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Abstract: With the advent of deep learning and the accessibility of massive data, scene classification
algorithms based on deep learning have been extensively researched and have achieved exciting
developments. However, the success of deep models often relies on a large amount of annotated
remote sensing data. Additionally, deep models are typically trained and tested on the same set of
classes, leading to compromised generalization performance when encountering new classes. This
is where few-shot learning aims to enable models to quickly generalize to new classes with only a
few reference samples. In this paper, we propose a novel collaborative self-supervised transductive
few-shot learning (CS2TFSL) algorithm for remote sensing scene classification. In our approach, we
construct two distinct self-supervised auxiliary tasks to jointly train the feature extractor, aiming
to obtain a powerful representation. Subsequently, the feature extractor’s parameters are frozen,
requiring no further training, and transferred to the inference stage. During testing, we employ
transductive inference to enhance the associative information between the support and query sets by
leveraging additional sample information in the data. Extensive comparisons with state-of-the-art few-
shot scene classification algorithms on the WHU-RS19 and NWPU-RESISC45 datasets demonstrate
the effectiveness of the proposed CS2TFSL. More specifically, CS2TFSL ranks first in the settings of
five-way one-shot and five-way five-shot. Additionally, detailed ablation experiments are conducted
to analyze the CS2TFSL. The experimental results reveal significant and promising performance
improvements in few-shot scene classification through the combination of self-supervised learning
and direct transductive inference.

Keywords: few-shot learning; remote sensing scene classification; transductive inference; self-supervised
learning

1. Introduction

Remote sensing scene classification refers to the task of identifying and categorizing
different objects or scenes in remote sensing imagery [1]. It plays a crucial role in geo-
logical exploration [2], environmental monitoring [3], urban planning [4], and disaster
monitoring [5]. By performing scene classification, we can obtain vital geographic informa-
tion to support decision making and resource management, thereby promoting sustainable
development and the construction of smart cities [6].

With the advancement of deep learning and the widespread availability of large-
scale remote sensing datasets, the accuracy of remote sensing scene classification has been
significantly enhanced. Deep learning-based scene classification of remote sensing images
is a technique that utilizes convolutional neural networks [7], attention mechanisms [8],
recurrent neural networks [9], and other methods to automatically classify and identify
objects and scenes in remote sensing images [10,11]. It effectively captures spatial and
semantic information by automatically learning and extracting image features, resulting in
more accurate and efficient scene classification [12–14]. Additionally, deep learning-based
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methods possess powerful feature learning and complex relationship modeling capabilities,
making them suitable for classifying different scales and complex scene requirements [15].
Through training on large-scale data and transfer learning, this approach can improve
the performance of classification models and provide significant support for geographic
information analysis and applications [16].

However, traditional deep learning models rely on a large amount of annotated data
for training in order to accurately capture the features and relationships between different
categories [17]. In practical applications, acquiring a large number of annotated samples
can be challenging and costly [18,19]. Additionally, traditional deep learning models use
the same categories for training and testing, which leads to poor generalization when
encountering new categories. This is because the model has not been exposed to annotated
samples of these new categories and cannot accurately classify and recognize them [20].

Therefore, few-shot learning has become crucial in remote sensing scene classification [21].
Few-shot learning is a task that aims to learn informative and discriminative feature rep-
resentations from only a limited number of labeled examples [22]. Through techniques
such as transfer learning and meta-learning, the knowledge acquired can be applied to
new categories for accurate classification [23]. This approach helps overcome the problem
of insufficient annotated data and improves the model’s generalization ability on new
categories [24]. Currently, there has been extensive research on few-shot remote sens-
ing scene classification, which can generally be categorized into two different training
paradigms: meta-learning-based [25–27] and transfer-learning-based approaches [28,29].
Among them, improving the metric space is a key focus of current research by scholars [30].
However, current research has found that a good feature extractor is the key to few-shot
classification [30–32]. An effective feature extractor has a much more significant impact on
the performance than a cleverly designed metric space.

