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Abstract: A general lack of understanding pertaining to deep feedforward neural networks (DNNs)
can be attributed partly to a lack of tools with which to analyze the composition of non-linear func-
tions, and partly to a lack of mathematical models applicable to the diversity of DNN architectures.
In this study, we analyze DNNs using directed acyclic graphs (DAGs) under a number of basic
assumptions pertaining to activation functions, non-linear transformations, and DNN architectures.
DNNs that satisfy these assumptions are referred to as general DNNs. Our construction of an analytic
graph was based on an axiomatic method in which DAGs are built from the bottom–up through the
application of atomic operations to basic elements in accordance with regulatory rules. This approach
allowed us to derive the properties of general DNNs via mathematical induction. We demonstrate
that the proposed analysis method enables the derivation of some properties that hold true for all
general DNNs, namely that DNNs “divide up” the input space, “conquer” each partition using a
simple approximating function, and “sparsify” the weight coefficients to enhance robustness against
input perturbations. This analysis provides a systematic approach with which to gain theoretical
insights into a wide range of complex DNN architectures.

Keywords: deep neural network representation; Lipschitz analysis of deep neural networks; directed
acyclic graphs; un-rectifying analysis

1. Introduction

Deep feedforward neural networks (DNNs) have revolutionized the use of machine
learning in many fields, such as computer vision and signal processing, where they have
been used to resolve ill-posed inverse problems and sparse recovery problems [1,2]. Much
of the previous research in the field of deep learning literature describes the construction
of neural networks capable of attaining a desired level of performance for a given task.
However, researchers have yet to elucidate several fundamental issues that are critical to the
function of DNNs. Predictions that are based on a non-explainable and non-interpretable
models raise trust issues pertaining to the deployment of that neural network in practical
applications [3]. This lack of understanding can be attributed, at least partially, to a lack of
tools with which to analyze the composition of non-linear activation functions in DNNs,
as well as a lack of mathematical models applicable to the diversity of DNN architectures.
This paper reports on a preliminary study of fundamental issues pertaining to function
approximation and the inherent stability inherent of DNNs.

Simple series-connected DNN models, such as N s
L(x) = $L ◦ML ◦ · · · ◦ $1 ◦M1(x),

have been widely adopted for analysis [4–6]. According to this model, the input domain
is partitioned into a collection of polytopes in a tree-like manner. Each node of the tree
can be associated with a polytope and one affine linear mapping, which gives a local ap-
proximation of an unknown target function with a domain restriction on the polytope [7,8].
We initially considered whether the theoretical results derived in those papers were intrin-
sic/common to all DNNs or unique to this type of network. However, our exploration of
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this issue was hindered by problems encountered in representing a large class of DNN
architectures and in formulating the computation spaces for activation functions and non-
linear transformations. In our current work, we addressed the latter problem by assuming
that all activation functions can be expressed as networks with point-wise continuous piece-
wise linear (CPWL) activation functions and that all non-linear transforms are Lipschitz
functions. The difficulties involved in covering all possible DNNs prompted us to address
the former problem by associating DNNs with graphs that can be described in a bottom–up
manner using an axiomatic approach, thereby allowing for analysis of each step in the
construction process. This approach made it possible for us to build complex networks
from simple ones and derive their intrinsic properties via mathematical induction.

In the current study, we sought to avoid the generation of graphs with loops by
describing DNNs using directed acyclic graphs (DAGs). The arcs are associated with
basic elements that correspond to operations applied to the layers of a DNN (e.g., linear
matrix, affine linear matrix, non-linear activation function/transformation), while nodes
that delineate basic elements are used to relay and reshape the dimension of an input
or combine outputs from incoming arcs to outgoing arcs. We refer to DNNs that can be
constructed using the proposed axiomatic approach as general DNNs. It is unclear whether
general DNNs are equivalent to all DNNs that are expressible using DAGs. Nevertheless,
general DNNs include modules widely employed in well-known DNN architectures. The
proposed approach makes it possible to extend the theoretical results for series-connected
DNNs to general DNNs, as follows:

• A DNN DAG divides the input space via partition refinement using either a com-
position of activation functions along a path or a fusion operation combining inputs
from more than one path in the graph. This makes it possible to approximate a target
function in a coarse-to-fine manner by applying a local approximating function to
each partitioning region in the input space. Furthermore, the fusion operation means
that domain partition tends not to be a tree-like process.

• Under mild assumptions related to point-wise CPWL activation functions and non-
linear transformations, the stability of a DNN against local input perturbations can be
maintained using sparse/compressible weight coefficients associated with incident
arcs to a node.

Accordingly, we can conclude that a general DNN “divides” the input space, “conquers”
the target function by applying a simple approximating function over each partition region,
and “sparsifies” weight coefficients to enhance robustness against input perturbations.

In the literature, graphs are commonly used to elucidate the structure of DNNs;
however, they are seldom used to further the analysis of DNNs. Both graph DNNs [9]
and the proposed approach adopt graphs for analysis; however, graph DNNs focus on
the operations of neural networks in order to represent real-world datasets in graphs
(e.g., social networks and molecular structure [10]), whereas our approach focuses on the
construction of analyzable graph representations by which to deduce intrinsic properties
of DNNs.

The remainder of this paper is organized as follows. In Section 2, we present a review
of related works. Section 3 outlines our bottom–up axiomatic approach to the construction
of DNNs. Section 4 outlines the function approximation and stability of general DNNs.
Concluding remarks are presented in Section 5.

Notation 1. Matrices are denoted using bold upper case, and vectors are denoted using bold lower
case. We also use xi to denote the i-th entry of a vector (x ∈ Rn), ‖x‖2 to denote its Euclidean norm,
and diag(x) to denote a diagonal matrix with diagonal x.

2. Related Works

Below, we review analytic methods that are applicable to the derivation of network
properties with the aim of gaining a more complete understanding of DNNs.
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The ordinary differential equation (ODE) approach was originally inspired by a resid-
ual network (ResNet) [11], which is regarded as a discrete implementation of an ODE [12].
The ODE approach can be used to interpret networks by treating them as different dis-
cretizations of different ODEs. Note that the process of developing numerical methods for
ODEs makes it possible to develop new network architectures [13]. The tight connection
between the ODE and dynamic systems [14] makes it possible to study the stability of
forward inference in a DNN and the well-posedness of learning a DNN (i.e., whether a
DNN can be generalized by adding appropriate regularizations or training data), in which
the stability of the DNN is related to initial conditions, while network design is related
to the design of a system of the ODE system. The ODE approach can also be used to
study recurrent networks [15]. Nevertheless, when adopting this approach, one must
bear in mind that the conclusions of an ODE cannot be applied to the corresponding DNN
in a straightforward manner due to the fact that a numerical ODE may undergo several
discretization approximations (e.g., forward/backward Euler approximations), which can
generate inconsistent results [16].

Some researchers have sought to use existing knowledge of signal processing in the
design of DNN-like networks that are more comprehensive without sacrificing performance.
This can often be achieved by replacing non-linear activation functions with interpretable
non-linear operations in the form of non-linear transforms. Representative examples
include the scattering transform [17,18] and Saak transform [19]. Scattering transform takes
advantage of the wavelet transform and scattering operations in physics. Saak transform
employs statistical methods with invertible approximations.

