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Abstract: To predict the remaining useful life (RUL) of the proton exchange membrane fuel cell
(PEMFC) in advance, a prediction method based on the voltage recovery model and Bayesian
optimization of a multi-kernel relevance vector machine (MK-RVM) is proposed in this paper. First,
the empirical mode decomposition (EMD) method was used to preprocess the data, and then MK-
RVM was used to train the model. Next, the Bayesian optimization algorithm was used to optimize
the weight coefficient of the kernel function to complete the parameter update of the prediction
model, and the voltage recovery model was added to the prediction model to realize the rapid and
accurate prediction of the RUL of PEMFC. Finally, the method proposed in this paper was applied to
the open data set of PEMFC provided by Fuel Cell Laboratory (FCLAB), and the prediction accuracy
of RUL for PEMFC was obtained by 95.35%, indicating that this method had good generalization
ability and verified the accuracy of the method when predicting the RUL of PEMFC. The realization
of long-term projections for PEMFC RUL not only improves the useful life, reliability, and safety of
PEMFC but also reduces operating costs and downtime.

Keywords: remaining useful life; empirical mode decomposition; Bayesian optimization algorithm;
multi-kernel relevance vector machine; pem fuel cell

1. Introduction

As a leading technology of clean and renewable energy, PEMFC has the advantage
of high energy conversion efficiency and less environmental pollution compared with
traditional internal combustion engines. At present, PEMFC has been developing rapidly
in the fields of distributed power generation, power networks, fixed power generation,
and automotive energy, which is the key direction of future new energy development
and has a good market prospect. Despite this, PEMFC still has the problems of short
useful life and high production costs, which seriously affect the commercial application
and popularization of PEMFC. In addition to breakthrough innovations in electrochemical
materials, RUL prediction research is also one a feasible method to improve the life of
PEMFC because it can predict the life state of the reactor in advance and, thus, improve
useful life. Carrying out RUL predictions based on PEMFC has gradually become a hot
topic for researchers.

To promote the commercial application of PEMFC, the US Department of Energy
(DOE) has formulated the corresponding standard, where the life of PEMFC should reach
8000 h in 2025, and the maximum output power of the reactor should ensure that the
maximum output power cannot be less than 90% of the rated output power [1]. At present,
according to relevant research in the literature both at home and abroad, the model-driven
method [2–6], data-driven method [7–12], and hybrid model [13–17] method are the main
methods for the RUL prediction of PEMFC.
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The model-driven method uses the empirical model or the mechanism model for the
RUL of PEMFC [18,19]. Koltsova [20] proposed an electrochemical reaction area decay
mechanism model to predict the RUL of the reactor through the decay of the electrochemical
reaction area. Since it is difficult to directly obtain the electrochemical reaction area during
the use of fuel cells, this method is only suitable for laboratory research. Robin [21]
improved on this basis and established the Pt catalyst’s dissolution mechanism model and
the voltage decay’s semi-mechanism model. The fusion of these two mechanism models
effectively improved the prediction accuracy of the RUL of fuel cells. Its advantage is
that data requirements are not high, with high accuracy, which can not only observe the
degradation process inside the reactor but can also observe the change in the key parameters
of the reactor. However, it is very complicated to establish an accurate mechanism model,
so it is necessary to be familiar with the degradation mechanism of the reactor and have a
strong modeling ability. There are still many mechanisms inside the reactor that have not
been explored clearly [22,23].

