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Abstract: Few-shot object detection (FSOD) aims to detect objects belonging to novel classes with few
training samples. With the small number of novel class samples, the visual information extracted is
insufficient to accurately represent the object itself, presenting significant intra-class variance and
confusion between classes of similar samples, resulting in large errors in the detection results of
the novel class samples. We propose a few-shot object detection framework to achieve effective
classification and detection by embedding semantic information and contrastive learning. Firstly,
we introduced a semantic fusion (SF) module, which projects semantic spatial information into
visual space for interaction, to compensate for the lack of visual information and further enhance
the representation of feature information. To further improve the classification performance, we
embed the memory contrastive proposal (MCP) module to adjust the distribution of the feature
space by calculating the contrastive loss between the class-centered features of previous samples
and the current input features to obtain a more discriminative embedding space for better intra-
class aggregation and inter-class separation for subsequent classification and detection. Extensive
experiments on the PASCAL VOC and MS-COCO datasets show that the performance of our proposed
method is effectively improved. Our proposed method improves nAP50 over the baseline model by
4.5% and 3.5%.

Keywords: object detection; few-shot learning; semantic fusion; contrastive learning; memory
contrastive proposal

1. Introduction

Deep learning-based object detection algorithms rely on large amounts of training
data to achieve excellent performance [1–4]. In real-world scenarios, such as in the medical
and aviation fields, there is a problem of scarce sample data. With a restricted sample size,
existing deep learning algorithms are not very effective when it comes to object detection.
In contrast, humans can learn new knowledge quickly with very few sample examples.
FSOD [5] draws on human learning capabilities to rapidly learn novel category knowledge
based on prior knowledge for more accurate classification and detection in a few novel
class sample instances.

The FSOD is currently studied mainly based on meta-learning [5–8] and fine-
tuning [9–11] methods. Meta-learning utilizes a learn-to-learn methodology and allows for
rapid adaptation without relying on additional training, which exhibits lower performance.
The fine-tuning-based method has achieved better performance by directly fine-tuning box
models on a few sample datasets. For example, TFA [9] is a two-stage fine-tuning training
model based on the Faster R-CNN [12] framework. In the first stage, a large amount
of base-class data is involved in pre-training. In the second stage, a balanced dataset is
involved in fine-tuning the box model to further improve the model’s performance. The
model also demonstrates the effectiveness of the fine-tuning-based method.

When visual information about a novel class is limited, we consider introducing
rich semantic information to improve the diversion of the detector to the novel class.

Electronics 2023, 12, 3835. https://doi.org/10.3390/electronics12183835 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183835
https://doi.org/10.3390/electronics12183835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12183835
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183835?type=check_update&version=1


Electronics 2023, 12, 3835 2 of 14

Indeed, both semantic and visual information describes the detection object in different
ways [13]. The visual information extracted by the feature extractor is limited, especially
in the presence of noise and intricate background samples, which are more likely to be
identified incorrectly. In contrast to the visual features, the semantic information of the
class label of an image is invariant. The motivation for introducing semantic information
is displayed in Figure 1. We use the word-embedding model glove [14] to embed the
semantic representation into the visual space, complementing the visual features via the
interaction between them to achieve a deeper focus on the significant features for more
accurate recognition.
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Figure 1. The illustration diagram shows the motivation for introducing semantic information. In the
few-shot case, the visual features of the novel object are inadequate. With the embedding of semantic
information, we can supplement the feature information of novel objects and enhance the expression
of feature information to achieve accurate discrimination.

Our aim was to further improve the detection of FSOD to solve the misclassification
problem in the classification stage, where the discrimination of novel and base categories is
prone to confusion. We needed a restriction that enables features from the same category to
be aggregated and those from different categories to be separated. Therefore, we introduced
the memory contrastive proposal (MCP) module to adapt the feature distribution. During
the training phase, we constantly update the class-centered features using a dynamic
update with the help of a memory bank. We calculate the contrastive loss between the
current input features and the class-centered features in the previous memory bank to adapt
the feature space distribution, thus enabling the classifier to learn a more discriminative
embedding space and achieve more accurate classification.

