
good performance of the proposed benchmark. In addition, our method is able to detect
the smoke at early stages with a small appearance from a moving camera, which, to our
best knowledge, has not been discussed in related research.

The rest of the paper is organized as follows: in Section 2, we provide an overview
of recent methods related to fire and smoke detection; Section 3 exposes the proposed
approach; Section 4 discusses the obtained results and evaluation of our method; and in
Section 5, we end up with conclusions and future works.
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2. Related Works

Computer vision and deep neural networks have emerged as powerful strategies
for studying the behavior of fire and smoke. Numerous methods have been introduced
in the literature to leverage these technologies. Kaabi et al. [22] introduced a method
for smoke detection. First, a motion-based feature extraction with the GMM algorithm
was employed; then, a trained DBN classifier based on the feature of smoke was used
to detect the smoke region in videos. Xu et al. [23] proposed an end-to-end method for
smoke detection based on a deep saliency network; the framework was used to extract the
smoke saliency map via a pixel level and object level salient CNN. Yifan et al. [24] proposed
a real-time detector network for fire and smoke based on a light YOLOv4. The model is
based mainly on three modules: the MobileNetv3, the BiFPN, and a new feature extraction
technique with depthwise separable convolution and attention block. The method attends
good performance with a minimum of trainable parameters. Cao et al. [25] proposed
a bidirectional LSTM network for forest fire and smoke detection in videos, and it consists
of bidirectional learning of the discriminative spatiotemporal features. Ali Khan et al. [26]
exploit the advantages of transfer learning to train the VGG19 model to localize wildfires;
then, they build a network composed of unmanned aerial vehicles communicated to an
assistance center to simplify and increase the data transmission process. Frizzi et al. [27]
proposed a new CNN architecture for fire and smoke segmentation and classification. The
network is composed of coding and decoding paths and achieves better accuracy compared
to similar methods with low false positives (clouds, haze) and in optimal segmentation
time. Aymen et al. [28] integrate the non-linear adaptive level set method with an artificial
neural network model to track the forest fire regions in wildfire videos; the method consists
of estimating and localizing the possible fire contours by analyzing the chromatic and
statistical features with the linear discriminant analysis combined with an artificial neural
network. Then, a level-set algorithm was applied to refine the segmentation results. The
method gives good results in terms of speed and accuracy. An interesting approach
proposed by [29] concentrates and studies the architecture and the training of networks; it
combines the self-attention mechanism with a multi-scale feature connection for real-time
fire and smoke detection. The authors first fused the feature maps of the network into
a radial connection; then, they applied a permutation attention mechanism to gather the
relevant information, and designed a feature fusion block to increase the detection efficiency.
The method gives good results compared to standard proposed methods.

Recent technologies based on advanced artificial neural network architecture achieve
good results, but they still have limitations, especially when trying to implement them for
daily use because of the need for huge databases for training and the strong/expensive
computation resources. From this, many methods attempt to detect fire and smoke by
building a pipeline integrating the image processing techniques and by exploiting the
smoke textural features (Table 1). Ref. [30] built a statistical model combined with an
optical flow algorithm for real-time fire and smoke detection. The method first extracts the
smoke and fire-like regions with frame differential steps, a color model of fire and smoke,
and a foreground accumulation technique. A motion feature discriminating model with
the optical flow was applied to the first resulting image to extract the final fire and smoke
regions. In [31], the fire presence decision in video frames is reached by analyzing the
color variations and periodic behavior of the flame with the temporal and spatial wavelet
transform algorithm. Ref. [32] proposed a fire detection system consisting of modeling the
color information in the CIE L*a*b color space and detecting the motion of fire pixels with
a background subtraction technique.
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Table 1. Overview of main methods and findings in the smoke detection literature.