The data-driven method is to realize the RUL prediction of PEMFC by monitoring
the status of the reactor system [24]. Silva [25] proposed a PEMFC degradation prediction
method based on an adaptive neuro-fuzzy inference system (ANFIS), which used the output
voltage value to predict the aging degree of the fuel cell system. The voltage signal was
divided into two parts: normal operation and external disturbances to reduce the prediction
errors caused by external disturbances. This method was evaluated by predicting the output
voltage variation in the fuel cell reactor under constant operating conditions in a long-term
experiment. Wu [26] proposed a PEMFC performance degradation prediction method
based on adaptive RVM. During the training period, to obtain the behavior characteristics
of PEMFC aging data, the design matrix was extended by attaching non-kernel columns,
and the adaptive kernel width determination algorithm was used to make the training
or learning process more intelligent and effective. Adaptive RVM was trained and tested
using experimental voltage aging data from two different PEMFC reactors (1.2 kW Ballard
PEMFC and 8 kW PM200 PEMFC). This data-driven approach relied on the nature of the
data, and the establishment of the model required a large amount of data. The prediction
accuracy of the model no longer depended solely on the merits of the algorithm but more on
the merits of the experimental data. Therefore, data-driven methods were mostly applied
to short-term prediction.

The hybrid model method combines the advantages of various models to improve the
prediction accuracy of the RUL of the reactor to a greater extent [27]. Cheng [28] proposed a
fuel cell RUL prediction method based on the least square support vector machine (LSSVM)
and regularized particle filter (RPF). First, LSSVM was used to realize the preliminary
prediction of PEMFC. Then, the predicted voltage value of LSSVM was used as the new
system observation value by RPF, and the uncertainty characteristic of the predicted result
was output in the form of RUL probability distribution, which improved the prediction
accuracy of RUL in the reactor. Liu [29] proposed a short-term prediction method for fuel
cells based on the group method of data handling (GMDH) and wavelet analysis (WA).
The coefficient of determination (R2), mean absolute percent error (MAPE), and root mean
square error (RMSE) were used. Two sets of PEMFC aging experimental data sets were
used to verify the effectiveness of the method under different current load conditions, and
a more accurate prediction accuracy was obtained.

Although the method based on the mechanism model has high prediction accuracy,
it is often difficult to obtain an accurate mechanism model. The data-driven method
overcomes the difficulty of obtaining the mechanism model, but it requires a large number
of standard data sets for training, and the quality of the data sets has a great impact on
the accuracy of the prediction [30]. The method based on the hybrid model combines the
mechanism model and the data drive [31], takes the long and avoids the short, solves the
life prediction problem of both effectively [32], and improves the accuracy of prediction.

Therefore, according to the life performance characteristics of PEMFC, an RUL pre-
diction method based on a hybrid model is proposed in this paper, which can realize the
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long-term accurate prediction of RUL. In this paper, the original data set was analyzed and
processed. Voltage was determined as the performance degradation index of the reactor by
Person correlation analysis, and voltage data were pre-processed by the EMD denoising
method. Then, a RUL prediction model based on the hybrid method was built, and the
weight coefficient of the kernel function of MK-RVM was self-optimized by the Bayesian
optimization algorithm. After adding the voltage recovery model, the RUL of PEMFC was
predicted and estimated. Finally, the accuracy and feasibility of the proposed method were
verified using the public data set provided by FCLAB.

2. Data Set Analysis and Preprocessing
2.1. PEMFC Experimental Data Set

In this paper, the data set FC1 of the PEMFC reactor experiment published by FCLAB
Laboratory in the IEEE PHM 2014 Data Challenge was selected [33]. FCLAB is the most
advanced and authoritative fuel cell academic research institution in Europe, with a total
of about 200 faculty and research members in the laboratory, which is the largest fuel cell
academic research group in Europe. The data selected for this project were from a reactor
of five single batteries with an active area of 100 cm2. Operating conditions of PEMFC:
temperature was controlled at about 60 ◦C, the load current was controlled at 70A, and
relative humidity was controlled at about 50%. The data set included multi-dimensional
data such as reactor voltage, temperatures of hydrogen, velocity of hydrogen, and humidity
of air. Part of the data set is shown in Figure 1.
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2.2. PEMFC Performance Degradation Index

PEMFC itself has the characteristics of nonlinear and time variation, while the system
has multiple inputs and multiple outputs, which is a typical complex nonlinear control
object [34]. These variables that can be monitored include gas flow, pressure, temperature,
output voltage, output current, and output power. The PEMFC data set used in this paper
had as many as 24 dimensions, as shown in Table 1.
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Table 1. Data set parameter of PEMFC.