In light of this indication, in this paper, we propose a novel collaborative self-supervised
transductive few-shot learning (CS2TFSL) algorithm for remote sensing scene classification.
In CS2TFSL, we train the feature extractor by leveraging two distinct self-supervised auxil-
iary tasks collaboratively to obtain a powerful feature representation. Unlike traditional
few-shot learning methods that rely on labeled training data, self-supervised learning does
not require any labels. Instead, it constructs pretext tasks and generates pseudo-labels
for training. Afterwards, the trained feature extractor requires no further training, and
its parameters are frozen, allowing for direct transfer to the inference stage. During the
testing stage, we employ transductive inference, enhancing the associative information be-
tween the support and query sets by incorporating additional sample information from the
dataset. Extensive comparisons with state-of-the-art (SOTA) few-shot scene classification
algorithms demonstrate the effectiveness of the CS2TFSL. Additionally, we conduct detailed
ablation experiments to analyze the components of CS2TFSL. The experimental results high-
light significant and promising performance improvements in few-shot scene classification
achieved through the combination of self-supervised learning and transductive inference.

Overall, our contributions can be summarized in the following two aspects:

(1) We propose a collaborative self-supervised training strategy for few-shot scene classi-
fication. Based on the transfer learning paradigm, our approach allows the model to
directly freeze and perform inference after self-supervised training, eliminating the
need for complex episode-based training procedures in metric learning.

(2) We introduce the simple soft k-means (SKM) classifier for the few-shot transductive
inference. Compared to inductive inference, our model can benefit from more sample
references for inference, and it is also simpler compared to the complex graph neural
network of transductive inference.

The remaining sections of this article are structured as follows. Section 2 introduces
some relevant studies on few-shot remote sensing classification and self-supervised learn-
ing. In Section 3, the proposed method is described in detail. The experimental results are
reported and discussed in Section 4 and Section 5. The conclusion is presented in Section 6.
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2. Related Works
2.1. Few-Shot Remote Sensing Scene Classification

According to the categorization in [28,29], current research on few-shot remote sensing
scene classification can be divided into two categories: methods based on meta-learning
and transfer learning. The main difference between them lies in the training paradigm.
Taking the N-way K-shot scenario as an example, algorithms based on meta-learning utilize
the episodic training approach. In each episode, N remote sensing categories are selected,
and K images from each category are chosen as the support set for training the network.
On the other hand, algorithms based on transfer learning do not use explicit support and
query sets during training, instead, all categories are used as input for training. During
the testing phase, both methods follow the same procedure. The testing set is divided into
multiple episodes according to the N-way K-shot scenario. It is worth noting that there is
no overlap in categories between the training and test set [33,34].

In terms of meta-learning-based few-shot scene classification algorithms, Zhai et al. [27]
explored the application of lifelong learning techniques for scene recognition in remote
sensing images. Lifelong learning refers to the ability of a machine learning model to
continuously learn and adapt from new data throughout its lifetime. Cheng et al. [25]
leveraged a Siamese Prototypical Network (SPNet), where two branches share weights
and learn to extract features from both support and query images, with prototype self-
calibration and inter-calibration. Ji et al. [26] addressed the challenges of data scarcity and
domain shift. The proposed method aims to improve the performance of few-shot scene
classification models by leveraging auxiliary objectives and incorporating transductive
inference. Li et al. [35] combined the benefits of deep feature extraction and metric learn-
ing to improve few-shot classification performance in remote sensing images. The key
components of DLA-MatchNet [35] include a deep layer aggregation backbone network
and a matching network. Zeng et al. [36] incorporated an iterative process that progres-
sively refines the feature representations and classification boundaries. It consists of two
main components: an embedding network and an iterative distribution learning strategy.
Huang et al. [37] proposed a task-adaptive attention component, which combined the
meta-learning training mechanism and graph neural network transductive inference in
few-shot scene classification.

