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Abstract: Despite encryption, the packet size is still visible, enabling observers to infer private
information in the Internet of Things (IoT) environment (e.g., IoT device identification). Packet
padding obfuscates packet-length characteristics with a high data overhead because it relies on
adding noise to the data. This paper proposes a more data-efficient approach that randomizes
packet sizes without adding noise. We achieve this by splitting large TCP segments into random-
sized chunks; hence, the packet length distribution is obfuscated without adding noise data. Our
client–server implementation using TCP sockets demonstrates the feasibility of our approach at the
application level. We realize our packet size control by adjusting two local socket-programming
parameters. First, we enable the TCP_NODELAY option to send out each packet with our specified
length. Second, we downsize the sending buffer to prevent the sender from pushing out more data
than can be received, which could disable our control of the packet sizes. We simulate our defense on
a network trace of four IoT devices and show a reduction in device classification accuracy from 98%
to 63%, close to random guessing. Meanwhile, the real-world data transmission experiments show
that the added latency is reasonable, less than 21%, while the added packet header overhead is only
about 5%.

Keywords: device fingerprinting; IoT privacy; traffic analysis countermeasure; traffic shaping

1. Introduction

The wide adoption of IoT devices comes with a privacy threat. Even with encryption,
the metadata of encrypted traffic, such as the packet size, data volume, and packet inter-
arrival time, can be utilized by passive observers to conduct device fingerprinting (DF)
attacks [1,2]. These attacks enable observers to identify the presence of devices and their
operational states, thereby allowing adversaries to infer privacy-sensitive information
about user behaviors and activities. For example, Wang et al. [3] show that an observer can
identify which command a user gives to a smart speaker using the packet length sequence
and direction.

DF becomes feasible due to correlated information in encrypted traffic associated with
IoT devices. Several studies [4,5] have validated that an observer can passively capture the
network traffic and use features of packets’ lengths and timing to build machine learning-
based classifiers for device identification. Once a device is successfully fingerprinted,
the adversary may monitor the fluctuations in the device traffic to detect network events
(e.g., Nest Thermostat is in Active or Idle mode) [6]. Hence, protecting against device
identification would not only prevent DF, but also hinder event detection (i.e., event-level
adversaries must identify the device first and then monitor for status-indicating patterns).

WiFi observers can passively capture network traffic transmitted over the WiFi channel
without joining the network (see Section 3). Furthermore, secured WiFi encryption cannot
hide the MAC-layer traffic metadata, including the frame size, observation timestamp,
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and signal strength. The signal strength was not found to be a useful attribute for DF [2].
Thus, fingerprinting defense approaches aim to mutate the lengths and/or transmission
time. For example, to address the packet-size leakage, the current traffic shaping meth-
ods mainly pad packets with additional bytes to obscure the related characteristics [7].
Regarding the timing side-channel, which falls outside the scope of this paper, adding a ran-
dom packet delay has been employed as a means to prevent such information leakage [8].
Obviously, both countermeasures introduce data and time overhead.

There has been active research on improving privacy with minimum data over-
head [9,10]. These methods are typically centered on minimizing the injected noisy data to
conceal IoT traffic. However, these improvements fail to balance privacy protection and
overhead [11] (i.e., the attack accuracy or data overhead is high). Inspired by the principles
of TCP segmentation [12], we propose an alternative approach to distort length-based
patterns without adding noise, thus achieving anonymity with a significantly lower data
overhead. Our defensive strategy randomizes the packet lengths by breaking the data
stream into random-sized chunks instead of injecting noise data for packet-size obfuscation.

We implement our approach at the application level using TCP socket programming,
which makes our defense easier to deploy. In this way, an IoT device manufacturer needs a
simple software update on its devices to deploy the proposed defense without changing
the devices’ operating system or low-level codes. We realize our packet-size control by
adjusting two local socket-programming parameters. First, we enable the TCP_NODELAY
option to force the operating system to push out each packet with our specified length
without waiting for additional data. TCP_NODELAY is a TCP socket option that can
be used to turn on/off Nagle’s algorithm [13], which by default adds a small latency to
improve the network efficiency. It minimizes the number of small TCP segments sent
over the network by buffering the data and combining them into larger segments for
transmission. Second, we downsize the sending buffer of the socket to prevent the sender
from pushing out more data than can be received, which could disable our control of
packet sizes.