Network design was also inspired by the methods used in optimization algorithms
to solve ill-posed inverse problems [20]. The unrolling approach involves the systematic
transformation of an iterative algorithm (for an ill-posed inverse problem) into a DNN. The
number of iterations becomes the number of layers, and the matrix in any given iteration is
relaxed through the use of affine linear operations and activation functions. This makes it
possible to infer the solution of the inverse problem by using a DNN. This is an efficient
approach to deriving a network for an inverse problem and often achieves performance
exceeding the theoretical guarantees for conventional methods [21,22]; however, it does
not provide sufficient insight into the properties of DNNs that are capable of solving the
inverse problem. A thorough review of this topic can be found in [2].

The un-rectifying method is closely tied to the problem-solving method used in piece-
wise functions, wherein the domain is partitioned into intervals to be analyzed separately.
This approach takes advantage of the fact that a piecewise function is generally difficult to
analyze as a whole but is a tractable function when the domain is restricted to a partitioned
interval. When applying the un-rectifying method, a point-wise CPWL activation function
is replaced with a finite number of data-dependent linear mappings. This makes it possible
to associate different inputs with different functions. The method replaces the point-wise
CPWL activation function as a data-dependent linear mapping, as follows:

ρ(x) = Dρ
x(x), (1)

where Dρ
x is the un-rectifying matrix for ρ at x. If ρ is the ReLU, then Dρ

x is a diagonal matrix
with diagonal entries {0, 1}. The un-rectifying variables in the matrix provide crucial clues
according to which to characterize the function of the DNN. For example, comparing the
following un-rectifying representation of M2 ◦ N s

1 with inputs x and y yields

M2 ◦ N s
1 (x) = M2DM1x M1(x) (2)

M2 ◦ N s
1 (y) = M2DM1y M1(y). (3)

Note that the sole difference between (2) and (3) lies in the un-rectifying matrices
(DM1x and DM1y, respectively). This is illustrated in the following example involving the
application of the un-rectifying method to the analysis of domain partitioning in a neural
network. Refer to [5] for more examples of the approach.
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Un-Rectifying Analysis

Consider a simple regression model comprising a sequence of composition operations:

RL = ML(ReLUL−1)ML−1 · · · (ReLU1)M1 = MLNL−1 (4)

where {Mi} denotes affine linear mappings and ReLUk : Rlk → Rlk . Theoretical re-
sults for this network were derived using affine spline insights [4] and the un-rectifying
method [5,23].

When considering an input space partitioned using (4), it is important to consider the
ReLU activation functions due to the fact that affine linear mappings are global continuous
functions. Let Pk denote the finest input domain partition generated by Nk. Appending an
additional layer ((ReLUk+1)Mk+1) to Nk refines partition Pk, which results in Pk+1 ⊆ Pk
(i.e., every partitioning region in Pk+1 is contained in one of the partitioning regions in
Pk) [5]. Below, we demonstrate that partitioning regions can be expressed via induction
using an un-rectifying representation of ReLUs.

Consider the basic case of a single ReLU layer:

(ReLU1)M1x = D1M1x = s1 �M1x, (5)

where state vector s1 ∈ {0, 1}l1 lists diagonal entries in D1, the values of which depend
on M1x. Input space χ is partitioned by hyperplanes derived from the rows of M1 into no
more than 2l1 partitioning regions. Let S1 denote the collection of all possible s1 vectors,
and let |S1| denote its size. The fact that each partitioning region in P1 can be associated
with precisely one element in S1 means that partitioning regions can be treated as indices
using vector s1. The partitioning region indexed by vector s1 as Rs1 for x ∈ Rs1 can be
characterized as an intersection of half-spaces:{

(M1x)i > 0 if (s1)i = 1 (the i-th element of vector s1)
(M1x)i ≤ 0 if (s1)i = 0.

(6)

Thus, regression functionR2 comprises |S1| partitioning regions. When restricted to
regionRs1 , the function is M2s1 �M1. Figure 1 illustrates the input domain partitioning of
R1 =M1 = (ReLU1)M1, where

M1(

[
x
y

]
) =

[
0
0

]
+

[
1 1
−1 1

][
x
y

]
. (7)

R1 consists of two hyperplanes (h1 = x + y = 0 and h2 = y− x = 0), which divide
R2 into partition P1 comprising regions I, I I, I I I, and IV. Region I is characterized by
h1(x) > 0 and h2(x) > 0, while region I I is characterized by h1(x) ≤ 0 and h2(x) > 0, etc.

Now, consider two layers of ReLUs: N2 = (ReLU2)M2(ReLU1)M1 = D2M2D1M1,
where the finest partition of N2 as P2; |S2| indicates the size of S2, and S2 refers to a
collection of all possibles vectors (s = [s>2 s>1 ]

>, where s2 ∈ {0, 1}l2). Each partitioning
region of P2 can be associated with precisely one element in S2 and one affine linear
mapping. Given that s ∈ S2, the partitioning region indexed by s is denoted as Rs, where
any x ∈ Rs can be characterized as an intersection of half-space as follows:

(M2D1M1x)i = (M2s1 �M1x)i > 0 if (s2)i = 1
(M2D1M1x)i = (M2s1 �M1x)i ≤ 0 if (s2)i = 0
(M1x)j > 0 if (s1)j = 1
(M1x)j ≤ 0 if (s1)j = 0.

(8)
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Figure 1. Partitioning regions of regression functionR1 =M1 are indexed by the lists of diagonal

entries of un-rectifying matrices
[
1 1
]>

,
[
0 1
]>

,
[
0 0
]>

, and
[
1 0
]>

corresponding to I, I I, I I I, and
IV, respectively.

The last two inequalities in (8) are equivalent to x ∈ Rs1 , such that

Rs =


(M2D1M1x)i = (M2s1 �M1x)i > 0 if (s2)i = 1
(M2D1M1x)i = (M2s1 �M1x)i ≤ 0 if (s2)i = 0
x ∈ Rs1 .

(9)

The first two inequalities in (9) divide Rs1 according to the value of s2. This means
that Rs ⊆ Rs1 , which allows us to express S2 = {[s>1 s>2 ]

>|s1 ∈ S1}, where vector s2 is
dependent/conditional on s1. Regression functionR3 comprises |S2| partitioning regions.
When restricted to Rs with s = [s>1 s>2 ]

> ∈ S2, the function is M3s2 �M2s1 �M1.

Example 1. GivenR2 =M2 = (ReLU2)M2(ReLU1)M1, where M1 is given in (7) and

M2(

[
x
y

]
) =

[
−4
−3

]
+

[
1 0.3
−0.3 1

][
x
y

]
. (10)

Let s1 = [s1 s2]
> be the list of diagonal entries in D1. Then,

M2(ReLU1)M1(

[
x
y

]
) =

[
−4
−3

]
+

[
1 0.3
−0.3 1

][
s1(x + y)
s2(y− x)

]
. (11)

In region I, where s1 = [1 1]>, we obtain

R2(

[
x
y

]
) = (ReLU2)

[
−4 + 0.7x + 1.3y
−3− 1.3x + 0.7y

]
(12)

In region I I, where s1 = [0 1]>, we obtain

R2(

[
x
y

]
) = (ReLU2)

[
−4 + 0.3(y− x)
−3 + y− x

]
, (13)

the components of which are parallel to h2 = y− x = 0.
In region IV, where s1 = [1 0]>, we obtain

R2(

[
x
y

]
) = (ReLU2)

[
−4 + y + x

−3− 0.3(y + x)

]
, (14)

the components of which are parallel to h1 = y + x = 0.
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In region I I I, where s1 = [0 0]>,

R2(

[
x
y

]
) = (ReLU2)

[
−4
−3

]
= 0

¯
. (15)

All points in this region are mapped to the zero vector. Figure 2 shows input domain partition
P2 ofR2.