Parameter Physical Significance

Time Aging time (h)
U1-U5, Ut Single cells and stack voltage (V)

J, I Current density (A/cm2), Current (A)
TinH2, ToutH2 Inlet and Outlet temperatures of H2 (◦C)

TinAIR, ToutAIR Inlet and Outlet temperatures of Air (◦C)
TinWAT, ToutWAT Inlet and Outlet temperatures of cooling Water (◦C)
PinAIR, PoutAIR Inlet and Outlet Pressure of Air (mbara)
PinH2, PoutH2 Inlet and Outlet Pressure of H2 (mbara)
DinH2, DoutH2 Inlet and Outlet flow rate of H2 (L/min)

DinAIR, DoutAIR Inlet and Outlet flow rate of Air (L/min)
DWAT Flow rate of cooling water (L/min)

HrAIRFC Inlet Hygrometry(Air)—estimated (%)

To clarify the relationship between the data variables of each dimension and fuel cell
performance degradation and determine the index that could best represent the perfor-
mance degradation of the reactor, Person correlation analysis was carried out on the data
of each dimension in the data set, and the correlation matrix between variables is shown in
Figure 2.
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By observing the correlation coefficient between the variables in Figure 2, it can be
found that the correlation coefficient between the reactor output voltage and time was
about −0.95, showing an obvious negative correlation. In the RUL prediction research
of PEMFC, because the output voltage of the reactor was the most easily obtained data,
most research methods measured the degradation of the reactor performance through the
attenuation of the output voltage of the reactor and took the output voltage of the reactor
as the indicator of the performance degradation of PEMFC. Therefore, the output voltage
of PEMFC was also taken as the performance degradation index of the reactor.

2.3. EMD Denoising

Through correlation analysis, the output voltage was determined as the performance
degradation index, but there were 143,862 original output voltage data, the fluctuation
between adjacent output voltage data was too small, and the calculation time required
for model training was too long; therefore, it was necessary to sample the original data at
equal time intervals. Considering the stable operation of the reactor for 1154 h, too short a
sampling interval increased the calculation burden and affected the speed predicted of the
RUL. If the sampling interval was too long, important pile degradation trend information
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was lost, which affected the accuracy of RUL prediction. Therefore, 1 h was selected as the
sampling interval. Because the original voltage data contained a lot of noise and voltage
spikes, if these abnormal deviations are not dealt with, it produces a large calculation error
in the training and prediction of the model.

EMD performs signal decomposition according to the time scale characteristics of data
without presetting any basis function and overcomes the problem that the basic function
has no adaptability [35]. EMD is a processing method that stabilizes non-stationary signals.
It decomposes the fluctuations and trends of different scales in the signal step by step to
produce a series of data series with different characteristic scales [36]. Each series is called
an intrinsic mode function (IMF). In EMD, it is assumed that any signal can be decomposed
into several linear or nonlinear IMF components; the local number of zeros is the same as
the number of extreme values; the upper and lower envelope is locally symmetric around
the time axis.

EMD needs to first find all the extreme points of the signal, connect the local maximum
points into the upper envelope through the cubic spline curve, and connect the local
minimum points into the lower envelope, the upper and lower envelope contains all the
data points and finds the average value of the upper and lower envelope.

m1(t) =
emax(t) + emin(t)

2
(1)

Among them, emax(t) is the upper envelope and emin(t) is the lower envelope.
The original signal x(t) is sieved, and the original signal subtracts the mean envelope

to obtain the intermediate signal C1(t).

C1(t) = x(t)−m1(t) (2)

To determine whether the middle signal C1(t) meets the two conditions of IMF: the
number of extreme points and the number of zero points in the entire time course is equal
to or at most one difference. At any time, the average value of the upper envelope formed
by local maximum points and the lower envelope formed by local minimum points is zero;
that is, the upper and lower envelope are locally symmetric concerning the time axis. If
so, the signal is an IMF weight. If not, the above steps are repeated until the decomposed
signal meets the IMF condition after K times to obtain the first IMF component I1(t) of the
original signal.