In terms of transfer learning based few-shot scene classification algorithms, Gong et al. [28]
proposed the two-path aggregation attention network with quad-patch data augmentation,
which improves the few-shot scene classification performance from both the perspectives
of data and network structure. Li et al. [29] proposed a multiform ensemble enhancement
strategy to explore the effects of different self-supervised auxiliary tasks on the feature
extraction performance.

Self-Supervised Learning

Self-supervised learning is a method that utilizes the inherent information within data for
unsupervised learning, with the goal of acquiring useful representations or features [38–40].
It can learn from large-scale unlabeled data, reducing reliance on annotated data, and is
applicable in scenarios with limited data or challenging annotation conditions. Additionally,
it can be used as a form of pretraining, where learned features are fine-tuned to enhance
performance on other tasks [29,41].

In the field of remote sensing, self-supervised learning has been extensively applied to
various specific tasks and has achieved promising results [42]. For example, self-supervised
learning has been widely explored in various domains such as hyperspectral unmixing [43],
change detection [44], SAR target recognition [45], and hyperspectral classification [46].

In terms of few-shot remote sensing scene classification, Zhai et al. [47] applied the
Bootstrap Your Own Latent (BYOL) [48] contrastive learning algorithm to feature extraction
in the context of few-shot scene classification, with the aim of obtaining better sample
representations. Li et al. [29] explored the impact of different self-supervised auxiliary
tasks combined in various forms on feature extraction for few-shot scene classification.
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Gong et al. [43] employed the SimCLR [49] to explore the transfer relationship between
the source domain and target domain in few-shot scene classification scenarios. In [50],
the Meta-FSEO approach is proposed for few-shot remote sensing scene classification.
Specifically, it is achieved through self-supervised embedding optimization. This method
aims to train a model using a meta-learning framework that combines self-supervised
learning and meta-learning concepts to improve the model’s generalization performance
and adaptability by optimizing embedding representations. In terms of the current research,
the exploration of self-supervised few-shot scene classification is relatively insufficient,
and most studies focus on inductive inference, with only a few studies focusing on trans-
ductive inference.

3. Methodology
3.1. Overview

Few-shot classification refers to the task of training a model with very limited samples
per class, in order to accurately classify new unseen samples [13,19]. It is a demanding
task that enables the model to have strong generalization ability, extracting representative
features and patterns from a small number of samples and applying them to classify unseen
samples. Generally, the dataset in few-shot learning is divided into a base dataset and
a novel dataset, and it is important to note that these two datasets have no overlapping
classes. We adopt a training paradigm based on transfer learning, which means that in the
training phase, the base dataset is not divided into multiple episodes, but all classes are
directly trained together like traditional classification algorithms. However, during testing,
the novel dataset is divided into multiple episodes for inference. To explain our point in
a more straightforward manner, we take the common scenario of an N-way K-shot as an
example. First, in constructing the support set and query set, N classes are selected from
the novel dataset, and K labeled samples are provided for each class as the support set.
The query set consists of unlabeled samples from these N classes. The goal is to classify
the samples in the query set into their respective classes with the assistance of a small
number of reference samples. Few-shot scene classification presents a challenge due to the
scarcity of training samples available for each class. This necessitates the model to learn
and generalize from a small number of samples to accurately classify the unseen samples.

We propose the CS2TFSL framework as illustrated in Figure 1. Initially, the feature
extractor is trained by incorporating two collaborative self-supervised learning tasks,
namely rotation and spatial contrastive learning (SCL), alongside the original semantic
class prediction task. Once the training is complete, the feature extractor is fixed and
directly applied during the inference phase. The features of both the support set and query
set samples are first extracted, followed by using transductive inference to determine the
class labels of the query samples.

3.2. Collaborative Self-Supervised Learning

In the training phase of the feature extractor, the total loss function LT can include the
following two components:

LT = LCE + LSSL, (1)

where LCE and LSSL represent the loss functions for semantic class prediction and self-
supervised prediction, respectively.