Figure 2. Partitioning regions of P2, where L1 and L2 corresponds to the first and second components
in (12), (13) and (14), respectively. The second component ofR2 does not fall within region IV. Each
region is indexed by [s>2 s>1 ]>. Note that p denotes region [1 1 1 1]> of h1 > 0, h2 > 0 and L1 > 0,
and L2 > 0 (the expression is not optimal because h2 > 0 is irrelevant to the region). We adopted the
conventional notation in which the values obtained by substituting points in the half-space above a
hyperplane are positive, while the values obtained below the hyperplane are negative. Thus, points
in region [1 0 1 0]> satisfy h1 > 0; h2 ≤ 0; L1 > 0 and L2 ≤ 0.

3. DNNs and DAG Representations

The class of DNNs addressed in this study is defined by specific activation functions,
non-linear transformations, and its underlying architecture. Note that legitimate activation
functions, non-linear transformations, and architectures should be analyzable and provide
sufficient generalizability to cover all DNNs in common use.

Activation functions and non-linear transformations are both considered functions;
however, we differentiate between them due to differences in the way they are treated under
un-rectifying analysis. A non-linear transformation is a function in the conventional sense
when mapping Rn to Rm, in which different inputs are evaluated using the same function.
This differs from activation functions, in which different inputs can be associated with
different functions. For example, for ReLU R→ R, un-rectifying considers ReLUx = dx
where d ∈ {0, 1} as two functions depending on whether x > 0 where d = 1 or x ≤ 0
where d = 0.
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3.1. Activation Functions and Non-Linear Transformations

In this paper, we focus on activation functions that can be expressed as networks of
point-wise CPWL activation functions (ρ). Based on this assumption and the following
lemma, we assert that the activation functions of concern are ReLU networks.

Lemma 1 ([24]). Any point-wise CPWL activation function (ρ : R → R) of m pieces can be
expressed as follows:

ρ(x) =
m

∑
i=1

riReLU(x− ai) + liReLU(ti − x)

= ∑
i∈I+

riReLU(x− ai) + ∑
i∈I−

liReLU(ti − x) (16)

where li and ri indicate the slopes of segments and ai and ti are breakpoints of the corresponding
segments.

Note that the max-pooling operation (arguably the most popular non-linear pool-
ing operation), which outputs the largest value in the block and maintains the selected
location [25], is also a ReLU network. The max pooling of a block of any size can be
recursively derived by max pooling a block of size 2. For example, let max4 and max2
denote the max pooling of blocks of sizes 4 and 2, respectively. Then, max4(x1, x2, x3, x4) =
max2(max2(x1, x2), max2(x3, x4)) and max5(x1, x2, x3, x4, x5) = max2(max4(x1, x2, x3, x4),
x5). The max pooling of a block of size 2 can be expressed as follows:

max2(x = [x1 x2]
>) =

x1 + x2

2
+
|x1 − x2|

2

=
1
2
[1 1 1]ρ̃

 1 1
1 −1
−1 1

x, (17)

where ρ̃ ∈ R3×3 is

ρ̃ =

1 0 0
0 ReLU 0
0 0 ReLU

.

In this paper, we make two assumptions pertaining to activation function ρ:

(A1) ρ : R→ R can be expressed as (16).

This assumption guarantees that for any input (x), the layer of ρ : Rl → Rl can be
associated with diagonal un-rectifying matrix Dρ

x with real-valued diagonal entries, where
the value of the l-th diagonal entry is ∑i∈I+l

rl,i + ∑j∈I−l
ll,j, while I+l and I−l denote the sets

in which ReLUs are active.

(A2) There exists a bound that dρ > 0 for any activation function (ρ) regardless of input (x).
This corresponds to the assumption that

‖Dρ
x‖2 ≤ max

l
∑

i∈I+l

|rl,i|+ ∑
j∈I−l

|ll,j| ≤ dρ (18)

This assumption is used to establish the stability of a network against input perturbations.
The outputs of a non-linear transformation layer can be interpreted as coefficient

vectors related to that domain of the transformation. We make the following assumption
pertaining to non-linear transformation (σ) addressed in the current paper.
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(A3) There exists a uniform Lipschitz constant bound (dσ > 0) with respect to `2 norm for
any non-linear transformation function (σ) and any inputs (x and y) in Rn:

‖σ(x)− σ(y)‖2 ≤ dσ‖x− y‖2. (19)

This assumption is used to establish the stability of a network against input perturba-
tions. Sigmoid and tanh functions are 1-Lipschitz [26]. The softmax layer from Rn to Rn is

defined as xi →
expλxi

∑n
j=1 exp

λxj
, where λ is the inverse temperature constant. The output is the

estimated probability distribution of the input vector in the simplex of Rn and i = 1, · · · , n.
Softmax function Softmaxλ persists as λ-Lipschitz [27], as follows:

‖Softmaxλ(x)− Softmaxλ(y)‖2 ≤ λ‖x− y‖2.

3.2. Proposed Axiomatic Method

Let K denote the class of DNNs that can be constructed using the following axiomatic
method with activation functions that satisfy (A1) and (A2) and non-linear transformations
that satisfy (A3). This axiomatic method employs three atomic operations (O1–O3), the
basic set B ⊆ K, and a regulatory rule (R) describing a legitimate method by which to
apply an atomic operation to elements in K in order to yield another element in K.

Basis set B comprises the following operations:

B = {I, L, M, Γρ, ρM, Γσ, σM}, (20)

where I denotes the identify operation; L denotes any finite dimensional linear mapping
with bounded spectral norms; M = (L, b) denotes any affine linear mapping, where L and
b refer to the linear and bias terms, respectively; Γρ denotes activation functions satisfying
(A1) and (A2); ρM denotes functions with ρ ∈ Γρ; Γσ denotes non-linear transformations
satisfying (A3); and σM denotes functions with σ ∈ Γσ.

Assumptions pertaining to Γρ and Γσ are combined to obtain the following:
(A) The assumption of uniform bounding is based on the existence of a uniform bound,

where ∞ > d > 0 for any activation function (ρ ∈ Γρ), any input (x), and any non-linear
transformation (σ ∈ Γσ), such that

d ≥ max{dρ, dσ}. (21)

Let χ denote the input space for any elements in B. The results of the following atomic
operations belong to K. The corresponding DAG representations are depicted in Figure 3
(a reshaping of input or output vectors is implicitly applied at nodes to validate these
operations).

(a) A series-connection (b) Concatenation (c) Duplication

Figure 3. Graphical representation of atomic operations O1–O3, where functions attached to arcs of
concatenation and duplication are identify operation I (omitted for brevity).
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O1. Series connection (◦): We combine B and K by letting the output of k1 ∈ K be the
input of k2 ∈ B, where

B ◦ K : k2 ◦ k1 : x→ k2(k1x).

