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Abstract: To support Unmanned Aerial Vehicle (UAV) joint electromagnetic countermeasure decisions
in real time, coordinating multiple UAVs for efficiently jamming distributed hostile radar stations
requires complex and highly flexible strategies. However, with the nature of the high complexity
dimension and partial observation of the electromagnetic battleground, no such strategy can be
generated by pre-coded software or decided by a human commander. In this paper, an initial effort is
made to integrate multiagent reinforcement learning, which has been proven to be effective in game
strategy generation, into the distributed airborne electromagnetic countermeasures domain. The key
idea is to design a training simulator which close to a real electromagnetic countermeasure strategy
game, so that we can easily collect huge valuable training data other than in the real battle ground
which is sparse and far less than sufficient. In addition, this simulator is able to simulate all the
necessary decision factors for multiple UAV coordination, so that multiagents can freely search for
their optimal joint strategies with our improved Independent Proximal Policy Optimization (IPPO)
learning algorithm which suits the game well. In the last part, a typical domain scenario is built to
test, and the use case and experiment results manifest that the design is efficient in coordinating a
group of UAVs equipped with lightweight jamming devices. Their coordination strategies are not
only capable of handling given jamming tasks for the dynamic jamming of hostile radar stations
but also beat expectations. The reinforcement learning algorithm can do some heuristic searches
to help the group find the tactical vulnerabilities of the enemies and improve the multiple UAVs’
jamming performance.

Keywords: multiagent reinforcement learning; IPPO learning algorithm; multiple UAVs distributed
jamming strategy

1. Introduction

With the development of multiagent reinforcement learning and UAV technologies,
research on efficient multiagent reinforcement learning for coordinating multiple UAV dis-
tributed jamming strategies has gradually become an active area of study. The “unmanned”
characteristics of UAVs enable them to perform countermeasure operations that would be
infeasible or too dangerous for human pilots. However, due to the limited payload capacity,
lightweight equipment, and low power of individual UAVs, it is difficult for a single UAV
to independently complete an entire operational mission [1]. As a result, coordinated
operations with multiple UAVs have become a key development direction for intelligent
warfare systems of the future. Multiple UAV coordination can fully harness the capabilities
of an entire swarm, enabling superior coordination and intelligence. By distributing control
across multiple low-cost, rapidly reconfigurable UAVs with lightweight payloads, this
approach can significantly improve coordination efficiency and task performance [2,3].
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Through distributed control, groups of UAVs can overcome the limitations of in-
dividual UAVs’ local perceptions and capabilities, playing an indispensable role across
application domains [4]. This paper focuses on the coordinated control problem in the con-
text of radar jamming scenarios [5]. Constructing realistic electromagnetic countermeasure
scenarios and fielding physical UAV teams involves tremendous expense. Additionally, di-
rectly testing insufficiently validated multi-UAV control models in live environments risks
irrecoverable losses if failures occur. Consequently, existing research methods often involve
first building simulation environments to iterate on and verify control approaches before
final live testing [6,7]. By developing a task-tailored simulator and iteratively refining UAV
coordination models within it, this approach greatly reduces costs and increases iteration
efficiency prior to real-world deployment [8].

In recent years, reinforcement learning has become a highly active research domain
given its ability to learn complex tasks with minimal reliance on prior sample data or
explicit programming. Reinforcement learning has achieved major successes across gaming
domains, including mastering Go [9,10], Starcraft [11], and Dota 2 [12]. Inspired by these
proven capabilities, we make early efforts to integrate multiagent reinforcement learning
into distributed electromagnetic countermeasures [13,14]. The complexity and need for
highly flexible strategies in coordinating multiple UAVs for efficient distributed radar
jamming naturally suit reinforcement learning. The scarcity of historical countermeasure
data makes it difficult to derive optimal policies from prior human experience. For prob-
lems lacking sufficient training samples, reinforcement learning offers clear advantages.
It can optimize policies through continuous exploration without dependence on large
existing datasets.