Color Space Features Method Accuracy (%)

Hashemzadeh [7] RGB Motion CNN
SVM 97.6

Pundir [33] RGB
Motion
Texture
Color

Deep CNN 97.4

Yin [34] RGB Motion CNN 97.0

Toreyin [35] YUV
Motion
Energy

Disorder

Wavelet
transform -

3. The Proposed Smoke Tracking Method

The proposed approach presented in Figure 1 is based mainly on two stages: the
first stage is a reconstruction path, which aims to enhance the image quality and remove
noise, and the second stage consists of smoke detection and tracking using a new algorithm
based on smoke image features extraction steps combined with the nonlinear adaptive
level set method.
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3.1. Image Enhancement Path
3.1.1. Dataset Preparation

In this work, to train and validate the proposed convolutional autoencoder CAE
architecture, we used a dataset collected by our laboratory research team. The dataset
contains 450 RGB images, and it was divided into 80% used for training and 20% for
validation of the network. Note that to optimize the network learning, the dataset used to
train the network contains a diverse combination of clean and noisy images with varying
noise levels, as shown in Figure 2. Subsequently, every inputted image was normalized
and resized to a consistent size (256 × 256 × 3).
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3.1.2. The Proposed Lightweight CAE Network Architecture

Deep learning dimensionality reduction methods such as Variational auto-encoders
and their variants and generative adversarial networks have gained so much attention.
Some methods exploit the obtained latent space representation to help classification and de-
tection models better learn the distribution of information to achieve high-precision results,
while others tend to generate new data, for example, the data understanding approaches.

Many feature fusion and selection techniques employ neural architecture for better
cross-scale feature network topology. Auto-encoders [36] have demonstrated their efficacy
in mapping and modeling the data and proved their performance in data mapping. They
have been successfully applied in various tasks, including data manipulation, image
generation, and reconstruction.

Convolutional auto-encoders (CAE) [37] build upon the concept of auto-encoders
by incorporating a consecutive stacked convolutional layers, CAE is designed to learn
a specialized representation of image data, it involves mapping an input image data x to
a latent space representation h via an Encoder h = E(x) and then reconstruct it to obtain
the output image x via a decoder D with x = D(h).

To improve the learning process and help the model predict the missing values in
a corrupted image x̃ with noise, we employed a data mixing technique, which involved
injecting a batch of data that was corrupted with varying noise levels into the model. It is
important to note that this task is completely unsupervised, meaning that labeled data are
not required to train and fine-tune the CAE model.

Let us represent the feature representation of x̃ as h by denoting it as:

h = σ(wϑ x̃ + bϑ) (1)

where x̃ is the input image to be reconstructed.
The reconstructed image z is defined by:

z = δ(Wkh + bk) (2)

where Wv, bv, Wh, bh, are the weights and biases of the CAE model.
Our designed CAE architecture operates by first flattening the input image data into

a feature representation vector. It incorporates a sliding window and multiple hidden layers
consisting of convolution, pooling, and batch normalization operations. This architecture
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enables the network to learn distinctive contextual patterns and global and local features
from various regions within the image.

Figure 3 illustrates the detailed architecture of the proposed CAE model. It consists
of two paths: the encoding path begins with two convolution layers with a kernel size of
3 × 3 and 64 filters. This is followed by a normalization layer, a max-pooling operation,
and ends with a 3 × 3 convolution layer followed by a max-pooling operation.
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The decoding path of our model consists of two convolution operations. The first
operation utilizes 256 kernels, while the second operation employs 128 kernels. These
blocks are followed by a batch-normalization and up-sampling operations. Next, the
feature map is passed through a convolution block and another up-sampling operation.
The decoding path concludes with a convolution layer.

The architecture we propose is designed to be lightweight and promotes local connec-
tivity between neurons across different layers. This enables a hierarchical decomposition
of fire and smoke images, representing low and high-level features at varying scales and
levels. Additionally, it effectively blurs the input image data and maintains fine details like
contours and corners.

Note that the model was trained and validated on images for computation and time
simplicity reasons. After training the network and saving the best-achieved weights and
biases, the video smoke sequences are decomposed into frames, and then those frames are
fed one by one into the network for quality improvement and noise removal.