O2. Concatenation: We combine multichannel inputs xi ∈ χ into a vector as follows:

concatenation : {x1, · · · , xm} → [x>1 · · · x>m ]>.

O3. Duplication: We duplicate an input to generate m copies of itself as follows:

duplication : x ∈ χ→

I
...
I

x.

From the basic set and O1–O3, regulatory rule R generates other elements in K by
regulating the application of atomic operations on K. The aim of R is to obtain DNNs that
can be represented as DAGs; therefore, this rule precludes the generation of graphs that
contain loops.

R. DAG closure: We apply O1–O3 to K in accordance with

R : K → K.

The DAGs of K comprise nodes and arcs, each of which belongs to one of operations
O1–O3. Rule R mandates that any member in K can be represented as a DAG, in which arcs
are associated with members in B and nodes coordinate the inlets and outlets of arcs. The
rule pertaining to the retention of DAGs after operations on DAGs is crucial to our analysis
based on the fact that nodes in a DAG can then be ordered (see Section 4). To achieve a more
comprehensive understanding, we use figures to express DAGs. Nevertheless, a formal
definition of a DAG must comprise triplets of nodes, arcs, and functions associated with
arcs. An arc can be described as (vi, k, vo), where vi and vo refer to the input and output
nodes of the arc, respectively, and k ∈ B is the function associated with the arc.

We provide the following definition for the class of DNNs considered in this paper.

Definition 1. General DNNs (denoted as K) are DNNs constructed using the axiomatic method
involving point-wise CPWL activation functions and non-linear transformations, which, together,
satisfy assumption (A).

Note that DNNs comprise hidden layers and an output layer. For the remainder of this
paper, we do not consider the output layers in DNNs because adding a layer of continuous
output functions does not alter our conclusion.

3.3. Useful Modules

Generally, the construction of a DNN network is based on modules. Below, we
illustrate some useful modules in pragmatic applications of general DNNs.

(1) MaxLU module: Pooling is an operation that reduces the dimensionality of an
input block. The operation can be linear or non-linear. For example, average pooling is
linear (outputs the average of the block), whereas max pooling is non-linear. Max pooling
is usually implemented in conjunction with the ReLU layer (i.e., maxpooling ◦ ReLU) [28]
to obtain a MaxLU module. The following analysis is based on the MaxLU function of
block size 2 using un-rectification, where the MaxLU function of another block size can be
recurrently derived using the MaxLU of block size 2 and analyzed in a similar manner [5].
The MaxLU2 : R2 → R is a CPWL activation function that partitions R2 into three polygons.
By representing the MaxLU layer with un-rectifying, we obtain the following:



Electronics 2023, 12, 3858 10 of 25

MaxLU2(x = [x1 x2]
>) = [1 1]Dσ

x x.

where Dσ
x ∈ R2×2 is a diagonal matrix with entries {0, 1} and

diag(Dσ
x ) =


[1 0]> when x1 ≥ x2 and x1 > 0
[0 1]> when x2 > 0 and x2 > x1

[0 0]> otherwise.

Figure 4 compares the domain partition of max pooling, ReLU, and MaxLU2.

(a) (b) (c)

Figure 4. Comparisons of max pooling, ReLU, and MaxLU2 partitioning of R2, where vectors in
(b,c) are diagonal vectors of the un-rectifying matrices of ReLU and MAXLU layers and dashed lines
denote open region boundaries: (a) max2 partitions R2 into two regions; (b) ReLU partitions R2 into
four polygons; (c) MaxLU2 partitions R2 into three polygons. Note that the region boundary in the
third quadrant of (a) is removed in (c).

(2) Series module: This module is a composition of K and K (denoted as K ◦K), which
differs from operation O1 (B ◦ K).

The series-connected network (N s
L(x) = $L ◦ML ◦ · · · ◦ $1 ◦M1(x)) is derived using a

sequence of series modules. We consider that ρi is a ReLU. The theoretical underpinnings
of this module involving MaxLU activation functions can be found in [5]. We first present
an illustrative example of N s

2 , then extend our analysis to N s
L. Note that input space χ

is partitioned into a finite number of regions using (ReLU1)M1, where M1 is an affine
mapping. The partition is denoted as P1. The composition of (ReLU2)M2 and (ReLU1)M1
(i.e., ReLU2M2 ◦ ReLU1M1) refines P1 such that the resulting partition can be denoted as
P2. Figure 5 presents a tree partition of R2 using (ReLU2)M2(ReLU1) : R2 → R1, where
M2x = w1x1 + w2x2 + b, in which x = [x1 x2]

>, w1, w2 ≥ 0, and b ≤ 0. The affine linear
functions over P2 can be expressed as D2M2D1R2, where D1 and D2 indicate un-rectifying
matrices of ReLU1 and ReLU2 using x and M2ReLU1x as inputs, respectively.

For a series-connected network (N s
i ), we let (Pi,Ai) denote the partition and corre-

sponding functions. The relationship between (PL,AL) and (PL−1,AL−1) is presented as
follows.

Lemma 2 ([5]). Let (Pi = {Pi,k},Ai = {Ai,k}) denote the partition of input space χ and the
collection of affine linear functions of N s

i . Furthermore, let the domain of the affine linear function
(Ai,k) be Pi,k. Then,

(i) PL refines PL−1 (any partition region in PL can be subsumed to one and only one partition
region in PL−1).

(ii) The affine linear mappings ofN s
L = ReLUL MLN s

L−1 can be expressed asALχ = DL MLAL−1χ,
where DL is an un-rectifying matrix of ReLUL. This means that if AL,i ∈ AL, then there
must be a j in which PL,i ⊆ PL−1,j, such that AL,iPL,i = DL,i MLAL−1,jPL,i, where the
un-rectifying matrix (DL,i) depends on MLAL−1,jPL,i.



Electronics 2023, 12, 3858 11 of 25

PL refines PL−1 (i.e., PL ⊆ PL−1), which means that if a directed graph is based on the
partition refinement in the leftmost subfigure of Figure 6, then the node corresponding to
PL is the only child node of node PL−1, as well as the only parent node of node PL. The
graph of this module is a tree with precisely one child at each node.

Figure 5. (Top-left) R2 partitioned using ReLU1 and (bottom-left) refined using ReLU2 M1.
(Right) Tree partition on R2 from composition of ReLUs, where the function with domain over
a region is indicated beneath the leaf and regions are named according to vectors obtained by stacking
diagonal elements of the un-rectifying matrix of ReLU1 over the un-rectifying matrix of ReLU2.

PL PL−1
P

P1

Pm

P

P1

Pm

Figure 6. Graph based on partition refinement in which nodes denote partitions and arc a → b
denotes that the partition of node b is a refinement of the partition of node a. (Left) Graph of a serial
module; (middle) graph of a parallel module; (right) graph of a fusion module.

(3) Parallel module (Figure 7a): This module is a composition comprising an element
in K to each output of the duplication operation, denoted as follows:

(parallel) .
= K ◦ (duplication).

When expressed in matrix form, we obtain the following:

x→

I
...
I

x→

 k1
...

km

x. (22)

In the literature on DNNs, this module is also referred to as a multifilter (ki is typically a
filtering operation followed by an activation function) or multichannel module. If partition
P is associated with the input (i.e., x) in (22) and partition Pi is associated with the output
of the i-th channel (i.e., kix), then Pi is a refinement of P in accordance with (2). As shown
in the middle subgraph of Figure 6, the node corresponding to Pi is a child node of the
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node corresponding to P. This graph is a tree in which the node of P has m child nodes
corresponding to partitions P1, · · · ,Pm.