Reinforcement learning has shown immense promise in training artificial agents to
excel in complex, high-dimensional environments. A reinforcement learning agent learns
by interacting with its environment, receiving feedback in the form of rewards or penalties
based on its actions. This enables the agent to incrementally improve its decision policy
to maximize cumulative reward. Deep reinforcement learning combines reinforcement
learning principles with deep neural networks, leveraging deep learning’s representation
power to tackle problems with high-dimensional state and action spaces. This approach
has achieved remarkable results across challenging domains including video games [11,12],
robotics [15], etc.

For multi-UAV coordination, traditional approaches such as vector fields have been
widely used to achieve UAV team coordination and formation control [16,17]. Despite,
its strengths in coordinating small dynamic UAV teams, it has not shown vivid research
results in coordinating larger members of UAVs in complex environments, such as electronic
warfare. However, deep reinforcement learning offers key strengths. It allows agents to
learn coordinated policies based on experiential simulated training rather than human
design. Agents can explore possible action spaces and learn optimal joint policies exceeding
human performance [9,10]. Compared to supervised or unsupervised deep learning,
reinforcement learning provides an interactive learning loop enabling agents to continually
refine behavior through environmental feedback. While deep learning alone requires large
labeled datasets which can be scarce in novel domains like radar jamming, reinforcement
learning can compensate through online simulation.

This simulation-based deep reinforcement learning approach provides multiple bene-
fits. It allows extensive iteration on agent policies, hyperparameters, and environmental
parameters which may be infeasible with physical UAVs. Simulation facilitates the gen-
eration of abundant, task-relevant training data. It provides interpretability into agent
behavior and an interactive debugging environment. Policies can be empirically validated
against simulated scenarios before real-world deployment. This approach combines the
strengths of deep reinforcement learning and simulation to tackle multi-UAV coordination
for radar jamming.

Thus, this paper focuses on the iteration and optimization of reinforcement learning
models applied to the generation of multiple UAV distributed jamming strategies. The key
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idea is to design a training simulator that is close to a real electromagnetic countermeasure
strategy game, and then generate effective strategies. Based on the current application
of multiagent in this field, the paper first designs a model for multiagent reinforcement
learning and defines a paradigm for it. Then, based on the existing PPO model learning
algorithm, a new learning algorithm, the IPPO learning algorithm is proposed. After that,
the electromagnetic countermeasure scenario of multiple UAVs is modeled and deduced in
the simulator, and the results are analyzed by training curves. The experimental results
illustrated that this strategy is highly effective for multiple UAV jamming tasks with tactical
vulnerability analysis.

2. Multiagent Reinforcement Learning Model

Reinforcement learning [18] aims to make the agent learn the appropriate behavior in
a specific state, through the reward signal obtained by interacting with the environment.
Therefore, reinforcement learning algorithms do not need to explicitly state how a task
should be accomplished. Instead, under the guidance of trying various actions and reward
information, the agent gradually obtains a good decision method in a trial-and-error
manner. Reinforcement learning algorithms usually have good generality, and they can be
competent for many different types of tasks without exploring specific mysteries.

If the environment can be fully described by the current state, it can be called the
Markov Decision Process. For practical reasons, reinforcement learning is usually modeled
by the Markov process. Because the agent needs to consider long-term rewards, it must be
able to learn from delayed reward signals. In other words, the agent may go through a long
decision-making sequence, eventually reaching a state of high reward. The state is usually
the completion of the specified task. The agent measures the quality of a strategy, which
needs to be determined by an evaluation index of cumulative rewards. Reinforcement
learning typically uses an objective function of the form to estimate the expected cumulative
reward of a strategy.

η(π) = Eτ∼π [
∞

∑
t=0

γtr(St)] (1)

τ is a sequence of states and actions. r(St) is a reward in the current state. Eτ∼π is
expectation under the current strategy. π is a stochastic strategy. γ is called the discount
factor. Typically, the value of γ should be less than 1. On the one hand, it is to ensure the
convergence of the formula; on the other hand, the future benefits have not been obtained.
Therefore, the more distant the expected reward, the more underestimated it is.