3.2. The Tracking Path
3.2.1. Color Modeling for Smoke Detection

Our aim in this study is to detect the smoke regions in video sequences acquired
from a camera with motion. The video dataset used for testing the tracking algorithm is
available at http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html (accessed on
12 April 2023). The smoke in the chosen videos is characterized by its variable shape,
appearance, and motion.

The smoke usually appears with grayish colors [38], either dark or light levels of
gray. The appearance of smoke depends on the combustion process. In this work, we
consider the light smoke since we want to find out the smoke at earlier stages. In terms of
computation, the RGB color model has less complexity than other models, but in smoke
color recognition, the extraction of smoke color-related information in RGB domain space is
not suitable. In this paper, the HSV color domain is used, which is a more people-oriented

http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html
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information model. Our experimental results show that to obtain the primary foreground
image, every selected HSV smoke pixel should satisfy the following conditions:

(i) 0.26 ≤ H ≤ 0.53 (3)

(ii) 0.01 ≤ S ≤ 0.13 (4)

(iii) 0.7 ≤ V ≤ 1 (5)

Foreground thresholded images may contain both smoke and disturbances, which are
to be differentiated in the following phases.

The pixels that satisfy the above color decision rule are set as smoke region candi-
dates/foreground images, and the rest are the background. Afterward, the foreground
image underwent a refinement process that involved removing regions with small ar-
eas. Additionally, the smoke region candidates were smoothed using a morphological
closing operation, and any holes within the regions were filled. These pre-processing
steps significantly improved the quality of the obtained mask and reduced the number of
false detections.

3.2.2. Smoke Feature Extraction

To enhance the threshold result of the color model, we need to ensure that the grayish
detected region is a smoke region. Many methods exploit the motion feature by using
a differential method, but since we are detecting smoke regions from a moving camera,
the subtraction frames technique is not efficient. We studied the different image features
between consecutive frames, such as correlation, energy, mean, entropy, homogeneity,
and contrast, etc., and we found that in a video, the energy and the homogeneity of
an image increase with the presence of smoke. So, to consider a region that appears during
consecutive frames as a smoke region, the α and β terms must satisfy the conditions:

α(IK, IK−1) > 0 (6)

β(IK, IK−1) > 0 (7)

where α is the difference value of the energy feature between the current frame IK and the
previous frame IK−1 two consecutive frames and β is the difference value of the homogene-
ity feature between the current frame IK and the previous frame IK−1.

3.2.3. Level Set Segmentation

To proceed with the smoke image quality enhancement results, we propose in this
paper to adapt a nonlinear adaptive level set for smoke tracking refinement in video
sequences. The level set-based method is an extension of the active contour without
edges model proposed by Chan–Vese [39]. The simplified Chan–Vese model gives an
approximation to an image in a piecewise constant piece; then, the same authors designed
a penalty term by measuring the distance between the approximation and the original
image, which helps the model be robust with noise. The model has been extended into
many methods, e.g., the vector-valued images for color images [40], the multiphase level
set [41], Tsai et al. [42] gave a piecewise smooth approximation for image segmentation and
denoising derived from [39]. Ref. [43] proposed a maximum posterior (MAP) function to
model the external energy. These methods are robust against the noise since they exploit
the regional image features. However, they are inefficient in segmenting images with
inhomogeneous regions due to the ignoring of local image features.
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The nonlinear adaptive level set function presented by [44] evolves an initial curve by
minimizing an energy function. The evolution of the curve takes into consideration local
and global region features.

Let Φ be the level set function of an inputted gray level image defined on image
domain Ω with C = {(x, y)|Φ(x, y) = 0} the zero-level set at the boundary region(C), Φ > 0
inside the contour C and Φ < 0 outside the contour region C.

The formulation of the energy function to be minimized for a gray-level image is
as follows:

Eg(Φ) = µ
∫
Ω

1
2
(|∇Φ| − 1)2 dxdy + λ

∫
Ω

δε(Φ)g|∇Φ| dxdy + ν
∫

Ω
g Hε(−Φ)dxdy (8)

where the three terms of the right-hand side of (8) are, respectively, the penalization term,
which controls the property of the signed distance during the evolution process of C,
the weighted length of the curve, and the weighted area inside Φ. µ, λ and ν are the
parameters controlling the effects of the three terms of the energy function.