(a) Parallel module (b) Fusion module

Figure 7. Graphical representations of (a) a parallel module (which becomes a duplication operation
when ki = I) and (b) a fusion module (which becomes a concatenation operation when L = I and
ki = I).

(4) Fusion module (Figure 7b): This type of module can be used to combine different
parts of a DNN and uses linear operations to fuse inputs. The module is denoted as follows:

(fusion) .
= L ◦ (concatenation). (23)

In matrix form, we obtain the following:

x→ {k1x1, · · · , kmxm} → L

 k1x1
...

kmxm

.

Note that a non-linear fusion can be obtained by applying a composition of ρM/ρ to
the fusion module in which L = I.

We denote the domain partition of χ associated with the i-th channel as Pi = {Riji |ji =
1, · · · ni}, where ni is the number of partition regions. Partition P of χ generated by the
fusion module can be expressed as the union of non-empty intersections of partition regions
in Pi for all i, as follows:

P .
= P1 ∩ P2 ∩ · · · ∩ Pm (24)

= ∪j1,··· ,jm(R1j1 ∩ R2j2 · · · ∩ Rmjm 6= ∅).

Any partition region in P is contained in precisely one region in any Pi. In other
words, P is a refinement of Pi for i = 1, · · · , m. An obvious bound for partition regions of
P is ∏m

i=1 ni. We let {Aiji |ji = 1 · · · ni} denote the affine mappings associated with the i-th
channel and Aiji be the affine mapping with the domain restricted to partition region Riji .
The affine mapping of the fusion module over partition region R1j1 ∩ R2j2 ∩ · · · ∩ Rmjm 6= ∅
is derived as follows:

R1j1 ∩ R2j2 ∩ · · · ∩ Rmjm 6= ∅→ L

 A1j1
...

Amjm

. (25)

For the sake of convenience, (24) and (25) are summarized in the following lemma.



Electronics 2023, 12, 3858 13 of 25

Lemma 3. Suppose that a fusion module comprises m channels. Let Pi denote the partition
associated with the i-th channel of the module and let P denote the partition of the fusion module.
Then, P is a refinement of Pi for i = 1, · · · , m. Moreover, let A denote the collection of affine linear
mappings over P. Thus, the affine linear mapping over a partition region of P can be obtained in
accordance with (25).

As shown in the rightmost subfigure of Figure 6, P is a refinement of any Pi, which
means that the node corresponding to partition P is a child node of the node corresponding
to partition Pi. The fact that the node associated with partition P has more than one parent
node means that the graph for this module is not a tree.

Example 2. Figure 8 illustrates the fusion of two channels, as follows:

M : R2 → L
[

ρ1M1
ρ2M2

]
,

where M1, M2 : R2 → R2, and ρ1 and ρ2 are ReLUs. The partition induced byM comprises eight
polytopes, each of which is associated with an affine linear mapping.

(a) P1 (b) P2 (c) P

Figure 8. Fusion of two channels in which each channel partitions R2 into four regions: (a) P1 is the
partition due to ρ1 M1, where M1 : R2 → R2; (b) P2 is the partition due to ρ2 M2, where M2 : R2 → R2;
(c) P is a refinement of P1 and P2.

Figure 9 illustrates the refinement of partitions in the network in Figure 9a, which
involved a series connection of five fusion layers. Each fusion layer includes a fusion
module derived by a concatenation of inputs (ReLUM1 (top) and ReLUM2 (bottom)). The
result of the concatenation is subsequently input into linear function L =

[
I I

]
(fusion).

The curves in Figure 9b–d top–bottom respectively) and fusion channels are consistent with
the assertion of Lemma 3, wherein the partitions of the top and bottom channels are refined
by the fusion channel. The fusion channel is the refinement of top and bottom channels,
which means that the maximum number of vectors in a given partition region and the
maximum distance between pairs of points in the same partition region are smaller than
in the top and bottom channels, as shown in Figure 9b,c. On the other hand, the number
of partition regions in the fusion channel is larger than in the top and bottom channels, as
shown in Figures 8 and 9d.

(5) The following DNN networks were derived by applying the DAG closure rule (R)
to the modules.
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(a)

(b) (c) (d)

Figure 9. Simulation of partition refinement using fusion modules with 50,000 random points (14× 1)
as inputs with entries sampled independently and identically distributed (i.i.d.) from standard normal
distribution. (a) Network comprising five layers of fusion modules, each of which comprises three
channels (top, bottom, and fusion). The dimensions of weight matrix and bias of Mi in the top
and bottom channels are 14 × 14 and 14 × 1, respectively, with coefficients in Mi sampled i.i.d.

from standard normal distribution and L =
[
I I

]
. (b) The number of points in partition regions

containing at least two elements versus fusion layers. (c) The maximum distance between pairs of
points located in the same partition region versus fusion layers. (d) The number of partition regions
versus fusion layers. The fact that in (b,c), the curves corresponding to fusion channels are beneath
those of the other channels and that in (d), the curve of fusion channel is above the other channels is
consistent with the analysis that the partitions at fusion channels is finer than those at the bottom and
top channels.

Example 3. As shown in Figure 10, the ResNet module [11] comprises ReLU and a fusion module:

(ResNet) .
= ρ ◦ (fusion).

Using matrix notation, we obtain the following:

x→ ρ[I I]diag(I,−M2ρM1)

[
I
I

]
x = ρ(I−M2ρM1)x, (26)

where M1 and M2 are affine mappings. The unique feature of ResNet is the direct link, which
enhances resistance to the gradient vanishing problem in back-propagation algorithms [29]. It is a
fact that direct linking and batch normalization [30,31] have become indispensable elements in the
learning of very deep neural networks using back-propagation algorithms.

Figure 10. ResNet module featuring direct link and the same domain partitions at points a and b. In
DenseNet, the addition node is replace with the concatenation node.

Let ML denote an L-layer DNN. A residual network [11] extends ML from L layers to
L + 2 layers as follows: (ResNet) ◦ML. Repetition of this extension allows a residual network to
maintain an arbitrary number of layers. As noted in the caption of Figure 10, domain partitioning
is the same at a and b. This can be derived in accordance with the following analysis. Let P0 denote
the domain partitioning of χ at the input of the module. The top channel of the parallel module
retains the partition, whereas in the bottom channel, the partition is refined as P1 using M2ρM1.
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In accordance with (24), the domain of the fusion function is P1 ∩ P0 (i.e., P1). Thus, the domain
partitions at a and b are equivalent. Note that the DenseNet module [32] replaces the addition node
in Figure 10 with the concatenation node. The partitions of DenseNet at b and a are the same, as in
the ResNet case.