The main contributions of this paper are as follows:

• We introduce semantic information and design the semantic fusion (SF) module, in
which we achieve an interaction between semantic and visual information to enhance
the representation of feature information and achieve a deeper focus on significant
features.

• We designed the memory contrastive proposal (MCP) module to learn increasingly
accurate feature representations by continuously updating the class-centered features.
Thus, it enhances the intra-class embedding capability, allowing for a more discrimina-
tive embedding space to improve the performance of the detector.

• Experiments based on the PASCAL VOC and MS-COCO datasets are conducted to
validate the effectiveness of our proposed method. Moreover, we use the visualization
methods Grad-CAM and t-SNE for a more intuitive presentation of the experimental
results.

2. Related Works
2.1. General Object Detection

The task of object detection is to identify all interesting parts within an image and
determine their class and location. Deep learning-based object detection algorithms fall
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into two categories, which are the one-stage object detection algorithms and the two-stage
object detection algorithms. The one-stage framework, typified by the YOLO [15–17] series,
directly predicts the location and class of objects based on features without region proposals.
The major problems are anchors deviating from the object area and feature information from
inaccurate locations with lower detection accuracies [18,19]. The two-stage framework,
typified by the R-CNN [12,20,21] series, primarily performs classification and localization
tasks on these region proposals after first generating several potential region proposals. In
contrast, the two-stage algorithms are inferior to one-stage in real-time but usually have
superior detection accuracy. Both types of detection algorithms rely on a large amount of
annotated data.

2.2. Few-Shot Object Detection

Few-shot learning is a challenging machine learning task that is extremely difficult
to study for the bias in the distribution of the visible and invisible classes. Nowadays,
most of the research is carried out based on classification [22,23]. Few-shot object detection
(FSOD) is a core problem in few-shot learning, which involves classification and location
tasks that are more difficult to perform than classification [24,25]. FSOD research is mainly
based on meta-learning and fine-tuning methods. Among them, FSRW [5] fully learns the
basic feature information based on meta-learning methods to rapidly learn novel objects
by predicting feature weights. Meta R-CNN [7] proposes a meta-learning paradigm that
incorporates feature information from a support set dataset into a network model in a
supervised manner with a loss function. TFA [9] used a two-stage training strategy to
fine-tune the detector, which achieves better performance than the meta-learning-based
method. FSCE [10] proposed a training strategy for contrastive proposal encoding to
improve detection performance by contrastive learning to obtain more significant visual
representations. MPSR [11] adds FPNs to the backbone network to address the problem of
sparse scale distribution in FSOD. Considering both simplicity and effectiveness, we adopt
the two-stage fine-tuning method. We introduce a semantic representation into the FSOD
task and propose a new method of contrastive learning.

2.3. Semantic in Visual Tasks

Semantic information has been widely applied in the zero-shot learning [26–28] task
to learn the interactive projection of visual space and semantic space. Zero-shot learning
has made meaningful progress by aiding with semantic information. In contrast, the study
of semantic information is relatively less in FSOD. KGTN networks [29] represent the
semantic associations among base classes and novel classes in the form of the knowledge
graph, where the graph nodes represent classification weights and the edges represent
semantic relationships, learning deeply feature information. SRR-FSOD [30] combines
semantic relations and visual information to perform relational reasoning in the semantic
space for learning novel objects rapidly. In contrast to the above methods, we project
semantic information into the visual space for fusion to further enhance the representation
of visual features.