Large µ and small λ help the algorithm to filter high-frequency noise and detect
objects with finer details. H(.) is a regularized Heaviside function, and its derivative is the
regularized Dirac function δ(.). g is an edge detector function.

The evolution direction function takes into account the global and local statistical
features and is computed with a posterior probability obtained by the Bayesian rule. The
conditional probability is obtained with a Gaussian function with color channels of an RGB
image. The direction evolution function was determined as follows:

Ad f (x, y) =
1
3 ∑3

j=1

(Ij(x, y)− µ1j)
2

2σ2
1j

− 1
3 ∑3

j=1

(Ij(x, y)− µ2j)
2

2σ2
2j

− ln

(
1
3 ∑3

j=1

σ1j

σ2j

)
(9)

where j = 1, 2, 3 are the RGB channels, respectively, of a processed frame.
To increase the evolution speed of the level set function in the homogeneous regions

and decrease it when crossing the real boundaries, a velocity parameter was adapted
by [44]:

υ(x, y) = 2
[

1
1 + exp(−ζ Ad f (x, y))

− 0.5
]

(10)

where ζ is a constant parameter that controls the nonlinear degree of the velocity. This
parameter is computed by estimating the absolute difference between the current frame Ik
and the previously processed frame Ik−1. Each iteration is updated using the smoke motion
feature to speed up the level set evolution [28].

The identification of the smoke regions is difficult since the model can not distinguish
between smoke regions and clouds, and the task became more difficult in images with haze
or fog or in daytime captured images. To overcome this challenge, it is crucial to accurately
well estimate and automatically initialize the parameters to ameliorate the segmentation
process accuracy. The proposed scheme contributes by ameliorating the obtained masks
and decreasing the number of false negatives ROIs.

This first stage generates a binary mask for the candidate smoke area. This mask is
used for the level set algorithm initialization. The adaptive level set proved his performance
in detecting the smoke borders efficiently in different frames and segmenting the image
regions into smoke and background. Hence, this model requires a good parameter esti-
mation and a precise initialization of the level set functions. The parameters of the model
are determined with an empirical assessment. An overview of the scheme is presented
in Figure 4.
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4. Experimental Results and Discussion
4.1. CAE Configuration and Image Quality Enhancement Results Evaluation

The training and validation of the CAE model was implemented using Python pro-
gramming language and with keras and tensorflow backend. Fixing and fine-tuning the
hyperparameters enables us to have a robust network with good results. We tested sev-
eral values to fix the parameters and opted to set the learning rate to 0.001. The trained
model outputted a reconstructed video image with some quality improvement. Then, the
reconstructed video image was fed to the segmentation stage to detect smoke regions.

Table 2 exposes different parameter configurations.

Table 2. Parameters configuration of the CAE model.

Input Dimension (256, 256, 3)

Epochs number 130

Loss Formulation combines the SSIM, MSE, MAE

Weight decay 1 × 10−5

Optimizer Adam

Trainable parameters 299,139

To optimize the learning process of the CAE network, a loss formulation introduced
by Roy et al. (2021) [45] has been integrated. It is a weighted sum of three losses: the MSE
loss, the MAE loss, and the SSIM loss.

The equation of reconstruction loss is defined by:

l = α× lMSE + β× lSSIM + γ× lMAE (11)

where α, β, γ are hyper-parameters determined by accurate testing α = β = γ = 0.5 [19].
The SSIM loss is defined by:

lSSIM
(
xij, x̃ij

)
= 1− SSIM

(
xij, x̃ij

)
(12)

where the formulation of the structural similarity index measure is:

SSIM(x, x̃) =
[
l(x, x̃)α· c(x, x̃)βs(x, x̃)γ

]
(13)
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where l(.), c(.), and s(.) are the luminance, contrast, and structural comparison functions,
respectively.