Example 4. Transformers are used to deal with sequence-to-sequence conversions, wherein the
derivation of long-term correlations between tokens in a sequence is based on the attention
module [33,34]. A schematic illustration of a self-attention module is presented in Figure 11a,
where the input vectors are a1, a2, a3, and a4 and outputs vectors are b1, b2, b3, and b4. The
query, key, and value vectors for ai are generated from matrix Wq, Wk, and Wv, respectively, where
qi = Wqai, ki = Wkai, and vi = Wvai for all i. Attention score αi,j indicates the inner product
between the normalized vectors of qi and kj. The vector of attention scores [αi,1, αi,2, αi,3, and αi,4]

>

are input into the soft-max layer to obtain probability distribution [α̂i,1, α̂i,2, α̂i,3, α̂i,4]
>, where

α̂i,j =
eαi,j

∑j eαi,j . Output vector bi = ∑j α̂i,jvj is derived via multiplications and additions as a linear

combination of value vectors with coefficients derived from the probability distribution. Figure 11b
presents a graphical representation of (a), wherein non-linear transformation σ is the soft-max
function. Dictionary V of value vectors can be obtained by performing a concatenation operation,
which implicitly involves reshaping the dimensions of the resulting vector to the matrix (see dashed
box in the figure).

Example 5. Figure 12 illustrates the well-known LeNet-5 network [35]. Figure 12a presents a block
diagram of the network in which the input is an image (28× 28 px) and the output is ten classes
of characters (0 to 9). CNN block number 1 is a convolution layer with the following parameters:
filter size, 5× 5; stride, 1; padding, 2; and six-channel output, six 28× 28 images. Block numbers
2 and 3 indicate MaxLU operations and six-channel output (six 14× 14 images). Black circle 4
indicates a concatenation operation (O2), the output of which is an image. Block number 5 indicates
a convolution layer with the following parameters: filter size, 5× 5; stride, 1; and padding, 0. This
layer outputs sixteen 10× 10 images. Block numbers 6 and 7 indicate MaxLU operations, the output
of which is sixteen 5× 5 images. Black circle 8 indicates a concatenation operation (O2), the output
of which is a vector. Block number 9 indicates a fully connected network with input dimensions of
400 and output dimensions of 120. Block number 10 indicates a ReLU activation function. Block
number 11 is a fully connected network with an input dimension of 120 and an output dimension
of 84. Block number 12 indicates a ReLU activation function. Block number 13 indicates a fully
connected network with an input dimension of 84, where the output is a prediction that includes 1
of the 10 classes. Figure 12b presents a graphical representation of (a), and (c) presents a simplified
graphical representation of (a). In Figure 12c, we can see that LeNet-5 begins with a sequence of
compositions of modules (featuring a parallel module followed by a fusion module), then a sequence
of MaxLU layers. Here, we apply the LeNet-5 network to the MNIST dataset (not limited to other
datasets) with 60,000 images. This is a simple implementation illustrating the proposed approach.
Figure 13 illustrates the properties of partitions at the outputs of levels 3, 4, 7, and 8 in Figure 12b.
The curves in Figure 13a–c are consistent with the assertion of Lemma 3, which indicates that the
partitions of the previous channels are refined by the fusion channel. The results are similar to those
in Figure 9.
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(a)

(b)

Figure 11. Self-attention module: (a) network; (b) graph in which the highlighted dashed box repre-
sents the graph used to obtain dictionary V from value vectors. The different color is corresponding
to different input ai.

(a)

(b)

(c)

Figure 12. LeNet-5: (a) network; (b) graph in which the numbers beneath the nodes and arcs
correspond to block numbers in (a) and solid nodes indicate fusion module/concatenation; (c) sim-
plification of (b) illustrating composition of modules, where I and O denote input and output,
respectively.
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(a) (b) (c)

Figure 13. Illustrations of partition refinements in LeNet-5 at output levels 3, 4, 7, and 8 (as shown in
Figure 12b), where the input is 60,000 images from the MNIST dataset (note that levels 3 and 7 are
parallel connections linking several channels; therefore, only the maximum values of all channels at
those levels are plotted): (a) maximum number of images in a given partition region; (b) maximum
distance between pairs of images located in the same partition region (distance at level 8 is zero,
which means that each partitioning region contains no more than one image); (c) maximum number
of partition regions in a channel (note that as the level increases, the curves in (a,b) decrease, while
the curve in (c) increases, which is consistent with our assertion that the partitions of the previous
channels are refined by the fusion channel).

Remark 1. Graphs corresponding to partitions generated by series and parallel modules are trees.
Accordingly, the partitions created by a network comprising only series and parallel modules also
from a tree. According to [36], trees learned for regression or classification purposes suffer from
overfitting due to the bias–variance tradeoff dilemma. However, in [37,38], it was reported that this
tradeoff is not an over-riding concern (referred to as benign overfitting) when learning a deep neural
network in which the number of parameters exceeds the training data by a sufficient margin. This
suggests that benign overfitting is relevant to the fusion module, considering that the graph for the
module is not a tree.

4. Properties of General DNNs

In accordance with the axiomatic approach, we define general DNNs (i.e., K) as those
that can be represented using DAGs. In the following, we outline the properties belonging
to all members in the class.

4.1. Function Approximation via Partition Refinement

We define the computable subgraph of node a as the subgraph of the DAG containing
precisely all the paths from the input node of the DAG to node a. Clearly, the computable
subgraph defines a general DNN, the output node of which is a, such that it computes
a CPWL function. In Figure 14a, the computable subgraph of node a (highlighted in
light blue) contains node numbers 0, 1, 2, 3, and 4. The computable subgraph of node c
(highlighted in light green) is contained in the subgraph of a.

In the following, we outline the domain refinement of a general DNN. Specifically, if
node b is contained in a computable subgraph of a, then the domain partition imposed by
that subgraph is a refinement of the partition imposed by the computable subgraph of b.

Theorem 1. The domain partitions imposed by computable subgraphs Ga (at node a) and Gb (at
node b) of a general DNN are denoted as Pa and Pb, respectively. Suppose that node b is contained
in subgraph Ga. This means that Pa refines Pb.



Electronics 2023, 12, 3858 18 of 25

(a) (b)

Figure 14. DAG representation of a DNN illustrating the computable subgraphs and levels of nodes
(solid nodes denote fusion/concatenation nodes, and I and O denote input and output, respectively).
(a) Computable subgraph associated with each node. Light blue denotes the computable subgraph
of node a, wherein the longest path from the input node to node a contains four arcs (i.e., l(a) = 4).
Light green denotes the computable subgraph of c, wherein the longest path from the input node to
node c contains one arc (i.e., l(c) = 1). (b) Nodes in (a) are partially ordered in accordance with levels
(e.g., level 1 has four nodes, and level 2 has one node).

Proof. Without a loss of generality, we suppose that arcs in the general DNN are atomic
operations and that the functions applied to arcs are included in base set B. Furthermore,
we suppose that p is a path from the input node to node a, which also passes through node
b. p′ denotes the subpath of p from node b to node a (p′ : b = c0 → c1 · · · → a = cn). Pci

denotes the partition of input space χ defined using the computable subgraph at node
ci. In the following, we demonstrate that if ci → ci+1, then Pci is refined by Pci+1 . Note
that arc ci → ci+1 belongs to one of the three atomic operations. If it is a series-connection
operation (O1), then the refinement can be obtained by referring to Lemma 2. If it is a
concatenation operation (O2), then the refinement is obtained by referring to Lemma 3. If it
is a duplication operation (O3), then the partitions for nodes ci and ci+1 are the same. Thus,
Pa is a refinement of Pb.