The cross-entropy loss function, denoted as LCE, is widely employed in classification
tasks to quantify the disparity between the predicted class probabilities and the actual
class labels. It serves as a measure of the model’s accuracy in assigning the correct class.
Mathematically, it can be defined as follows:

LCE = −∑(y ∗ log(ŷ)), (2)

where y is the true class label, and p is the predicted class probabilities. The cross-entropy
loss function penalizes significant disparities between the predicted probabilities and the



Electronics 2022, 12, 3846 5 of 14

true label. By doing so, it motivates the model to reduce the differences and enhance its
prediction accuracy. In essence, it encourages the model to better align its predictions with
the true labels, leading to improved performance.

x

Feature ExtractorBase Dataset

Semantic Prediction

Rotation Prediction

CSL Prediction

Airplane Church

0° 90°

Support Set

Query Set
Feature Extractor

Frozen

Transductive Inference

Figure 1. The framework of the proposed CS2TFSL. Initially, the feature extractor is trained using
three tasks: rotation, spatial contrastive learning, and semantic class prediction. These tasks are
designed to improve the performance and generalization ability of the feature extractor through
collaborative self-supervised learning. After the training phase, the feature extractor is frozen and
directly deployed to the inference phase. During inference, both the support set and query set
samples undergo feature extraction. The class labels of the query samples are then determined using
transductive inference. We present a case study of five-way one-shot .

LSSL is a composite loss function formed by two self-supervised auxiliary tasks. Its
definition is as follows:

LSSL = λR ∗ LR + λSCL ∗ LSCL, (3)

where LR is the loss function for the rotation pretext task. LSCL is the loss function for the
spatial contrastive learning pretext task. λR and λSCL are weight parameters that control the
importance of each task in the overall loss. Each task aims to provide additional learning
signals to improve the feature extractor’s representation capabilities. The weights λR and
λSCL allow for adjusting the relative impact of each task on the overall training process.

The purpose of the rotation prediction task is to determine the specific 2-D rotation
transformation applied to an input image. In contrast to using semantic class labels,
the supervision signal in this task is independent of any particular category, which facilitates
information exchange across different classes. Additionally, using rotation as a supervisory
signal assumes that the neural network has already acquired knowledge about object
categories and learned about their constituent parts before being able to perform accurate
rotation recognition. Through training the model to predict the precise rotation for an
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image, the neural network implicitly learns to extract robust and discriminative features that
capture relevant information about objects and their spatial relationships. This approach
promotes a deeper understanding of objects and refines the model’s ability to distinguish
between different classes. We define a collection of rotation operators as Θ = {φω}Ω

ω=1,
where xω = φω(x) represents the rotated image, and Ω is the total number of rotations.
Given the parameters ∆ f = [α1, α2, ..., αR] of the rotation classifier, the probability for the
input image xj is given by:

p(ŷφ
k = ω|xk) =

exp(αT
ω fθ(φω(xk)))

∑Ω
ω=1 exp(αT

ω fθ(φω(xk)))
. (4)

where fθ represents the feature extractor.
Based on this, the LR can be defined as follows:

LR = −
B

∑
k=1

Ω

∑
ω

∏(yφ
k = ω) log(p(ŷφ

k = ω|xk)). (5)

where B represents the batchsize, and yk and ŷk denote the rotated ground-truth pseudo-
labels and the predictions made by the model, respectively.