The loss function plays a crucial role in image generation and manipulation problems
as it guides the model in optimizing its weights and provides insight into its performance
in data modeling. Various approaches have been proposed in the literature, often relying
on the mean squared error (MSE) loss for evaluation. In our approach, we employed both
losses, the reconstruction loss, and the MSE loss, and we found that the reconstruction loss
yielded the best performance. As depicted in Figure 5, the model achieved its lowest loss
value of 0.05 at the 120th epoch. Notably, the proposed architecture of the convolutional
autoencoder (CAE) yielded excellent results even with a small dataset and without data
augmentation techniques.
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In order to objectively evaluate the proposed CAE model in image denoising and
reconstruction, SSIM, PSNR, and MSE evaluation criteria were employed.

The outcomes of the experiment conducted on a randomly selected image from the
test samples are provided in Table 3. Additionally, Table 4 displays the denoising results
achieved using our method in comparison to various conventional filters and a technique
proposed in the literature. The results undeniably illustrate the superiority of the CAE
over other denoising methods. Our CAE model excels in eliminating noise points while
simultaneously retaining fine details and enhancing the overall image resolution. These
findings serve as compelling evidence of the effectiveness and efficiency of our proposed
approach in denoising images, highlighting its potential for practical applications. The
enhanced image quality resulting from our approach will greatly facilitate the analysis
of the reconstructed video images in the subsequent stages. It is important to note that
our dataset comprises both clean images and noisy images with varying levels of noise.
As a result, our proposed CAE is capable of performing both image reconstruction and
denoising tasks simultaneously. This dual functionality enables the CAE to effectively
address the challenges posed by noise in the dataset and produce high-quality, noise-free
images for further investigation and analysis.

Table 3. Quantitative results of the CAE network.

Image PSNR SSIM MSE Processing Time(s)

Filtered with the proposed CAE 73.2 0.91 0.0030 0.6

Filtered with a median filter 72.3 0.79 0.0040 0.04

Noisy image 69.04 0.33 0.0081 -
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Table 4. Comparative evaluation results of the proposed CAE architecture with different filters and
methods using the SSIM evaluation criterion.

Filtering Type SSIM

Noisy 0.33

Median filter 0.79

Gaussian filter 0.90

Gondara [46] 0.89

The proposed CAE 0.91

In Figure 6, a set of reconstructed resulting images obtained from the designed CAE
architecture is displayed. Through visual evaluation, we observed a slight improvement in
image contrast. The CAE demonstrated its capability to effectively eliminate artifacts in
noisy images and accurately reconstruct the fire and smoke regions, as well as other parts
of the images.
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4.2. Video Smoke Tracking Path

In this section, we provide detection results evaluation of the reconstructed smoke
video images using the proposed approach, which involves foreground extraction followed
by the adaptive level set algorithm. Figure 7 illustrates a selection of sample frames from
the video test set. These video frames were passed through the CAE model to eliminate
noise, reduce image size while preserving relevant features, and enhance the overall video
image quality. Subsequently, the samples were preprocessed to extract the initial mask of
the smoke region candidates. This mask was further refined using an adaptive level set
model to obtain the final detection of smoke regions in each frame.

A subjective evaluation can be observed from Table 5, which shows that the proposed
method successfully separated the smoke area from the background image. To verify the
effectiveness of the method, we compared the segmentation results with those obtained
using Fuzzy c-means (FCM), K-means, and spatial fuzzy c-means combined with the
level-set algorithm (Spatial FCM). Both our method and the three algorithms used for
comparison were able to segment the smoke area. However, only the proposed algorithm
yielded enhanced segmentation results with a minimum of false detections. The clustering
algorithms used were unable to differentiate between regions with the same texture features.
For example, in images (a), (c), and (d), our benchmark was able to differentiate between
different regions with the same appearance and extract the smoke area from the complex
background image. It is worth noting that to identify the weaknesses of our method,
Table 5 showcases some critical particular cases from the test dataset with low accuracy in
detection. The results are promising and demonstrate the superiority of our method.
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in (a) Frame 20, (b) Frame 60, (c) Frame 120, (d) Frame 190, and (e) Frame 230.