Figure 14a presents the DAG representation of a DNN. Node b is contained in the
computable subgraph of node a, whereas node c is contained in the computable sub-graph
of b such that the domain partition of a is a refinement of the partition of b, and the domain
partition of b is a refinement of the partition of c. Thus, the domain partition of node a is a
refinement of the domain partition of node c.

As hinted in Theorem 1, general DNNs are implemented using a data-driven “divide
and conquer” strategy when performing function approximation. In other words, when
traveling a path from the input node to a node of the DNN, we can envision the progressive
refinement of the input space partition along the path, where each partition region is
associated with an affine linear mapping. Thus, computing a function using a general DNN
is equivalent to approximating the function using local simple mappings over regions in a
partition derived using the DNN. A finer approximation of the function can be obtained by
increasing the lengths of paths from the input node to the output node. Figure 15 illustrates
the conventional and general DNN approaches to the problem of linear regression. The
conventional approach involves fitting “all” of the data to obtain a dashed hyperplane,
whereas the general DNN approach involves dividing the input space into two parts and
fitting each part using hyperplanes.



Electronics 2023, 12, 3858 19 of 25

Figure 15. Approaches to linear regression. The dashed line indicates the regression derived from all
data (i.e., conventional approach), and the solid lines indicate regressions derived from data of x > a
and data of x ≤ a continuous at x = a (i.e., general DNN approach).

4.2. Stability via Sparse/Compressible Weight Coefficients

We introduce the l function of node a to denote the number of arcs along the longest
path from input node I to node a of a DAG, where l(a) is referred as the level of node a.
According to this definition, the level of the input node is zero.

Lemma 4. The level is a continuous integer across the nodes in a general DNN. In other words, if
node a is not the output node, then there must exist a node b where l(b) = l(a) + 1.

Proof. Clearly, l(I) = 0 for input node I. This lemma can be proven via contradiction.
Suppose that the levels are non-continuous integers. Without a loss of generality, the nodes
can be divided into two groups (A and B), where A includes all of the nodes with level ≤ n
and B includes all of the nodes with level ≥ n + k and k > 1. b ∈ B is assigned the lowest
level in graph B, and l(b) = n + k. Furthermore, p(b) denotes the longest path from the
input node to node b, and a is a node along the path with arc a → b. Thus, l(a) < n + k;
otherwise, l(b) ≥ n + k + 1, which violates the assumption that l(b) = n + k. If l(a) ≤ n,
then l(b) ≤ n + 1 (since a is on the longest path (p(b)) to b and a has a direct link to b). This
violates the assumption that l(b) = n + k with k > 1. Thus, n < l(a) < n + k, according to
which a /∈ A and a /∈ B. This violates the assumption that all nodes can be divided into
two groups (A and B). We obtain a contradiction and, hence, complete the proof.

The nodes in a DAG can be ordered in accordance with the levels. Assume that there
is only one output node, denoted as O. Clearly, l(O) = L is the highest level associated
with that DAG. The above lemma implies that the nodes can be partitioned into levels from
0 to L. We introduce notation l̄(n) (referring to the nodes at level n) to denote the collection
of nodes with levels equal to n and let |l̄(n)| denote the number of nodes at that level. As
shown in Figure 14b, the nodes in Figure 14a are ordered in accordance with their levels, as
indicated by the number besides the nodes. For any DNN (NL ∈ K), we can define DNN
function Nn (with n ≤ L) by stacking the DNN functions of nodes at level n into a vector
as follows:

Nn = [N(a)]a∈l̄(n) (27)

where N(a) is the function derived using the computable subgraph of node a ∈ l̄(n). Clearly,
Nn ∈ K because it is formed by the concatenation of N(a). For example, in Figure 14b,

N3 = [N(b)] and N5 =

[
N(s)
N(t)

]
. The order of components in Nn is irrelevant to subsequent

analysis of stability conditions.
The stability of a DNN can be measured as the output perturbation against the input

perturbation such that

‖NL(x)−NL(y)‖2 ≤ C(L)‖x− y‖2, (28)

where L is the level of the output node for DNN NL. A stable deep architecture implies
that a deep forward inference is well-posed and robust in noisy environments. A sufficient
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condition for the stability of a DNN requires that C(L) be a bounded, non-increasing
function of L when L→ ∞.

Lemma 5. Let d be the uniform bound defined in (21), Ia = {b|b→ a} (the nodes directly linking
to the node a), and |Ia| denote the number of nodes in Ia. Further, let NL ∈ K and NL,p denote
the restriction of NL over partition region p. Suppose that N(a) and N(a),p denote the CPWL
function associated with the computable subgraph of node a and the restriction of the function over
p, respectively. As defined in (27), Nn denotes the function derived by nodes at level n ≤ L, and
Nn,p denotes the restriction of Nn on domain partition p; i.e.,

Nn,p = [N(a),p]a∈l̄(n). (29)

(i) For a given n and p, there exists C(n, p) such that for any x, y ∈ p,

‖Nn,p(x)−Nn,p(y)‖2 ≤ C(n, p)‖x− y‖2, (30)

where C(n, p) is referred to as the Lipschitz constant in p at level n.
(ii) If there exists level m such that for n ≥ m,

d ∑
a∈l̄(n)

∑
b∈Ia

‖Wab‖2 ≤ 1, (31)

where Wab is the weight matrix associated with the atomic operation on arc a← b, which means
that the Lipschitz constant C(n, p) is a bounded function of n on p.

Proof. See Appendix A for the proof.

This lemma establishes local stability in a partition region of a DNN. To achieve global
stability in the input space, we invoke the lemma in [5], which indicates that piece-wise
functions that maintain local stability have global stability, provided that the functions are
piece-wise continuous.

Lemma 6 ([5]). Let χ = ∪iPi be a partition and fi with domain Pi be li-Lipschitz continuous
with fi(x) = f j(x) for x ∈ Pi ∩ Pj. Let f be defined by f (x) := fi(x) for x ∈ Pi. Then, f is
(maxi li)-Lipschitz continuous.

Theorem 2. For the sake of stability, we adopted the assumption pertaining to Lemma 5. Let DNN
NL ∈ K with the domain in input space (χ) and let Nn denote the function with nodes of NL up to
level n ≤ L. If there exists level m such that for n ≥ m,

d ∑
a∈l̄(n)

∑
b∈Ia

‖Wab‖2 ≤ 1 (32)

where d is the uniform bound defined in (21), and Wab is the weight matrix associated with arc
a← b; then, for any partitioning region p of χ, C(L) = maxp C(L, p) is a bounded, non-increasing
function of L on χ. Note that C(L) is defined in (28). Hence, NL is a stable architecture.

Proof. See Appendix B for the proof.

This theorem extends the stability of the series-connected DNNs in [5] to general
DNNs. According to ‖W‖F ≥ ‖W‖2, the condition determining the stability of an DNN
can be expressed as follows:

d ∑
a∈l̄(n)

∑
b∈Ia

‖Wab‖F ≤ 1. (33)

This condition holds, regardless of the size of Wab. Thus, if the matrix is large, then (33)
implies that the weight coefficients are sparse/compressible. Note that (32) is a sufficient
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condition for a DNN to achieve stability; however, it is not a necessary condition. The
example in Figure 16 demonstrates that satisfying (32) is not necessary.