Spatial contrastive learning utilizes the concept of spatial similarity to evaluate the
degree of similarity or agreement between two different feature representations. In simpler
terms, when conducting spatial contrastive learning, we use a measure called “spatial
similarity” to determine how similar or different two feature representations are from each
other. This approach is integral in assessing the similarity and agreement between different
features. This similarity captures the spatial relationship or alignment between the features
extracted from different views or augmentations of the same image. The spatial similarity
metric helps in determining the degree of correspondence or match between the extracted
features, which is crucial for the contrastive loss function used in self-supervised learning.
The definition of spatial similarity sim(si, sm) between two features is consistent with [51].
Following this lead, the spatial contrastive learning loss function can be defined as:

LSCL =
2B

∑
i=1

1
2Byi − 1

2B

∑
j=1

1i 6=j · 1yi 6=yj · `ij, (6)

`ij = − log
exp(sim(si, sj)/τ)

∑2B
m=1 1i 6=m exp(sim(si, sm)/τ)

, (7)

where 1condition ∈ {0, 1} is an indicator function, which takes a value of 1 only if the
specified condition is satisfied. Byi represents the total number of images within a dataset
that possess the same label yi. Moreover, τ denotes the scalar temperature parameter.

3.3. Transductive Inference

In few-shot transductive inference, a classifier that operates with limited training
examples has access to both the support dataset (containing labeled examples) and the
complete query dataset (unlabeled examples) during the prediction phase. In our approach,
we utilize a straightforward soft k-means (SKM) classifier [30] for transductive inference.
This classifier divides the query set into smaller subsets, each associated with a small
number of labeled support sets. After the previous training is completed, we freeze the
feature extractor and proceed directly to inference. Firstly, we obtain the sample feature
representationsK for the support set and query set. Next, we need to preprocess the vectors
by centering them and projecting them onto a hypersphere, as shown below:

KC =
K− K̃
||K − K̃||2

, (8)
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where the K̃ is the average feature of the support set.
First, given that the barycenters in transductive inference require recalculation on each

occasion, where t is the index of the sequence, the initialization of Ñt can be computed
as follows:

Ñu+1
t = ∑

KC∈Sk∪Q

w(KC, Ñu
t )

∑K′C∈Sk∪Q
w(K′C, Ñu

t )
KC, (9)

where S represents the support set, andQ denotes the query set. Sk is the feature extracted
by the model in the k-th category. w(KC, Ñu

t ) is the weighting function on KC, which
determines the probability associated with the C̃k, and the weight is calculated based on a
decreasing function `2 of the distance between the data samples and the class centroids. Its
definition is as follows:

w(KCH , C̃t
k) =

 1, i f KC ∈ Sk
exp(−β||KC−Ñu

t ||22)
∑N

u=1 exp(−β||KC−Ñu
t ||22)

, i f KC ∈ Q
,

where β represents the temperature value.
Based on this, all the unlabeled samplesKC in the query set can be classified as follows:

Class(KC, [Ñ∞
1 ..., Ñ∞

N ]) = arg min
t
||KC − Ñ∞

N ||2. (10)

4. Experimental Results and Analysis
4.1. Datasets

To assess the efficacy of our proposed CS2TFSL, we conducted comprehensive com-
parisons between the CS2TFSL and state-of-the-art methods on two widely recognized
benchmark remote sensing few-shot scene classification datasets, namely the WHU-RS19
dataset [52] and the NWPU-RESISC45 dataset [53].

The WHU-RS19 dataset [52] is a widely used remote sensing dataset for scene classifi-
cation. It was created by Wuhan University and consists of 19 classes of high-resolution
remote sensing images. This dataset covers various land cover types, including urban
areas, agricultural fields, forests, water bodies, and more. The images are captured by
satellites with different sensors, such as SPOT-5 and GeoEye-1, providing a diverse range of
spectral and spatial information. With a total of 2000 images, the dataset offers a balanced
distribution of samples across different classes, ensuring equal representation for each
category. Each image has a resolution of 600 × 600 pixels and is labeled with one of the
19 scene classes.