2.4. Contrastive Learning

Recent studies apply contrastive learning to the self-supervised learning domain,
where the core idea is to learn a better feature representation space utilizing data aug-
mentation that effectively distinguishes between positive and negative samples [31,32]. In
contrast to self-supervised learning, the idea of contrastive learning in supervised learning
is to maximize the consistency between images of the same category in the embedding
space and minimize the similarity between images of different categories. Supervised
contrastive learning [33] introduces label information to extend contrastive learning by
allowing multiple positive pairs for one instance, and the proposed supervised contrastive
loss function effectively improves classification accuracy. While contrastive learning is
increasingly used in image classification tasks [23], using contrastive learning ideas in
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FSOD work is rare. FSCE [10] first applied contrastive learning in FSOD, which achieved
performance improvement by facilitating the formation of a more discriminative feature
space via contrastive proposal encoding. CAReD [34] proposed a contrastive learning
method incorporating attention mechanisms that significantly improved detection perfor-
mance. In contrast to the above methods, we propose the concept of class-centered features
to adjust the feature distribution in the embedding space by calculating the contrastive
loss between the current input sample features and the previous class-centered features to
achieve better detection.

3. The Proposed Method

In this section, we first define the basic problem setting of FSOD. Then, we introduced
the semantic fusion (SF) module and memory contrastive proposal (MCP) module. Finally,
we introduced the two-stage training strategy. We propose the method shown in Figure 2.
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Figure 2. The framework we propose for FSOD. We add semantic fusion (SF) and memory contrastive
proposal (MCP) modules. The SF module embeds semantic information in the semantic space for
interaction in the visual space. The MCP module aims to learn a more discriminative embedding
space between different categories. The combination of the two modules is designed to achieve more
accurate detection under limited sample conditions.

3.1. Problem Definition

We reference recent studies on FSOD [9,10] for problem definition. The dataset in-
volved in training contains two parts: a base set Dbase = {(xi, yi), i ∈ {1, 2, . . . , Nb}} contain-
ing a large number of labeled samples and a novel set Dnovel = {(xi, yi), i ∈ {1, 2, . . . , Nn}}
containing a small number of novel class samples, where xi is the image and yi is the
corresponding class label. The number of samples per class in Dnovel sets k. Notably, the
class set of base class data is indicated by Cbase, while the class set of novel class data is
denoted by Cnovel , and Cbase ∪ Cnovel = ∅. FSOD aims to learn extensively from Dbase and
generalize rapidly to Dnovel . We follow a classical two-stage training strategy. In the first
base training stage, training is performed similarly to a traditional object detector. In the
second novel class fine-tuning stage, we sample from Dbase ∪ Dnovel to form a balanced
dataset to participate in training and further fine-tune the parameters of the base detector.
With the two-stage training strategy, the detectors learn more class parameters and aim to
detect all objects belonging to Cbase ∪ Cnovel in the test set.

3.2. Semantic Fusion

In the few-shot setting, the feature extractor extracts restricted features, and we pro-
pose to adopt semantic knowledge to complement visual features in a top–down manner
with more attention weights distributed for critical features. We extract visual features fq by
a backbone feature extractor and encode the features as a feature vector v(v ∈ Rdv) using
a fully connected (FC) layer, where dv denotes the dimensionality of the feature vector.
We choose the glove [14] word-embedding model to process the class label information to
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obtain the word vector We =
{

Wc
e ∈ Rds

}N

c=1
, which represents the semantic information.

Here, Wc
e denotes the word vector corresponding to category c, ds is the dimensionality of

the word embedding, and N is the number of object classes. To interact with the semantic
and visual information, we design a semantic fusion (SF) module, which transforms via
a multilayer perceptron (MLP) to project the word vector information from the semantic
space into the visual space h : RN×ds → RN×dv . We obtain the visual attention of different
spatial regions by nonlinear changes. This process could be understood as paying more
intense attention to critical feature information by fusing it with semantic information,
achieving an enhancement of feature information. As shown in Equation (1), the SF module
can be indicated as

SF(v) =
1
N

N

∑
i=1

so f tMax
(

h
(

Wi
e

))
⊗ vi (1)

The SF module, performing mapping through the softMax function, uses the form of
⊗ a dot product to achieve the interaction from semantic information to visual information,
which guides the model to pay attention to more critical feature information via semantic
information, thus obtaining enhanced visual features.