Figure 16. Conditions for stability of ResNet module I−W2(ReLU)W1, where Ia = {b, c}: If (32)
is satisfied, then ‖W2‖2 = 0 (hence, W = 0) due to the fact that 1 + ‖W2‖2 ≤ 1 if and only if
‖W2‖2 = 0. In fact, it is sufficient for the model to achieve stability if W 6= 0 with ‖I−W2W1‖2 ≤ 1
(all eigenvalues of W2W1 lie within [0, 1]).

Figure 17 illustrates simulations pertaining to Theorem 2 for the network presented in
Figure 9a, which comprises a fusion module with five layers. The simulations illustrate
how the weight coefficients affect the Lipschitz constant. In Figure 17a, the upper bound
for Lipschitz constant C(L), where L = 1, · · · , 5 (presented as the maximum gain ‖NLx−
NLy‖2/‖x− y‖2 for all pairs of training data), increases with an increase in the number of
fusion layers if the weight coefficients do not satisfy (32) in terms of stability. If the weight
coefficients were scaled to be compressible in accordance with (32), then the upper bound
would decrease with an increase in the number of fusion layers, as shown in Figure 17b.
This is an indication that the network is stable relative to the input perturbation.

(a) (b)

Figure 17. Stability simulation using the network shown in Figure 9a, in which the maximum
gain (‖NLx−NLy‖2/‖x− y‖2) for all training pairs is plotted against each fusion layer (j), where
j = 1, · · · , 5 (dimensions of the weight matrices and biases in Mi in the top, bottom, and fusion
channels of each module are 20× 20 and 20× 1, respectively; coefficients in Mi are sampled i.i.d.
from standard normal distribution (mean zero and variance of one); inputs are 2000 random vectors
(each of size 20× 1) with entries sampled i.i.d. from the standard normal distribution): (a) maximum
gain increases with an increase in the number of fusion layers; (b) maximum gain remains bounded
when weight coefficients in Mi are scaled to meet (33) for Theorem 2. Note that d = 1 for ReLU
activation functions.

5. Conclusions

Using an axiomatic approach, we established a systematic approach to representing
deep feedforward neural networks (DNNs) as directed acyclic graphs (DAGs). The class
of DNNs constructed using this approach is referred to as general DNNs, which includes
DNNs with pragmatic modules, activation functions, and non-linear transformations. We
demonstrated that general DNNs approximate a target function in a coarse-to-fine manner
by learning a directed graph (generally not in a tree configuration) through the refinement
of input space partitions. Furthermore, if the weight coefficients become increasingly
sparse along any path of a graph, then the DNN function gains stability with respect to
perturbations in the input space due to a bounded global Lipschitz constant. This study
provides a systematic approach to studying a wide range of DNNs with architectures that
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are more complex than those of simple series-connected DNN models. In the future, we will
explore the analysis and conclusions reported in this paper in terms of their applications.
In this direction, we refer to [39] with respect to network pruning.
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Appendix A. Proof of Lemma 5

Proof. (i) Without a loss of generality, the arcs in NL can be treated as atomic operations
associated with functions in basis set B. The base step is on input node I (i.e., l̄(0)). Clearly,
(30) holds when C(0, p) = 1.

Implementation of the induction step is based on levels. Suppose that (30) holds for
all nodes in levels lower than n. If a is a node in level n, then node b ∈ Ia must be in level
l(b) < n. Thus, for x ∈ p,

N(a),p = [BabN(b),p(x)]b∈Ia , (A1)

where Bab ∈ B, in accordance with the fact that functions associated with axiomatic
operations on arcs are members of B. If the atomic operation is a duplication, then
Bab = I, and if the atomic operation is a series connection/concatenation, then Bab ∈
{I, ρL, M, ρM, σL, σM}. Furthermore,

‖N(a),p(x)−N(a),p(y)‖2

= ∑
b∈Ia

‖Bab(N(b),p(x)−N(b),p(y))‖2. (A2)

Case 1. Consider Bab ∈ {I, ρL, M, ρM}. For x, y ∈ p, the bias term in Bab (if any) can
be canceled. Applying the uniform bound assumption on activation functions (18) and
applying (29) and (30) to levels lower than n results in the following:

‖Nn,p(x)−Nn,p(y)‖2

≤ ∑
a∈l̄(n)

∑
b∈Ia

dρ‖Wab‖2‖N(b),p(x)−N(b),p(y)‖2

≤ ∑
a∈l̄(n)

∑
b∈Ia

dρ‖Wab‖2C(l(b), p)‖x− y‖2. (A3)

Case 2. Consider Bab ∈ {I, σL, M, σM}. Similarly, for x, y ∈ p, we can obtain the
following:

https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
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‖Nn,p(x)−Nn,p(y)‖2

= ∑
a∈l̄(n)

∑
b∈Ia

‖σ(Mab ◦ N(b),p(x))− σ(Mab ◦ N(b),p(y))‖2

≤ ∑
a∈l̄(n)

∑
b∈Ia

dσ‖Mab ◦ N(b),p(x)−Mab ◦ N(b),p(y)‖2

≤ ∑
a∈l̄(n)

∑
b∈Ia

dσ‖Wab‖2‖N(b),p(x)−N(b),p(y)‖2

≤ ∑
a∈l̄(n)

∑
b∈Ia

dσ‖Wab‖2C(l(b), p)‖x− y‖2, (A4)

where Wab is the linear part of the affine function (Mab), and dσ is the Lipschitz constant
bound defined in (19). Finally, (A3) and (A4) are combined using (21) to yield

C(n, p) = d ∑
a∈l̄(n)

∑
b∈Ia

‖Wab‖2C(l(b), p), (A5)

where l(b) ≤ n− 1. This concludes the proof of (i).
(ii) Let C∗(m− 1, p) denote the maximal value of C(k, p) for k ≤ m− 1. From (A5) and

(31), we obtain the following:

C(m, p) ≤ d ∑
a∈l̄(m)

∑
b∈Ia

‖Wab‖2C∗(m− 1, p) ≤ C∗(m− 1, p). (A6)

Hence, C∗(m, p) = C∗(m − 1, p). Considering the fact that (31) holds for n ≥ m,
we obtain

C(n, p) ≤ d ∑
a∈l̄(n)

∑
b∈Ia

‖Wab‖2C∗(n− 1, p) ≤ C∗(n− 1, p) (A7)

Thus, C∗(n, p) = C∗(n− 1, p). Based on (A6) and (A7), we obtain

C∗(n, p) = C∗(m− 1, p), ∀n ≥ m. (A8)

The fact that C(n, p) ≤ C∗(n, p) leads to the conclusion that C(n, p) is a bounded
sequence of n on p.

Appendix B. Theorem 2

Proof. In accordance with (32) and Lemma 5, C(n, p) is bounded for any p and n. The
fact that activation functions of NL satisfy (A1) implies that the total number of partitions
induced by an activation function is finite. Thus, the number of partition regions induced
by Nn is finite. Hence,

C(n) = max
p

C(n, p)

is defined and bounded above for any n. In accordance with Lemma 6 and the definition of
C(n), we obtain

‖Nn(x)−Nn(y)‖2 ≤ C(n)‖x− y‖2. (A9)

We define C∗(m) = maxk≤m maxp C(k, p) and, for any L ≥ n ≥ m, obtain

C(n) ≤ C∗(m). (A10)

The sequence {C(n)}L
n≥m is bounded for any L such that NL is stable as L→ ∞.
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