Ck−1(t)−mk(t) = Ck(t)I1(t) (3)

r1(t) = x(t)− I1(t) (4)

Among them, Ck−1(t) and Ck(t) are intermediate signals after decomposition (K−1)
and K times, mk(t) is the mean value of the envelope after K decomposition, I1(t) represents
the IMF component of the highest frequency in the original signal x(t), and the remaining
component r1(t) is obtained by subtracting I1(t) from the original signal x(t).

The second IMF component I2(t) can be obtained by screening r1(t), and the remaining
component r2(t) can be obtained by subtracting I2(t) from r1(t).

r2(t) = r1(t)− I2(t) (5)

Therefore, until the last remaining component, rn(t) can no longer be decomposed.
After n iterations, rn(t) becomes a monotone function, and the sum of all IMF components
and the remaining components is the original signal x(t).

EMD has obvious advantages in processing non-stationary and nonlinear data and is
suitable for analyzing nonlinear and non-stationary signal sequences with high signal-to-
noise ratios. Therefore, this paper used the EMD method to denoise the sampled output
voltage data and the output voltage data after EMD denoising, as shown in Figure 3.
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3. RUL Prediction Method of PEM Fuel Cell Based on Hybrid Model

As the main force of clean energy, fuel cells have higher requirements for the detection
and management of their health status. To further improve the prediction accuracy of fuel
cells, this paper took voltage as a health indicator and proposed a method for predicting
the RUL of PEMFC based on the hybrid model.

3.1. Prediction Framework

The overall framework of the prediction method is shown in Figure 4 below.
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The overall prediction process is as follows:
Step 1: Through correlation analysis, the output voltage of the PEMFC is selected as

the performance degradation index of the reactor.
Step 2: The original voltage data are denoised by EMD. The denoised data are bound

by the prediction starting point TP and divided into training data sets and test data sets.
Step 3: The trained data after data preprocessing into the training model of MK-

RVM are trained and judge whether the RUL prediction starting point is reached. If the
prediction starting point is reached, the model parameters of MK-RVM are estimated;
otherwise, model training is continued.
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Step 4: The model parameters of MK-RVM are optimized by Bayesian, and the model pa-
rameters are updated by Gaussian process regression and the maximized acquisition function.

Step 5: The RMSE of the reactor predicted voltage is taken as the objective function
of Bayesian optimization. If RMSE reaches the minimum, the optimal kernel function
weight coefficient is obtained. Otherwise, Step 4 is repeated, continuing the updating of
model parameters.

Step 6: Using the weight coefficient of the optimal kernel function obtained by Bayesian
optimization, the MK-RVM prediction model is updated.

Step 7: It is determined whether the start–stop time point TS of the reactor is reached.
If the start–stop time point is reached, the voltage recovery model is added to the MK-RVM
prediction model. Otherwise, the RUL of the PEMFC is predicted directly.

Step 8: It is then determined whether the predicted voltage value of MK-RVM reaches
the threshold TO of RUL. If it reaches the voltage value of the RUL of PEMFC, the predicted
RUL of the reactor is output. Otherwise, the voltage value of the PEMFC continues to
be predicted.

Step 9: The uncertainty expression of RUL is realized through repeated testing to
reduce the contingency of prediction and improve the generalization ability of the model.

3.2. MK-RVM Model

Multi-kernel learning based on RVM combines kernel functions with different char-
acteristics to obtain the advantages of multiple kernel functions and can combine with
the characteristics of global and local kernel functions when dealing with complex data to
improve the learning and generalization ability of RVM [37].