3.3. Memory Contrastive Proposal

After obtaining the visual features fused with semantic information through the SF
module, the features are sent to the region proposal network (RPN) [12] to generate a series
of region proposals p = RPN(v̂), which is followed by extracting the region proposal
feature information f̂q through the region of interest (RoI) and encoding the features into
a feature vector vRoI ∈ RP×D1 using the fully connected (FC) layer. Among them, P
denotes the number of RoI features, and D1 denotes the dimensionality of the RoI feature
vector, which is often set to D1 = 1024. Previous FSOD work [9,10] generally performs
classification and regression directly after extracting the feature information, which is
usually not highly accurate. It is often due to confusion between the novel class and
the base class, which results in misclassification. We introduced the memory contrastive
proposal (MCP) module to solve this problem, as shown in Figure 3. We first project the
input proposal features into the embedding space, observe the feature distribution, and find
the corresponding class-centered features by distance calculation to store in the memory
bank. The new input features are then learned by comparing them with previous features
in the memory bank, distancing the distance in the feature representations of cases from
different categories and closing the distance in the feature representations of samples from
the same category, thus forming tighter clusters between similar classes and keeping longer
distances around various classes, further forming a more discriminative embedding space.

Our proposed MCP module relies on an external memory bank that stores the feature
centers of previous sample features with different classes corresponding to distinct centers,
which we call class-centered features. We perform contrastive learning between the feature
representation of the current sample and the class-centered features of the potential spatial
features from the repository, calculating the memory contrastive proposal loss to adjust the
feature distribution to learn a well-embedding space.

Specifically, we first initialize the all-zero vector as the class-centered features of each
category into the memory bank M (in the case of the balanced dataset constructed by
PASCAL VOC, which contains 20 categories, it corresponds to 20 all-zero vectors in our M),
M0 =

[
m0

i
]
, where i ∈ Cbase ∪ Cnovel . Then, we obtain the novel class-centered features by

the weighted average of the feature representation of the current input MCP module and
the class-centered features in the memory bank and update the memory bank in parallel.
We denote the feature vi

ROI of class I extracted by RoI as θvi and the corresponding class-
centered feature mi in the memory bank M as θmi , we and update θm by the following
equation:

θk+1
mi
← µθk

vi
+ (1− µ)θk

mi
(2)
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where µ ∈ [0, 1] is a momentum factor and θk+1
mi

represents the class-centered features of
the feature representation of the i category in the kth iteration. Only the parameter θk

vi
is

involved in the back-propagation update. The above momentum Equation (2) makes the
variation θk+1

mi
smoother. In this paper, we use the form of the contrastive loss function called

InfoNCE to represent the contrastive loss between the previous class-centered feature and
the current input feature representation. In Equation (3), θ+m represents the class-centered
feature of vi

RoI in M corresponding to the input category and τ represents the temperature
hyperparameter.

Lmcp = − log
exp

(
θvi ·

θ+m
τ

)
∑Cb

j=1 exp
(

θvi ·
θ

j
m
τ

) (3)
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Figure 3. Detailed architecture of the memory contrastive proposal module. Different colors represent
different categories. By constantly updating the class-centered features in the memory bank, obtain a
more discriminative feature distribution.

In addition, Algorithm 1 provides a detailed training procedure for the MCP module.
Through iterative computation, the class-centered features in the memory bank are increas-
ingly accurate class representations. It also helps to achieve a good feature distribution for
the input features and to prepare them for subsequent classification.