However, the edges of segmented regions are still not smooth enough, and the reason
for this is that the model still confuses clouds with cluttered skies. This is somewhat
justified because we use a smoke color model in our preprocessing steps, and the choice
of the smoke color model depends on the dataset used in this work (nearby smoke and a
moving camera in an environmental scene). Another reason for the low accuracy is that
smoke, depending on its combustion level and density, can exhibit an array of grayish
color shades, including the darkest ones, which can affect the segmentation results of our
algorithm.

We believe that the strength of the proposed method lies in being a fully unsupervised
benchmark by integrating a new workflow for smoke denoising and tracking, resulting in
very promising segmentation accuracy and detection time. Moreover, it is accessible for
employment in real-world situations.
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Table 5. Visual comparison of segmentation results with different algorithms.

Original Image Ground Truth Our Method FCM Spatial FCM [47] K-means

(a)
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In order to illustrate quantitatively the effectiveness of the proposed benchmark, we 
selected 24 image frames from 7 smoke videos. These frames were chosen to represent 
various smoke locations under different weather conditions and situations. We calculated 
the Jaccard similarity index and the Dice coefficient between the segmentation results and 
the manually annotated images. The experimental results for the test set, including the 
mean, maximum, and minimum evaluation criterion values, are reported in Table 6. In 
addition, Table 7 exposes a quantitative evaluation of the proposed method on four videos 
from the test set. ܨ௧௢௧ is the total number of frames in a video sequence, ܨ௦ is the number 
of frames containing smoke regions in a video, tF  is the number of frames detected as 
smoke with the proposed method, ܴௗ is the detection rate of a video. The detection rate 
formula is defined as follows: 
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d
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F
R

F
  (14)

where ܨ௖ is the number of frames that are correctly classified with the proposed method 
and ܨ௧ is the number of frames in a video sequence. 

Table 6. Quantitative evaluation of the smoke segmentation using the adaptive level set-based algo-
rithm in terms of accuracy and processing time. 

 Max Min Mean 
Jaccard index (%) 92.1 80.5 90.1 

Dice coefficient (%) 90.0 79.6 89.5 
Processing time/frame (s) 5.3 4.9 5.0 
Processing time/video (s) 484.9 235.4 376.3 

Table 7. Experimental results of smoke detection in videos using the proposed scheme. 

Video  
Sequences 

 (%)ࢊࡾ ࢚ࡲ ࢙ࡲ ࢚࢕࢚ࡲ

Video 1 675 674 670 99.20 
Video 2 407 403 403 99.02 
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In order to illustrate quantitatively the effectiveness of the proposed benchmark, we
selected 24 image frames from 7 smoke videos. These frames were chosen to represent
various smoke locations under different weather conditions and situations. We calculated
the Jaccard similarity index and the Dice coefficient between the segmentation results and
the manually annotated images. The experimental results for the test set, including the
mean, maximum, and minimum evaluation criterion values, are reported in Table 6. In
addition, Table 7 exposes a quantitative evaluation of the proposed method on four videos
from the test set. Ftot is the total number of frames in a video sequence, Fs is the number of
frames containing smoke regions in a video, Ft is the number of frames detected as smoke
with the proposed method, Rd is the detection rate of a video. The detection rate formula is
defined as follows:

Rd =
Fc

Ft
(14)

where Fc is the number of frames that are correctly classified with the proposed method
and Ft is the number of frames in a video sequence.
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Table 6. Quantitative evaluation of the smoke segmentation using the adaptive level set-based
algorithm in terms of accuracy and processing time.

Max Min Mean

Jaccard index (%) 92.1 80.5 90.1
Dice coefficient (%) 90.0 79.6 89.5

Processing time/frame (s) 5.3 4.9 5.0
Processing time/video (s) 484.9 235.4 376.3

Table 7. Experimental results of smoke detection in videos using the proposed scheme.