The multi-kernel function K5(x, z) is the linear combination of the linear kernel func-
tion K1(x, z), Gaussian kernel function K2(x, z), polynomial kernel function K3(x, z), and
Sigmoid kernel function K4(x, z), which is used to describe the global and local trend of
battery capacity degradation. Its mathematical expression is shown in Equation (6):

K5(x, z) = w1K1(x, z) + w2K2(x, z) + w3K3(x, z) + w4K4(x, z) (6)

Among them, w1, w2, w3 and w4 are the weight, which is also the key of MK-RVM.
Since there is no reasonable and universal criterion for setting the weight coefficient of the
kernel function, it is often determined based on empirical selection, experimental compar-
ison, large-scale search, or cross-verification method. Therefore, this paper introduces a
Bayesian optimization algorithm, which takes the minimum root mean square error (RMSE)
as the optimization objective and realizes the parameter self-optimization for the weight
coefficient of the kernel function.

RMSE =

√
1
n

n

∑
i=1

(x(i)− x(i))2 (7)

Among them, x(i) represents the actual voltage of the reactor and x(i) represents the
predicted voltage of the reactor.

3.3. Bayesian Optimization Algorithm

The Bayesian optimization algorithm belongs to the black box optimization algo-
rithm [38], which updates the posterior probability distribution based on the known
observation points and the prior probability distribution of the objective function to ensure
the optimal weight coefficient of the kernel function. Bayesian optimization goals are
defined as:

xmin = argminx∈x f (x) (8)

Among them, xmin is the final result of parameter optimization, and f (x) is the
objective function to be optimized.
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The parameter to be optimized is set as X = {x1, x2, . . . , xn}, After Bayesian optimiza-
tion iteration, the data set is Dt = {(x1, f (x1)), (x2, f (x2)), . . . , (xn, f (xn))}. It is supposed
that the observation points of the Gauss process obey the Gaussian distribution as follows:

f (x1:n) ∼ GP(µ(x1:n), ∑ (x1:n, x1:n)) (9)

Among them, ∑ (x1:n, x1:n) is the covariance matrix:

∑ (x1:n, x1:n) =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (10)

According to Bayes’ theorem:

P( f (xn+1)| f (x1:n))∞P( f (x1:n)| f (xn+1))P( f (xn+1)) (11)

Continuous iterative updates xmin = xt+1, ultimately ensure optimal parameters. The
Algorithm 1 flow is as follows:

Algorithm 1: Bayesian Optimization

INPUT: objective function f (x), collection function α;
OUTPUT: parameter vector x∗;

1: Initialize parameter vector;
2: for t = 1,2,. . .,T do;
3: Maximize the α to obtain the next evaluation point: xt+1 = argxεXmaxα(x|D) ;
4: Evaluate the objective function value yt+1 = f (xt+1) + εt+1;
5: Integrate data: Dt+1 = D ∪ (xt+1, yt+1), and update the probabilistic proxy model;
6: End.

3.4. Voltage Recovery Model

When conducting fuel cell experiments, FCLAB not only needs to monitor the output
voltage and working condition of the reactor in real time but also needs to measure the
polarization curve and electrochemical impedance spectrum [39]. Therefore, the reactor’s
start–stop operation is carried out at regular intervals during the experiment. After the
reactor stops running, the polarization curve and electrochemical impedance spectrum
of the reactor are measured. After the measurement, the reactor is turned on to enter the
normal operation state. The reactor’s start–stop operation time data provided by FCLAB
are shown in Table 2.

Table 2. Start–stop operation time of PEMFC.