Algorithm 1 Memory contrastive proposal

Input: Base set Dbase, novel set Dnovel , image xi, feature vector vRoI is represented as θvi ,
momentum factor µ, temperature parameters τ. Initialize memory bank M = [mi], where
mi = [0]1×d is represented as θmi , i ∈ Cbase ∪ Cnovel and d represents the dimension of the feature
vector.
Output: Update the memory bank M and contrastive loss Lmcp.
1: for xi ∈ Dbase ∪ Dnovel do
2: RoI extract feature information for RPN: θvi

3: Update the memory bank M by the feature representation θvi with a momentum
4: factor µ: θmi ← µθvi + (1− µ)θmi

5: Calculate memory contrastive proposal loss: Lmcp = − log
exp(θvi ·θ

+
m /τ)

∑
Cb
j=1 exp

(
θvi ·θ

j
m/τ

)
6: where θ+m represents the class-centered features corresponding to θvi

7: end for

3.4. Training Strategy

Flowing the two-stage fine-tuning training strategy, the training process is the same
as the general object detection method in the first base training stage. In addition, the
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semantic fusion (SF) module is added after our feature extractor to enrich the input feature
information. The joint training objective of our method is defined in Equation (4).

L = Lrpn + Lcls + Lreg (4)

where Lrpn is the binary cross-entropy loss for training the base detector to generate the
proposed RPN headers from the bounding box anchors, Lcls is the cross-entropy loss for the
bounding box classifier, and Lreg is the smoothed L1 loss for the bounding box regression
headers.

In the fine-tuning stage, we use Lmcp to learn a more discriminative embedding space.
We perform memory contrastive proposal (MCP) learning after extracting RoI features. The
joint training objective of our method is defined in Equation (5).

L = Lrpn + Lcls + Lreg + λLmcp (5)

where λ is set to 0.5 to control the balance between Lmcp and other losses.

4. Experiments

Our experiments build on two datasets, PASCAL VOC [35] and MS-COCO [36]. First,
we present the basic setup of the experiments and then conduct comparative experiments.
We perform an ablation study to validate the effect of the proposed modules and hyper-
parameters in our method on the experimental results. We conclude with visualization to
further validate the validity of the method.

4.1. Implementation Details

We use PyTorch to implement our proposed network model, based on the Faster-
RCNN [12] framework, with ResNet-101 as the backbone network. All training utilized a
stochastic gradient descent (SGD) optimizer with momentum set to 0.9, weight decay set to
0.0001, learning rate set to 0.001, and input batch size set to 16. For word embedding, we
used the 300-dimensional glove [14] vector from the language model trained on Wikipedia.
All experiments were conducted on a computer with a GTX3090Ti GPU.

Implementation on PASCAL VOC. We follow previous work on FSOD [9] with the
same setup and class division rules. We consider three random splits, where each split
randomly selects five categories as novel classes and the remaining 15 classes as base classes:
that is, Split 1 (bird, bus, cow, motorbike, sofa/other), Split 2 (plane, bottle, cow, horse,
sofa/other), and Split 3 (boat, cat, motorbike, sheep, sofa/other). Based on the two-stage
training strategy, the first stage pre-trained the base class data (15 classes) and the second
stage used a sampling rule of K-shot (K = 1, 2, 3, 5, 10) random sampling to sample from a
balanced dataset consisting of novel classes and base classes to participate in the training.
We report AP50 (AP50 =

∫ 1
0 p(r)dr) for novel classes (nAP50) and base classes (bAP50)

on the PASCAL VOC 2007 test set, i.e., the average precision of PR curves computed by
integration with the IOU threshold set to 0.5.

Implementation on MS-COCO. We followed the previous setup [9] and selected
60 categories in the MS-COCO dataset that did not intersect with PASCAL VOC as base
classes, while the other 20 categories were used as novel classes. Compared to the PASCAL
VOC dataset, the MS-COCO dataset contains image samples with more complex scenes
that are more challenging to identify. We trained the images using K-shot (K = 10, 30). We
used AP, AP50, and AP75 to detect the performance of the novel classes based on the MS
COCO 2014 minival set.