This paper argues that added noise traffic is needed only to mask data-volume-related
features, which is non-discriminatory for devices with highly variable data rates (see
Section 5.1.1). In fact, the data volume has been utilized for event detection of an already
identified device, the step that our defense prevents in the first place. Thus, noise traffic
is often unnecessary to hide device-level signatures, and hence, randomization can be
achieved without noise, as proposed in this work.

In summary, we present a new defense against packet-size leakage attacks with the
following properties:

• Data-efficient: Traditional countermeasures add noise traffic to hide packet-size-based
signatures, resulting in a significant data overhead. Our defense thwarts such leakage
without adding any noise; thus, it is much more efficient than noise-based solutions.

• Adaptable: Effective techniques in the literature utilize a fixed dynamic for obfusca-
tion (e.g., padding to the maximum transmission unit (MTU)), which poses a non-
optimizable overhead. Our defense utilizes adjustable parameters within the appli-
cation code, enabling greater flexibility and programmability in managing defense
strength and overhead.

The remainder of this paper is organized as follows: We examine the relevant literature
and previous studies in Section 2. In Section 3, we present the threat model. Section 4
provides a detailed explanation of our approach for traffic obfuscation. We evaluate our
technique and discuss our results in Sections 5 and 6, respectively. Finally, we conclude
and discuss future work in Section 7.

2. Related Work

Many studies have shown how packet-length information can be exploited to identify
IoT devices [4] and specific events [3,6]. The Onion Router (Tor), a well-known privacy-
preserving system, addresses such side-channel leakage by sending data in a fixed packet
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length [14]. Nevertheless, adopting Tor increases the amount of received traffic and adds
additional latency due to the multi-hop nature of Tor.

Packet padding has an acceptable effectiveness but incurs a high data overhead. The
authors of [7] reported that several packet-padding strategies could thwart the attackers’
classification but increased the amount of data sent significantly (>500%). A lightweight
solution presented by Pinheiro et al. [15] could reduce the accuracy of IoT device identi-
fication to higher than random guessing by 15%. Their mechanism inserts random bytes
between 1 and the available space to fill the packet (i.e., to equal MTU). Still, the added
noisy data (54%) can lead to an undesirable communication overhead.

A closely related defense [16] can successfully defeat analytics based on WiFi eaves-
dropping. It uses dummy traffic to shape a pair of devices’ traffic to be similar. The tech-
nique could spoof other devices’ traffic by constructing the flow of dummy packets using
prerecorded traces of the targeted device. Thus, an attacker cannot identify a specific device.
Moreover, it incurs zero Internet bandwidth overhead by dropping the dummy packets at
the access point (AP) before sending them to the Internet. The WiFi-based AP needs to be
modified to drop dummy packets, which are flagged using the reserved bit flag on the IP
header. However, its effectiveness diminishes when the attacker can monitor the IP-level
traffic. Insiders accessing the IP header, such as rogue APs and network snoopers, can filter
out flagged dummy packets. As a result, network-layer observers can recover the origi-
nal/undefended traffic and overcome the defense. Our technique addresses the size-based
leakage against both internal and external adversaries (i.e., IP- and MAC-level observers)
because our segmentation occurs at the transport layer before the packet construction.

Traffic splitting was initially introduced for multi-path routing [17], which splits the
flow across different paths to prevent malicious intermediary nodes from recording the
whole traffic. It presented two levels of defense. First, the network-layer defense applies a
multipathing strategy within the Tor network to obscure the traffic patterns. The second
application-layer defense follows the same concept. It decomposes HTTP requests into sub-
requests in parallel over multiple paths or sends a single HTTP request for different web
objects over different entry nodes in Tor circuits. Assuming partial data is insufficient to
perform traffic analysis attacks, this defense is effective against remote observers. However,
in this paper, we are also concerned about local eavesdroppers who are physically close to
the device transmission range. No middleboxes are involved in this scenario; hence, the
attacker can collect the complete capture to perform the attack. On the other hand, our
defense considers all observers positioned in the link between the source and destination,
remote and local observers alike.