Video
Sequences Ftot Fs Ft Rd(%)

Video 1 675 674 670 99.20

Video 2 407 403 403 99.02

Video 3 360 360 360 100.00

Video 4 310 308 308 99.35

Video 5 150 150 150 100.00

To proceed with the evaluation process in our experiments, we evaluated the efficiency
of the CAE architecture, and we compared the segmentation accuracy values obtained with
the proposed pipeline with the segmentation accuracy obtained with the traditional filtering
method, which is the median filter and the segmentation accuracy obtained by applying the
level set method on noisy images. Table 8 reports measurements performed on 24 image
frames in terms of Jaccard similarity index and dice coefficient. Based on these experiments,
we can deduce that the proposed pipeline provides encouraging segmentation results by
reaching more than 90% accuracy and effectively identifies smoke regions within video
frames, accomplishing this task within a reasonable processing time, particularly when the
regions are uniform and exhibit statistical differences from the background. The purpose
of employing this approach is to eliminate the need for manual parameter configuration
and enhance the segmentation process with the level set method.

Table 8. Performance evaluation of the smoke segmentation pipeline compared to other segmentation
methods in terms of accuracy segmentation and processing time.

Jaccard Similarity Index (%) Dice Coefficient (%) Detection Time/
Image(s)

Min Max Min Max Min Max

segmentation of raw images 70.6 89.9 73.2 89.8 8.2 9

segmentation of denoised
images with a median filter 64.7 87.3 65.5 86.9 4.6 5.1

segmentation of denoised
images with the

proposed pipeline
80.5 92.1 79.6 90.0 4.9 5.3

The experimental results show that those steps were able to help the level set function
track the evolution of the smoke borders in a video sequence in an optimal time and with
a minimum of false detections.

The detection of smoke is highly important in practical scenarios, particularly when
dealing with fire and smoke in wildfire video images. Both qualitative and quantitative
observations clearly demonstrate that the model performs well in identifying wildfire
smoke in reconstructed video images, especially in detecting the appearance of small
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smoke regions in the first frames. However, the lower accuracy segmentation values in
particular frames are justified by the similarity between intensity regions. Due to the
appearance of smoke in various color combinations and different spatial domains, making
it challenging to identify using traditional conventional methods. Another contributing
factor to the lower accuracy values is the manual segmentation process. In certain cases,
it can be difficult to determine whether a pixel belongs to the fire, smoke, or background
class. For instance, when smoke is present against a cloudy sky or when flames are
obscured by smoke and segmented as background, the model detected it because of its
characteristics. While the resulting segmentation is not really false, it can influence the
model’s performance evaluation.

5. Conclusions

Efforts to improve early detection and response to wildfires and smoke continue
to evolve with advancements in technology and the use of data-driven approaches. By
understanding the behavior and characteristics of smoke, it becomes possible to develop
more effective strategies to prevent and mitigate their devastating effects. In this work, we
introduced a new lightweight convolutional autoencoder architecture and incorporated
an automatic scheme based on color and texture features characteristics of smoke and
a nonlinear adaptive level set algorithm. Also, we provided a detailed explanation of the
implementation and training process, as well as the experimental results and evaluation
for both the reconstruction and segmentation stages in video sequences. Our proposed
workflow yielded visually and quantitatively satisfactory results, effectively improving
image quality, eliminating noise, and accurately detecting smoke boundaries in RGB
video frames.

In future works, our objective is to conduct a thorough investigation into feature
extraction and selection techniques, as well as generative models, in order to generate
high-resolution and large-scale databases. Also, extend this methodology to track fires
and smoke in more complex scenarios. Additionally, we plan to adapt this approach to
detect fires and smoke with small appearances, as they serve as the first clue of a wildfire
recipient, and implement the algorithm in an embedded system to use it for real-world
applications. Ultimately, we intend to generalize our method and reproduce our findings
with a diversified data pool.
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