The control problem of multiple UAVs belongs to multiagent reinforcement learn-
ing [19,20]. Each UAV is an agent and needs to be defined according to the quintuple. The
structure of its interaction with the environment is shown in Figure 1:

Environment

Agent 1

Agent 2

Agent  N

...

Action 1

Action 2

Action N
Reward, State/

Observation N

Reward, State/

Observation 1

Reward, State/

Observation 2

Figure 1. Multiagent reinforcement learning interaction paradigm.
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The environment, action, state, reward, and discount factors in the above model
comprise the quintuple of reinforcement learning. The quintuple is represented below:

(S, A, P, r, γ) (2)

S represents the state set of environment, A represents the action-set of the agent,
P : S× A× S→ R represents the state transition probability of the environment, r : S→ R
represents the specified reward function, and γ represents the discount factor of delayed
reward. The Markov Decision Process (MDP) of reinforcement learning can be fully
characterized by this quintuple, subsequent theories and reviews are based on the model.

3. Multiple UAVs Distributed Jamming Strategy

In reinforcement learning, a neural network is usually constructed to represent the
value function or strategy of the agent [21,22]. According to the current state, the method
of learning the value function can output the expected utility Q of each action. The
largest value is the optimal action. According to the current state, the method of learning
strategy [23–25] is to output the execution probability of each action under the optimal
strategy. The optimal action can be obtained by sampling under the probability.

The Proximal Policy Optimization (PPO) algorithm [26] is a method with stable
training and good generalization in current reinforcement learning. In single-agent strategy
generation, the model optimization process is as follows:

As shown in Figure 2, based on these steps, a corresponding strategy output is obtained:

1. First, two neural network models are defined, which can be initially random parame-
ters, Actor and Critic. The Actor is called an action network, whose input is the state
of the agent and the output is the probability of all executable actions of the agent.
The Critic is called the evaluation network, whose input is the state of the agent and
the output is the state value. The size of the value indicates the quality of the state,
which is used to guide the action network for better learning. The network represents
the strategy of the agent. Our goal is to learn such a strategy that maximizes the
long-term reward (expected reward) of the agent in the environment.

2. Load the current strategy into the simulator and interact with the environment for a
certain number of times, such as 1000 or more. Each interaction will obtain sampling
data (state, action, reward, whether it is over, the logarithm of action probability),
which is stored in the data pool. If the expected cumulative reward obtained by the
strategy is convergent in the interaction, the training can be stopped and the output is
an action network, which can be used directly.

3. After collecting a batch of sequence data in the data pool, it will be input into the
trainer. According to the parameters of the current model and the effect of interaction,
the trainer calculates the loss of the action network, evaluation network, and output
strategy distribution based on the PPO method. Based on the stochastic gradient
descent, the neural network parameters are updated, which makes the strategy more
likely to receive high rewards.

4. The updated strategy is to be input into the simulator for interaction again. Loop
this process until the reward converges or reaches a pre-coded maximum number of
interactions, and output the action network.

Based on the PPO algorithm, the decision tasks of a single agent are iterated and opti-
mized in the simulator. When extended to multiple UAVs, corresponding adjustments and
changes need to be made. In multi-UAV systems, there are usually multiple homogeneous
or heterogeneous UAV units. It would be inappropriate to use one network to output the
decisions for all units, which would make the algorithm more difficult to run. The first
is that all unit action space combinations will grow exponentially, making it difficult to
solve large-scale problems. Second, the decision is a multiple UAVs distributed decision.
Communication and information acquisition between UAVs have limitations and costs,
and a completely centralized approach does not meet the needs of distributed decisions.
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Figure 2. PPO algorithm interaction process.