Traffic shaping has been introduced as a routing-optimization technique for vehicular
ad hoc networks [18]. This approach employs reinforcement learning to enhance the
efficiency of routing decisions, particularly in demanding and real-world situations marked
by unstable connections, varying communication ranges, and rapid topology changes. This
objective is achieved through distributed reinforcement learning, enabling the routing
protocol to learn from vehicle experiences to make optimal decisions and adjust to the
network’s unpredictable fluctuations. This work cannot be extended to determine packet
sizes, as its primary objective is to manage packet routing rather than packet sizes.

Signal-jamming approaches can serve as a defense against traffic analysis attacks in
wireless networks, all without the need for adding dummy packets or intentional delays.
Generally, this method employs antennas to disrupt traffic at possible adversary positions,
effectively elevating the noise level [19]. However, this tactic generates interference that
impairs the performance of nearby networks and, furthermore, it is considered unlawful
(https://www.fcc.gov/general/jammer-enforcement (accessed on 15 May 2023)).

Packet-size randomization has previously been proposed to address the side-channel
leakage in secure shell (SSH) communications [20–22], widely used for secure remote
access and communication. However, their proposed modifications are specific to the SSH
protocol. Many IoT devices often rely on lightweight messaging protocols to fulfill the IoT
communication requirements [23], such as Hypertext Transfer Protocol Secure (HTTPS),

https://www.fcc.gov/general/jammer-enforcement
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Message Queuing Telemetry Transport (MQTT), Constrained Application Protocol (CoAP),
Extensible Messaging and Presence Protocol (XMPP), and Data Distribution Service (DDS).
Our work proposes a novel use of random segmentation at the transport layer, responsible
for passing the data received from all the application layer communication protocols
mentioned above. In this manner, our defense is less demanding for deployment and
suitable for the IoT architecture.

TCP segmentation was previously proposed to reduce the per-packet overhead on
host processors for wired networks [12]. This approach delays segmenting the data into
smaller units and sends it as a larger TCP segment to improve efficiency. Unlike this work,
our technique makes the segmentation random and, thus, unpredictable to evade patterns
on side-channel information that can be used to identify IoT devices.

3. Threat Model

We consider two observation points an adversary can exploit to collect encrypted WiFi
traffic. In both scenarios, the attacker is physically located within the signal range of the
victim’s WiFi router or AP. The attacker can be one of the following:

Active Observer: The attacker can set a rogue AP with the same network name as the
victim’s network, which may lure IoT devices to connect to the rogue AP instead of the
legitimate one. In this case, the attacker can observe and analyze the IP-level traffic of the
connected IoT devices. We assume the observer can inspect the header of IP packets but
does not know the device or break the encryption.

Passive Eavesdropper: The attacker can listen to the wireless channel to capture the
encrypted WiFi traffic using a WiFi card in monitor mode (https://en.wikipedia.org/wiki/
Monitor_mode (accessed on 15 May 2023)). Eavesdroppers are not required to access or
join the network. The attacker is, therefore, very hard to detect.

We assume the attacker can access the same IoT devices as the victim’s network.
The attacker can collect the encrypted traffic to build a profile that can be used to identify IoT
devices with similar traffic patterns. Our adversary aims to infer the device (e.g., doorbell,
sleep monitor, etc.) and then monitor for network events based on traffic pattern changes,
e.g., a surge in doorbell traffic indicates the arrival of a visitor, a surge in sleep monitor
traffic indicates a user is awake, etc. We consider device-fingerprinting attacks that operate
on packet lengths and directions. Timing information falls beyond this paper’s scope and,
therefore, is not considered by our defense.