Start–Stop Number 1 2 3 4 5 6 7

Time/h 48 185 348 515 658 823 991

Since the time interval of the FCLAB start–stop reactor is relatively fixed, the corre-
sponding voltage recovery model can be established according to the voltage recovery
degree of the start–stop time point in the training data [40] and the voltage recovery pre-
diction of the predicted data start–stop point can be realized. According to the start–stop
voltage recovery data of FCLAB, this paper chose the double-exponential empirical model
as the start–stop voltage recovery model of the reactor, as shown in Formula (12).

xc = xk + β1 · exp(β2 · tk) + β3 · exp(β4 · tk) (12)

Among them, c is the start–stop operation time, which is the model parameter.
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The comparison between the recovery amplitude of the model at the start–stop time
point and the actual result is shown in Figure 5.
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4. Experiment and Discussion
4.1. RUL

FCLAB provides limited experimental data on the fuel cell life, so this paper chose
3.22 V voltage as the failure threshold of the reactor; that is, 95.9% of the initial total voltage,
and the failure time of the reactor was 808 h. In addition, this paper chose to set the
prediction starting point at 550 h, with training data as [0, 550 h], test data as [551, 1154],
and the corresponding RUL time as 258 h.

In the process of the experiment, the data were first input to MK-RVM for training,
and then the RMSE of voltage prediction was used as the objective function of Bayesian
optimization, and the weight coefficient of the kernel function was self-optimized by the
Bayesian optimization algorithm. With the increase in the number of iterations, when
the optimal value of the kernel function approached and tended to be stable, the optimal
weight coefficient of the kernel function was obtained. The optimization process is shown
in Figure 6.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 6. The optimization process of Bayesian optimization. 

In the RUL prediction stage, the optimal kernel function weight coefficient was sub-

stituted into the prediction model. For the RUL prediction of PEMFC, the methods of MK-

RVM, Bayesian optimization MK-RVM (BO-MK-RVM), and Bayesian optimization MK-

RVM of voltage recovery model (VR-BO-MK-RVM) were carried out, respectively, and 

the prediction results are shown in Figure 7. As can be seen from the figure, the Bayesian 

optimization algorithm significantly improved the capture of the global voltage decay 

trend, and the voltage recovery model further improved the capture of the local voltage 

rise trend during the start and stop of the reactor. The combination of MK-RVM, the 

Bayesian optimization algorithm, and the voltage recovery model effectively improved 

the accuracy of RUL prediction in the reactor. 

 

Figure 7. The prediction results. 

The uncertainty expression of the predicted result can better guide the RUL predic-

tion of the reactor than a single estimated result. To avoid the contingency of the predic-

tion results of MK-RVM, the confidence of these prediction results can be verified by the 

repeated prediction of the model many times, and the confidence interval with a 95% sig-

nificance level was added to the parameter estimation process and prediction process. The 

RUL confidence interval of VR-BO-MK-RVM is shown in Figure 8. 

Figure 6. The optimization process of Bayesian optimization.

In the RUL prediction stage, the optimal kernel function weight coefficient was sub-
stituted into the prediction model. For the RUL prediction of PEMFC, the methods of
MK-RVM, Bayesian optimization MK-RVM (BO-MK-RVM), and Bayesian optimization
MK-RVM of voltage recovery model (VR-BO-MK-RVM) were carried out, respectively, and
the prediction results are shown in Figure 7. As can be seen from the figure, the Bayesian
optimization algorithm significantly improved the capture of the global voltage decay
trend, and the voltage recovery model further improved the capture of the local voltage rise
trend during the start and stop of the reactor. The combination of MK-RVM, the Bayesian
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optimization algorithm, and the voltage recovery model effectively improved the accuracy
of RUL prediction in the reactor.
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Figure 7. The prediction results.

The uncertainty expression of the predicted result can better guide the RUL prediction
of the reactor than a single estimated result. To avoid the contingency of the prediction
results of MK-RVM, the confidence of these prediction results can be verified by the repeated
prediction of the model many times, and the confidence interval with a 95% significance
level was added to the parameter estimation process and prediction process. The RUL
confidence interval of VR-BO-MK-RVM is shown in Figure 8.
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Adding the voltage recovery model of reactor start–stop can effectively improve the
accuracy of RUL prediction and help capture the trend of reactor voltage decay. The
subsequent experimental analysis only considers the prediction results under the addition
of a recovery model.