The NWPU-RESISC45 dataset [53] is created by Northwestern Polytechnical University
and consists of 45 different scene categories. The images in the NWPU-RESISC45 dataset
are captured from various regions using high-resolution satellite sensors, covering a wide
range of scene types such as urban areas, farmland, forests, bodies of water, and industrial
zones. Specifically, it is obtained using Google Earth satellite imagery and the Google Earth
API. Each category in the dataset contains approximately 700 images, resulting in a total
of around 31,500 images. This ensures an adequate number of samples and class balance,
enabling effective evaluation of scene classification algorithms. Each image has a resolution
of 256 × 256 pixels and is stored in JPEG format. The dataset also includes label files for
each image, indicating their corresponding scene category.

In the context of few-shot remote sensing scene classification, we follow the parti-
tioning method as described in [26,28,29,35,47]. The detailed division of the training set,
validation set, and testing set for the two benchmark datasets is illustrated in Figure 2.
From the information above, it can be inferred that the WHU-RS19 and NWPU-RESISC45
datasets pose comprehensive challenges to the few-shot scene classification algorithm
performance in terms of the scale, resolution, and data volume.
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Figure 2. The detailed division of the training set, validation set, and testing set for the two benchmark
datasets. (a) WHU-RS19 dataset. (b) NWPU-RESISC45 dataset.

4.2. Implementation Details

The backbone used in CS2TFSL is ResNet-12, which is commonly employed in few-shot
scene classification task. In line with [26,28,29,35,47], we report the results for both five-way
one-shot and five-way five-shot scenarios, with data presented within a 95% confidence
interval. We conducted all our experiments using the Pytorch framework on CUDA
11.3, with a single NVIDIA RTX 3090 graphics card equipped with 24 GB. Based on the
above software and hardware conditions, we trained our network with 600 epochs and
a batch size of 16. We selected the SGD (Stochastic Gradient Descent) optimizer with a
momentum of 0.9. In terms of comparative algorithms, we selected 14 classical and state-
of-the-art few-shot classification algorithms, namely MAML [54], LLSR [27], Ji et al. [26],
baseline [33], S2M2 [55], Meta-SGD [56], MatchingNet [57], ProtoNet [58], RelationNet [59],
DLA-MatchNet [35], TAE-Net [37], IDLN [36], CAN+T [60], SPNet [25], and DANet [28].
For fair comparison, all comparison methods were reported from their respective papers
and taken from the final experimental results.
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4.3. Comparison with Other Methods
4.3.1. Results on the WHU-RS19 Dataset

Table 1 presents a performance comparison between our proposed CS2TFSL and the
counterparts on the WHU-RS19 dataset. The best results are highlighted in bold. In the five-
way one-shot scenario, the top three performers achieved accuracy rates of 86.03± 0.13%
for CS2TFSL, 85.41 ± 0.35% for Ji et al. [26], and 81.06 ± 0.60% for SPNet [25]. More
specifically, CS2TFSL not only outperformed the second-place method by a margin of 0.62%
in terms of accuracy but also significantly surpassed the other competitors. The outstanding
performance of the CS2TFSL is also evident in the five-way five-shot scenario. In more detail,
CS2TFSL outperformed the second-best algorithm (DANet [28]) by 1.19% and surpassed
the third-best algorithm (baseline [33]) by an additional 2.86%. In general, the proposed
CS2TFSL performed well on the small-scale WHU-RS19 dataset. This is attributed to the
synergistic training of two self-supervised auxiliary tasks, which effectively explore the
unlabeled data in the WHU-RS19 dataset. Additionally, the combination of information
from other samples in the dataset and the use of transductive inference contribute to
its performance.

Table 1. Comparing the overall performance (in %) of the proposed CS2TFSL with other few-shot
scene classification methods on the WHU-RS19 dataset; we highlight the best result in bold.