4.2. Results

To validate the advancement and effectiveness of the proposed method, we selected the
existing mainstream FSOD baseline methods for contrastive. These include Meta-Det [37],
Meta R-CNN [6], TFA [9], MPSR [11], FSCE [10], FSRW [5], FSOD-UP [38], CAReD [34],
QSAM [39] and KFSOD [40].
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Results on PASCAL VOC. As shown in Table 1, the performance of our proposed
method was evaluated against recent research work for novel classes (nAP50) on the three
random splitting settings of PASCAL VOC for different K-Shot (K = 1, 2, 3, 5, 10) settings.
The experimental results are all averaged over multiple random novel class sampling sets,
which indicates that our method outperforms the results of other models on the PASCAL
VOC dataset in most cases. Based on the experimental results, we also found that the
performance of our proposed method is more significant in low-shot settings. For example,
at the one-shot setting of split 1, our method achieves a result 13.7% higher than the same
MPSR based on two-stage fine-tuning, while it is only 6.6% higher than the 5-shot. It also
shows that our proposed method can still achieve effective identification even when there
is little available data and identification is relatively difficult.

Table 1. Performance in the PASCAL VOC dataset based on three random splits for different k-shot
(1,2,3,5,10) settings. Bold indicates the optimal result of the test.

Method/Shots
Novel Split 1 Novel Split 2 Novel Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Meta-Det 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9
Meta R-CNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR 31.5 40.6 48.3 55.2 60.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
FSCE 32.9 44.0 46.8 52.9 59.7 27.3 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0
FSRW 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

FSOD-up 34.6 43.1 49.3 53.4 59.7 29.5 29.9 37.2 39.4 46.3 32.5 38.7 41.9 45.6 51.5
CAReD 36.5 45.2 47.1 50.8 58.8 26.4 31.0 37.9 43.5 51.1 20.2 33.8 41.6 48.3 55.3
QSAM 31.1 36.1 39.2 50.7 59.4 22.9 29.4 32.1 35.4 42.7 24.3 28.6 35.0 50.0 53.6
KFSOD 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9

Ours 45.2 49.7 55.3 61.8 66.4 32.4 34.1 43.6 48.7 50.1 34.9 41.9 46.3 53.8 56.2

Results on MS-COCO. The detection performed on the MS-COCO 2014 minival set
shows the experimental results in Table 2. Based on different K-shot (K = 10, 30) settings,
we evaluated our method in contrast to recent research work. The AP, AP50, and AP75 in
this table illustrate the average accuracy of novel class instances at various thresholds. It is
demonstrated experimentally that our results outperform most previous research work. At
the 10/30-shot setting, our method respectively achieved a 4.5% and 4.0% increase in AP
values compared to FSCE. All experimental results of our method are optimal compared to
other baselines with significant performance improvements achieved.

Table 2. Performance evaluation of AP, AP50 and AP75 for MS-COCO dataset with different k-shot
(k = 10,30) settings. Bold indicates the optimal result of the test.

Method
10-Shot 30-Shot

AP AP50 AP75 AP AP50 AP75

Meta-Det 7.1 14.6 6.1 11.3 21.7 8.1
Meta R-CNN 8.7 19.1 6.6 12.4 25.3 10.8

TFA 10.0 - 9.3 13.7 - 13.4
MPSR 9.8 17.9 9.7 14.1 25.4 14.2
FSCE 11.1 - 9.8 15.3 - 14.2
FSRW 5.6 12.3 4.6 9.1 19.0 7.6

FSOD-up 11.0 - 10.7 15.6 - 15.7
CAReD 15.5 25.1 14.9 18.4 30.1 17.7
QSAM 13.0 24.7 12.1 15.3 29.3 14.5
Ours 15.6 26.4 15.7 19.3 33.6 18.9