Therefore, the method used in this paper is to establish a separate PPO algorithm
model for each UAV. During the training process, the data of each PPO algorithm model is
stored and trained separately. After the data converge, the policy network is deployed to
each corresponding UAV unit for decisions. This method is Independent PPO in multiagent
reinforcement learning. Figure 3 shows the distributed jamming strategy generation
method for multiple UAVs based on the IPPO learning algorithm:

1. Determine observation and 

behavior space

Multiple UAVs distributed 

jamming decisions

2. Determine the PPO model

3. Determine the network structure, 

network input and output 

4. Determine the reward function 
5. Simulate  all PPO models and 

observe the curve

6. Complete the  task?

7. Obtain a distributed jamming 

decisions

Finish tasks or reach times 

(max) to stop

Able to 

support

Unable to 

support

Adjust the 

reward 

function

Adjust network 

structure, network 

input and output

Adjust the PPO 

model

Figure 3. Multiple UAVs distributed jamming decisions based on IPPO.

As shown in the flowchart in Figure 3, a new effective model is obtained based on the
IPPO learning algorithm for distributed jamming decisions for multiple UAVs.

1. Determine the observational and behavioral space for each platform.



Electronics 2023, 12, 3874 6 of 12

First, the corresponding observation space and behavior space should be constructed
according to the agent model of the UAVs. For the observation space, the feature vec-
tors of the observation need to be constructed to provide sufficient and less redundant
observation space for decision-making; the behavior space is to consider the discrete
and continuous of the original behavior space.

2. Match the platform with the appropriate PPO model based on its observational and
behavioral space.
After defining the observation and behavioral space of the platform, you can choose
whether to use a shared PPO model for units with the same observation and behav-
ioral space. The advantage of using a shared model is that its training data grows
multiplicatively, which is conducive to the training and convergence of the model.
The disadvantage is that the shared model shows a more consistent behavior, and
if you need to show units with different strategies, you need to pair them with a
separate PPO model and use your own data for training.

3. Determine the network structure, inputs, and outputs of the network for each
PPO model.
There are two network architectures based on the type of data transmission. The
first is a convolutional neural network (CNN network), which is mainly used to
transmit some two-digit data. The second is a fully linked network, which is mainly
used to transmit one-bit data, such as numbers, vectors, etc. Then the corresponding
network structure is determined according to the network input and output of each
PPO model.

4. Determine the reward function for each PPO model.
A corresponding reward function, or target task, needs to be set for each UAV. When
the UAV completes the task, it will give positive reward feedback. When the task is
not completed, it will give negative reward feedback. If the task is not performed, a
zero value is given.

5. Load all PPO models for simulation training and observe the training curves.
After the reward function is determined, all PPO models are loaded for simulation
training. The simulation training is stopped when multiple UAVs complete the
coordinated task or when the maximum number of training fields is reached. Based
on the effect of simulation training, the training curve of the learning algorithm is
combined to determine whether the reward function converges or not.

6. Determine whether the current strategy can support the completion of the UAV
coordination mission.
The reward function converges, then a valid multiple UAV distributed jamming
decision model is obtained. If the reward function does not converge, the model does
not support the completion of the task. It is necessary to readjust a certain stage of the
training process. The adjustment order is suggested to be from adjusting the reward
function, adjusting the network structure and the input/output of the network, and
adjusting the PPO model match. In the situation where the amount of data is reached,
the training does not reach the expected expectations, usually because the task is
too difficult to explore. At this point, the reward function can be adjusted to add
some guide rewards to make the model more likely to converge. It is also considered
whether the current feature vectors are complete and redundant, whether the action
space is reasonable, and whether the network structure is too big or too small, and
then the network model is adjusted. Finally, if there is an issue of homogeneity in the
strategy, is it caused by model sharing and does it need to be reduced or increased in
the configuration of model sharing. The operation is repeated until a valid decision
model can be obtained.

7. Obtain a coordinated decision-making model for formations.
If it was tested well in the previous step, the coordinated decision-making model can
be adopted as the output of the multi-agent training module.
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4. Simulation Electromagnetic Scenario Modeling

In order to prove the IPPO learning algorithm, multiple UAVs are trained in the
electromagnetic countermeasures scenario. Since training in a real environment may cause
unnecessary losses, it is necessary to build a simulator to prove the IPPO learning algorithm.