Method
5-Way

1-Shot 5-Shot

MAML [54] 59.92± 0.35 82.30± 0.23
LLSR [27] 57.10 70.65
Ji et al. [26] 85.41± 0.35 92.28± 0.13
baseline [33] 75.57± 0.36 88.65± 0.18
S2M2 [55] 69.00± 0.41 82.14± 0.21
Meta-SGD [56] 51.54± 2.31 61.74± 2.02
MatchingNet [57] 76.14± 0.35 84.00± 0.20
ProtoNet [58] 77.00± 0.36 91.70± 0.15
RelationNet [59] 77.76± 0.34 86.84± 0.15
DLA-MatchNet [35] 70.21± 0.32 81.86± 0.52
IDLN [36] 73.89± 0.88 83.12± 0.56
TAE-Net [37] 73.67± 0.74 88.95± 0.52
CAN+T [60] 69.79± 0.56 79.71± 0.22
SPNet [25] 81.06± 0.60 88.04± 0.28
DANet [28] 75.02± 0.16 89.21± 0.07
CS2TFSL (Ours) 86.03 ± 0.13 93.09 ± 0.05

4.3.2. Results on the NWPU-RESISC45 Dataset

Table 2 presents a performance comparison between our proposed CS2TFSL and
the counterparts on the NWPU-RESISC45 dataset. The best results are highlighted in
bold. From the experimental results, it can be observed that the CS2TFSL also performed
remarkably well on the large-scale NWPU-RESISC45 dataset, achieving the best results
in both five-way one-shot and five-way five-shot scenarios. Specifically, in the five-way
one-shot scenario, the CS2TFSL outperformed the second-best algorithm (IDLN [36]) by a
significant margin of 8.42%. However, in the five-way five-shot scenario, it only surpassed
the second-best algorithm (DANet [28]) by a slight margin of 1.19%. This is because
the NWPU-RESISC45 dataset is a very large-scale dataset, and with only one reference
sample, the limitation of inter-class similarity becomes significantly magnified. However,
as the number of reference samples increases, the model’s requirement for small-sample
classification decreases. This precisely demonstrates that the CS2TFSL also exhibits very
stable performance in extreme scenarios.
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Table 2. Comparing the overall performance (in %) of the proposed CS2TFSL with other few-shot
scene classification methods on the NWPU-RESISC45 dataset; we highlight the best result in bold.

Method
5-Way

1-Shot 5-Shot

MAML [54] 58.99± 0.45 72.67± 0.38
LLSR [27] 51.43 72.90
Ji et al. [26] 69.80± 0.53 82.03± 0.30
baseline [33] 69.02± 0.46 85.62± 0.25
S2M2 [55] 63.24± 0.47 83.23± 0.28
Meta-SGD [56] 60.63± 0.90 75.75± 0.65
MatchingNet [57] 61.57± 0.49 76.02± 0.34
ProtoNet [58] 64.52± 0.48 81.95± 0.30
RelationNet [59] 65.52± 0.85 78.38± 0.31
DLA-MatchNet [35] 71.56± 0.30 83.77± 0.64
IDLN [36] 75.25± 0.75 84.67± 0.23
TAE-Net [37] 69.13± 0.83 82.37± 0.52
CAN+T [60] 69.89± 0.58 81.04± 0.33
SPNet [25] 67.84± 0.87 83.94± 0.50
DANet [28] 74.30± 0.20 87.29± 0.11
CS2TFSL (Ours) 83.67 ± 0.25 88.48 ± 0.17

5. Discussion

To fully demonstrate the effectiveness of the components proposed by the CS2TFSL,
we conducted ablation experiments in this section, including collaborative self-supervised
learning and transductive inference. Figure 3 displays the heatmap visualization of the
ablation experiments of the CS2TFSL under different self-supervised auxiliary tasks. In
the figure, “baseline” refers to the pretraining model of the feature extractor without
any self-supervised auxiliary tasks. “rotation” and “SCL” indicate the inclusion of the
rotation pretext task and spatial contrastive learning pretext task, respectively. It can be
observed from the figure that the feature extractor in the baseline model lacks the ability
to capture crucial objects in the scene. The network’s attention does not focus on the
key information in the scene. By incorporating self-supervised auxiliary tasks during
pretraining, the models show improved ability to capture the information about crucial
objects in the scene. However, these two pretext tasks, rotation and SCL, have their own
strengths and weaknesses, and they only perform well in a few specific scenes. For example,
in the basketball court scene, both tasks do not perform well. On the other hand, in the
river scene, the rotation task performs worse than the SCL task. Conversely, in the ground
track field scene, the opposite effect is observed.