4.3. Ablation Experiment

In this part, we conduct ablation research on various hyperparameters of our proposed
method, and the experiments are based on PASCAL VOC split1.
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Analysis of SF and MCP modules. We conducted an ablation study of the SF module
and the MCP module to demonstrate the impact of the corresponding modules on the
overall performance. As shown in Table 3, the SF module significantly improved the
performance of nAP50 at the 1/2/3-shot settings and remained essentially flat at the
5/10-shot settings compared to the baseline, quantitatively demonstrating the effectiveness
of the interaction between semantic and visual information. In particular, at lower shots,
where the models do not have much visual information to rely on, the embedding of
semantic information effectively compensates for the lack of visual information to guide
the models to make correct discriminations. The introduction of the MCP module improves
the model performance significantly at all settings compared to the baseline. It suggests
that learning a more discriminative embedding space for classification by the classifier
through the MCP module is effective. We also see that the combination of the SF module
and the MCP module can further enhance the model’s overall performance.

Table 3. Ablation experiment based on SF module and MCP module for different k-shot (k = 1, 2, 3, 5,
10) settings.

SF MCP 1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

- - 31.6 41.2 48.3 50.4 55.7√
- 34.3 44.4 50.2 50.9 56.2

-
√

36.1 43.8 51.7 56.3 60.2√ √
39.2 45.1 52.4 59.7 61.3

Analysis of hyperparameters µ and τ. The memory contrastive proposal loss in the
MCP module includes two hyperparameters, namely µ and τ. The value of µ affects the
update rate of the memory bank. From Equation (2), the larger the value of µ, the more
the memory bank prefers to learn the feature representation of the current sample, and
the smaller the value of µ, the more the memory bank prefers to preserve the feature
representation of the previous sample. As shown in Figure 4a, our method achieves the
best performance at all shot settings when µ = 0.01. The value of temperature parameter
τ directly affects the degree of similarity between the input features and the previous
class-centered features. We can see that a change in the temperature parameter τ does not
significantly affect the value of nAP50 at the 2/3-shot setting. Therefore, we determined
the optimal τ based primarily on the 1/5/10-shot. We can observe that the metric nAP50
slowly increases and then gradually decreases. As shown in Figure 4b, the maximum value
can be reached when τ = 0.2. Finally, for the sake of integration, we determined τ = 0.2.
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Analysis of scale factor λ. The scaling factor λ controls the balance between memory
contrastive proposal loss and other losses. As shown in Figure 5, the scale factor λ slowly
increases and then gradually decreases in the overall trend of the metric nAP50 in the
5/10-shot setting, with relatively smooth changes, especially taking relatively high values
around λ = 0.5/0.6. The maximum value is reached at λ = 0.5 on the 1/2/3-shot setting. The
above observation demonstrates that giving a certain weight to the memory contrastive
proposal loss may lead to learning a better embedding space. However, too much weight
will also damage the nAP50. Comprehensively, we determine λ = 0.5.
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4.4. Visualization Results

To understand our proposed method more intuitively, we show it through visualiza-
tion. Analogous to the attention mechanism approach, we explain our semantic fusion (SF)
module by the Grad-CAM [41] visualization results as an example. As shown in Figure 6,
feature learning is inadequate and incomplete without semantic information embedding.
With the addition of the SF module, the model was guided to pay more attention to the
critical feature information of the novel class samples and learn a more comprehensive
visual feature.

To validate the impact of our proposed memory contrastive proposal (MCP) loss, we
visualized the embedding space by t-SNE [42]. All test images are from the PASCAL VOC
2007 test set with different colors representing different categories. As shown in Figure 7,
we can see the significant changes in the feature distribution after MCP learning. Before
the MCP calculation, many similar classes feature distributions would overlap each other.
After MCP computation, the feature distributions between similar categories are distanced
from each other, resulting in learning a more discriminative embedding space.