In the simulated domain scenario, both sides of the electromagnetic countermeasure
scenario are modeled. Assuming that the multiple UAVs are Red, they mainly attack the
hostile radar station (training side); the hostile radar station is Blue, which acts as the
defensive side (accompanying side) in the simulation scenario. As shown in Figure 4, Blue
deployed a total of 4 radar stations, and each radar station is equipped with an air defense
position, which can defend a circular area with a radius of 350 km. The four radar stations
are distributed around the command and provide dead-end detection of the surrounding
area. Red has a total of 4 UAVs in stock, starting the incursion from 500 km from the
hostile radar. Each UAV is equipped with passive detection equipment and radar jamming
equipment, but the UAV can only activate one function at the same moment due to its
real physical properties. That is, the radar position detection and radar signal jamming
possessed by the UAV are mutually exclusive behaviors.

UAV 1

UAV 2

UAV 3

UAV 4

Radar 1

Radar 2

Radar 3

Radar 4

500 km

350 km
Missile 2

Velocity 300m/s

80km

Figure 4. The electromagnetic countermeasure scenario.

As shown in Figure 5, when the UAV is in the perceptual (detection) state, it can
obtain the coordinate information of the Blue ground radar through the passive detection
equipment it carries. However, due to the influence of the working model of passive
detection equipment, UAVs can only detect the radar information that is currently in the
boot state. The unpowered radar does not have a radiation source, so it cannot be detected
by the UAV.

Figure 5. Passive detection scenario and radar jamming scenario.

When the UAV is in a radar jamming state, it exerts an oppressive jamming effect
on the detection signal of the hostile radar through the jamming equipment it carries. In
the circular detection area of hostile radar, a sector detection blind area γ is created. In
this sector blind area, Red will not be detected by radar. Due to the directionality of the
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electromagnetic wave emitted by radar jamming, the UAV can only play a role in jamming
hostile radar within a certain range.

In the real battleground, the attacker will formulate the corresponding combat strategy
after observing the defense strategy of the defender. Therefore, in the simulated electro-
magnetic countermeasure scenario, when Blue detects the intrusion target, it will quickly
notify the equipped air defense position to defend. After observing the defense strategy,
the Red UAV looks for enemy tactical vulnerabilities and develops a combat strategy. As in
Figure 6, based on multiagent reinforcement learning, multiple UAVs coordinate through a
distributed jamming strategy. Some UAVs perform radar jamming to protect teammates
from hostile radar in order to destroy hostile targets.

Figure 6. The coordinated penetration scenario.

In the countermeasure scenario, the deductive termination condition exists in two
situations: Red wins or Blue wins. The rule of termination conditions are shown in Table 1.
If Red UAVs destroy the Blue ground headquarters without being completely destroyed,
Red wins. If all Red UAVs are destroyed, or the ammunition of all UAVs is zero and the
Blue headquarters is not destroyed, Blue wins.

Table 1. Rule of Termination Conditions.

Winning Side Termination Conditions

Red The UAVs destroy the target
Blue All UAVs are destroyed or the ammunition of all UAVs is zero

5. Experiments and Results

Based on the multiple UAVs countermeasure scenario designed in Section 4, a server
with i9-9900KF CPU (3.60 GHz) and GTX2080Ti GPU memory 64 G is used as the training
equipment to build a simulator to generate training data.

After 18,000 epochs of continuous training under the simulator, the algorithm returns
converged and the training is stopped. The total time is 16 h, 42 min, and 59 s. In the
training process, the changes in Loss and Reward are shown in Figures 7 and 8.

At the beginning of training (2 epochs), the UAVs in the exploration phase will be
destroyed because they are in the Blue radar detection range. As shown in the left of
Figure 9, the UAVs have been in the Blue radar information field for a long time, and the
Blue line points to the UAV that has been locked by the Blue radar. In the right of Figure 9,
it can be seen that the UAV with id 1 has been destroyed.
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Figure 7. Change of Loss during training.