In addition, the quantitative analysis of different self-supervised auxiliary task ablation
experiments in two benchmark datasets is shown in Table 3. From the table, it can be
observed that the design of the self-supervised auxiliary tasks improves the performance
on few-shot remote sensing scene classification. The improvement in spatial contrastive
learning is more significant compared to the effect of rotation tasks. Moreover, combining
both approaches in the CS2TFSL leads to an incremental improvement in accuracy for few-
shot scene classification. Furthermore, Table 3 also presents the comparison results between
inductive inference and transductive inference on two benchmark few-shot classification
datasets. Compared to the traditional approach of using inductive inference in most few-
shot scene classification algorithms, transductive inference, which incorporates additional
information from other samples, has shown better performance in terms of classification
accuracy. Specifically, transductive inference has shown a significant improvement in
overall accuracy, with at least a 1% increase. This improvement is quite substantial in the
context of the few-shot scene classification task.
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baseline

Rotation

SCL

Both

Airport Basketball Court River Ground Track Field Intersection

Figure 3. The heatmaps comparing the visualization of different self-supervised components in the
CS2TFSL, including the baseline (no self-supervised auxiliary task), rotation self-supervised auxiliary
task, spatial contrastive learning (SCL) self-supervised auxiliary task, and the CS2TFSL containing
the collaboration of both.

Table 3. The ablation experimental results of the CS2TFSL self-supervised auxiliary task, and the
comparison between the inductive inference and transductive inference experiments, where “†”
represents the inductive inference. We highlight the best result and the second-best result in bold and
underline, respectively.

Dataset Method
5-Way

1-Shot 5-Shot

WHU-RS19

baseline † 68.86± 0.22 76.74± 0.10
+Rotation † 75.18± 0.18 80.57± 0.09
+SCL † 79.69± 0.15 85.29± 0.09
CS2TFSL † 85.26± 0.13 91.42± 0.07

baseline 70.16± 0.22 80.39± 0.10
+Rotation 77.14± 0.21 83.18± 0.09
+SCL 83.64± 0.17 88.83± 0.06
CS2TFSL 86.03 ± 0.13 93.09 ± 0.05

NWPU-RESISC45

baseline † 70.39± 0.29 80.65± 0.18
+Rotation † 74.65± 0.26 82.38± 0.18
+SCL † 78.19± 0.26 85.66± 0.18
CS2TFSL † 80.37± 0.26 87.58± 0.17

baseline 73.07± 0.29 81.90± 0.18
+Rotation 76.99± 0.25 83.67± 0.18
+SCL 80.15± 0.25 84.10± 0.17
CS2TFSL 83.67 ± 0.25 88.48 ± 0.17
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6. Conclusions

In this paper, we introduce a novel cooperative self-supervised transductive few-shot
learning algorithm for remote sensing scene classification, called CS2TFSL. We address
the challenge of limited labeled data by leveraging two distinct self-supervised auxiliary
tasks to collaboratively train the feature extractor and obtain a powerful representation.
Subsequently, the trained feature extractor requires no further training, and its parameters
are frozen, enabling seamless transfer to the inference stage. During the inference stage, we
employ transductive inference, combining additional sample information in the data to
enhance the associative information between the support and query sets. Extensive com-
parisons with state-of-the-art (SOTA) few-shot scene classification algorithms demonstrate
the effectiveness of the CS2TFSL. Furthermore, we conduct detailed ablation experiments to
analyze the components of the CS2TFSL. The experimental results highlight significant and
promising performance improvements in few-shot scene classification achieved through
the combination of self-supervised learning and transductive inference.
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