In addition, we also provide the object detection results of the novel class cases. As
shown in Figure 8, it mainly consists of three typical detection error phenomena: missing
detection, low detection confidence score, and classification error. From the detection
results, the model is effective by combining the improvements of SF and MCP modules. In
the case of challenging detection objects, the proposed method achieves stable and effective
detection, which effectively improves the detection performance over the baseline model.
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Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

   
 (a) (b) 

Figure 7. T-SNE visualization results. Column (a) represents the feature distribution before the 
embedding of the MCP module, column (b) represents the feature distribution after the embedding 
of the MCP module. The visualization results in columns (a,b) show that the distribution of the 
feature space changes before and after the learning of the MCP module, and the introduction of the 
MCP module learns a more discriminative embedding space. 

In addition, we also provide the object detection results of the novel class cases. As 
shown in Figure 8, it mainly consists of three typical detection error phenomena: missing 
detection, low detection confidence score, and classification error. From the detection 
results, the model is effective by combining the improvements of SF and MCP modules. 
In the case of challenging detection objects, the proposed method achieves stable and 
effective detection, which effectively improves the detection performance over the 
baseline model. 

 
Figure 8. Visualization of detection results for novel class cases on PASCAL VOC split1. The first 
row is from the baseline model detecting failure cases, and the second row is the successful detection 
results of our model for the above failure cases. The visualization of the detection results shows that 
our proposed method achieves correct detection for the failed detection cases of the baseline. 

5. Limitations 
Our proposed method combines SF and MCP modules to learn enhanced feature 

representations and achieve effective improvement over existing baseline detection 
performance. Meanwhile, we also identified some limitations in our research. FSOD 
models generally lack attention to temporal complexity. Reducing the temporal 
complexity of the model while improving its detection performance is a critical issue. Our 
method is more suitable for non-real-time detection scenarios to ensure accuracy, and we 
leave the real-time detection scenarios for future work to explore. 

Figure 7. T-SNE visualization results. Column (a) represents the feature distribution before the
embedding of the MCP module, column (b) represents the feature distribution after the embedding of
the MCP module. The visualization results in columns (a,b) show that the distribution of the feature
space changes before and after the learning of the MCP module, and the introduction of the MCP
module learns a more discriminative embedding space.
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Figure 8. Visualization of detection results for novel class cases on PASCAL VOC split1. The first
row is from the baseline model detecting failure cases, and the second row is the successful detection
results of our model for the above failure cases. The visualization of the detection results shows that
our proposed method achieves correct detection for the failed detection cases of the baseline.

5. Limitations

Our proposed method combines SF and MCP modules to learn enhanced feature
representations and achieve effective improvement over existing baseline detection per-
formance. Meanwhile, we also identified some limitations in our research. FSOD models
generally lack attention to temporal complexity. Reducing the temporal complexity of the
model while improving its detection performance is a critical issue. Our method is more
suitable for non-real-time detection scenarios to ensure accuracy, and we leave the real-time
detection scenarios for future work to explore.

6. Conclusions

In this paper, we introduce semantic information into the FSOD framework to comple-
ment the visual information of novel objects, which helps to learn novel categories better.
We propose an FSOD method with semantic fusion (SF) and memory contrastive proposal
(MCP) modules. Semantic information and visual features are fused to guide the model to
focus on critical features of novel class samples. We adjusted the proposed visual feature
distribution through the MCP module to make the feature distribution of the same category
more compact and the feature distribution of different classes more distant. Then, we
drove the classifier to learn more discriminative embedding spaces. We have demonstrated
through extensive experiments that our method achieves state-of-the-art results compared
to previous detection methods.

In future work, we will perform more experimental research and design more lightweight
frameworks to optimize our approach, improve the performance, and reduce the time
complexity of the model. Specifically, we will explore how to achieve deeper interactions be-
tween semantic and visual information and design more robust and efficient class-centered
feature update mechanisms for more efficient feature extraction and spatial optimization to
improve detection performance and efficiency.
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