Figure 8. Change of Reward during training.

Moment t Moment t+1

Figure 9. The UAV trained for 2 epochs is locked and destroyed by the Blue radar.

By the 5000th epoch of training, the UAVs have learned to avoid being locked by radar
and destroyed by turning on their jamming radar to cause a Blue radar information gap.
As shown in Figure 10, the UAV is locked by the radar at moment t. At moment t + 1, the
UAV can unlock itself from the Blue radar by turning on its own jamming radar to cause a
gap in the Blue radar scan. By adjusting the operating mode of their radar to avoid being
destroyed, they can obtain a negative reward value. As can be seen from Figure 8, the
reward function score increases at the 5000th epoch.

Moment t Moment t+1

Figure 10. The UAV unlocks by jamming the enemy radar at the 5000th epoch of training.

By the 6000th epoch of training, the UAVs have learned coordinated operations to cover
themselves and their teammates in penetrating the radar range. As shown in Figure 11,
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two UAVs choose to turn on the radar jamming mode, and the other two turn on the
radar perception mode. The jamming UAVs in the rear create an interference deduction
environment for the perceptual UAVs, so as to ensure that the perceptual UAVs are not
locked by the enemy radar and destroyed.

By the 11,000th epoch of training, the UAVs have learned to destroy enemy ground
targets by adjusting their radar modes. As shown in Figure 12, the UAV turns on its
jamming radar (the yellow sector in the figure) when it is not within the distance of
attacking the enemy ground headquarters, to sneak into the enemy radar detection range
without being detected. When the enemy radar enters within attack range, the UAV quickly
switches to the radar guidance mode, to complete the missile launch and destroy the enemy
ground headquarters. At this time, the model reaches the highest score value. As can
be seen from Figure 8, when the model is trained to the 11,000th epoch, the score has
converged to the highest score of 50.

Moment t Moment t+1

Figure 11. The UAVs execute penetration task by cooperating at the 6000th epoch of training.

Moment t Moment t+1

Figure 12. The UAV successfully destroys the enemy headquarters at the 11,000th epoch of training.

In summary, the model score is rapidly improved at the 5000th epoch of training, By
the 12,000th epoch, the highest model score converges to about 50 and reaches the highest
reward score under the scenario. Thus, the result proves the correctness and effectiveness
of the simulation data in the training process.

6. Conclusions

In this paper, we study the application of PPO, a reinforcement learning method
proven effective for game strategy generation, in the multiagent distributed airborne
electromagnetic countermeasures domain. To easily collect valuable training data, we
design a typical electromagnetic countermeasures scenario with multiple UAVs and build a
simulator to model all the decision factors and situational deductions needed for multiple
UAV coordination. In the simulator, we solve the coordinated strategies of multiple UAVs
in an electromagnetic countermeasures environment using IPPO. Experiments and results
show our design succeeds in coordinating a group of UAVs equipped with lightweight
jamming devices. The coordinated strategies not only handle given jamming tasks against
dynamical hostile radar stations but also exhibit heuristic search helping the UAV group
find tactical vulnerabilities and improve performance.
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Overall, given a sufficiently detailed simulation environment, multiagent reinforce-
ment learning can solve distributed decision problems like airborne electromagnetic coun-
termeasures. The effectiveness of the final strategy depends on whether the simulation
granularity represents the real environment’s complexities. This allows initial simulation-
tested strategies to be further validated in live environments. This simulator-based deep
reinforcement learning approach provides a reference under varying strategies, supporting
analysis of possible tactical vulnerabilities and advantages.

However, we only explored groups of four UAVs here. Future work could expand the
number of UAVs and radar stations, with imbalanced sides and jamming failures or faulty
UAVs. Further experiments should evaluate hyperparameter impacts and compare with
other coordination approaches to demonstrate performance. This paper focused on UAV
radar jamming; the scenario could be extended to more complex and dynamic Red team vs.
Blue team settings.
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