4.2. Prediction Result Analysis

To evaluate the reliability and validity of RUL prediction results, this paper selected
the mean square error (MAE), RMSE, and relative accuracy (RA) as a model performance
evaluation index, where MAE and RMSE mainly reflect the overall deviation between the
predicted value and the true value, and RA is the relative prediction accuracy of RUL.

MAE =
1
n

n

∑
i=1
|x(i)− x(i)| (13)
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RA = (1−
∣∣Rreal − Rpre

∣∣
Rreal

)× 100% (14)

Among them, x(i) is the actual voltage value of the reactor, x(i) is the predicted
voltage value of the reactor, Rreal is the actual RUL of the reactor, and Rpre is the predicted
RUL of the reactor.

The detailed prediction results are shown in Table 3. When the predicted starting point
was set to 550 h, the predicted and actual RUL values were 270 h and 258 h, respectively.
The addition of the Bayesian optimization algorithm and voltage recovery model greatly
improved the prediction accuracy of the MK-RVM method, which was conducive to the
accurate prediction of PEMFC’s long-term operation.

Table 3. The detailed prediction results.

Algorithm MAE RMSE RA Confidence Interval

MK-RVM 0.0619 0.0810 69.38% 214 h
BO-MK-RVM 0.0162 0.0218 81.78% 106 h

VR-BO-MK-RVM 0.0048 0.0069 95.35% 29 h

It can be seen from Table 3 that the relative accuracy of PEMFC RUL prediction
was only 69.38% using only the MK-RVM method. With the addition of the Bayesian
optimization algorithm, the relative accuracy of prediction was improved to 81.78%. After
adding the voltage recovery model, the relative accuracy of prediction reached 95.35%,
which is better than that of the LSSVM-RPF method [28].

4.3. Discussion

The RUL of PEMFC is difficult to predict with accuracy for three main reasons. On the
one hand, PEMFC has a voltage recovery effect after the start–stop operation. For example,
in the FCLAB data used in this paper, the voltage at 658 h was close to the failure threshold.
If there is a large deviation in the predicted result at this time, it might be judged as the
failure point, but the actual failure time point is delayed due to the voltage recovery effect
caused by the start–stop operation. Therefore, the actual RUL should be considered from a
global perspective.

On the other hand, PEMFC is a nonlinear complex system coupled with multiple
physical fields, and many factors affect its performance and life. At present, the water,
steam, and thermal management of PEMFC are not very mature, especially with the increase
in the output power of the reactor, where the reactor is prone to flooding, film drying, and
other failures. Sometimes, the fault situation inside the reactor is unpredictable, which
affects its performance and life more or less and increases the difficulty of RUL prediction
for PEMFC; therefore, it is very necessary to carry out fast online RUL prediction.

Last but not least, the complete life cycle data of PEMFC is less, and the actual
operation data under various working conditions are lacking. It is difficult to accurately
predict the RUL of PEMFC only by relying on a single data-driven and mechanistic model
method. Only by integrating the data-driven and mechanistic model can the rapid and
accurate prediction of PEMFC be achieved. The RUL prediction method based on a hybrid
model needs further research.

5. Conclusions

In this paper, according to the PEMFC data set provided by FCLAB, a prediction
method based on the voltage recovery model and Bayesian optimization MK-RVM was
proposed to predict the RUL of PEMFC. In the whole prediction framework, the EMD
denoising of the training data was first carried out, then MK-RVM was used for model
training, and then the Bayesian optimization algorithm was adopted to realize the parame-
ter self-optimization of the weight coefficient of the kernel function, and then the optimal
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weight coefficient of the kernel function was updated to the prediction model, and then
the voltage recovery model was added to the prediction model. Finally, the fuel cell data
set provided by FCLAB was used to verify the accuracy of the method. The prediction
accuracy of the RUL of PEMFC greatly improved, and the prediction accuracy was as high
as 95.35%. This method can realize the long-term accurate prediction of PEMFC RUL, not
only improving the useful life, reliability, and safety of PEMFC but also reducing operating
costs and downtime. It has great practical value and provides a new way of performing
fuel cell life prediction.
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