4. Materials and Methods
4.1. Noise-Free Randomization

We defend against traffic-analysis attacks by enabling IoT applications to control their
packets, where it is not typically controllable. The application layer delivers a message of
byte stream to the transport layer, which appends its header information (e.g., port number)
and passes the data to the network layer as a segment. The segment size is determined by
the maximum segment size (MSS) and specific situations summarized below [24]:

• If the application message ≥MSS, the TCP protocol sends the data in full segments
equal to MSS for transmission and holds any portion of data surpassing MSS in an
incomplete segment accumulating more bytes.

• If the message < MSS (i.e., there is still space in the segment) and a previously sent packet
has not been acknowledged yet, the protocol waits for some time (+/−200 ms [13]) to
accumulate more bytes. This time delay allows for collecting more data to optimize
network usage.

• If no additional data arrives within the timer period, the protocol dispatches the
available data for transmission.

The network layer, which is responsible for sending the data over the network, receives
the segments and breaks them into as few full packets as possible by the MTU restriction.
Indeed, the MSS value at the transport layer depends on the underlying network MTU
to ensure TCP segments can be properly encapsulated within network packets. MSS

https://en.wikipedia.org/wiki/Monitor_mode
https://en.wikipedia.org/wiki/Monitor_mode
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parameters are exchanged during the TCP-handshake phase, and the network interface
card’s device driver provides the TCP/IP stack with the MTU value.

With our defense, the packet size is indistinguishable due to the randomness. That is,
it consistently breaks thet received messages into arbitrarily sized segments. Suppose an
IoT application sends a message m of n bytes. As stated earlier, the system, by default, will
transmit m in a single segment if n = MSS or pass the small message (n < MSS) as it is after
the timeout period (+/−200 ms). If n > MSS, m will be divided into dn/MSSd segments, all
equal to MSS except the last segment if n is not an exact multiple of MSS (i.e., n%MSS > 0);
then, the last segment will hold the remaining bytes (n%MSS). For example, assuming
MSS is 1500, an application message of 3500 bytes will be transmitted in three segments
(1500, 1500, 500). Unlike this dynamic, our defense will divide m into a random number
of segments, and each segment’s length will also be random. As a result, the data pattern
from the length features is not predictable.

Figure 1 depicts two communication scenarios between a cloud server and an IoT
device; the top represents the regular/undefended traffic, and the bottom shows the
shaped/defended one. In both examples, we assume the server sends the same message
two times. We here focus on the incoming traffic from the server side to demonstrate the
concept of our defense. However, we expect both endpoints (i.e., server and client IoT)
to implement our defense when communicating with each other. Thus, the bidirectional
traffic is fully obfuscated.

Application layer 
transmits messages.

Transport layer passes 
segments of byte stream.

Network layer breaks the segment 
into packets.

Server sends the same 
webpage multiple times(t).

10110010010101

Our defense passes 
random-sized segments.
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received from transport layer.
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Figure 1. Two communication scenarios between a cloud server and a client IoT device. The top
shows the original traffic without any defense, and the bottom depicts the obfuscated traffic after
utilizing our proposed defense.

In the first scenario, the server with no defense sends data in a typical packetized flow,
leaking exploitable signatures for fingerprinting attacks. In contrast, the second defended
scenario shows that randomization occurs at the transport layer. Specifically, our technique
passes random-sized segments to the network layer. Consequently, the traffic pattern
generated by our shaping technique is challenging to classify.

4.2. Algorithm

Algorithm 1 shows the pseudo-code processes of the proposed defense. We assume
cloud servers and IoT devices run our program when sending packets.
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Algorithm 1 Random Segmentation of Application Messages

1: Data[]← Byte array holding the application message.
2: Min, Max ← Select the minimum and maximum segment sizes.
3: Prob← Select the segmentation probability.
4: if length of Data ≥ Min and random.random() ≤ Prob then
5: start← 0
6: end← length of Data− 1
7: while start ≤ end do
8: RandLen← random(Min, Max)
9: if start + RandLen ≥ end then

10: index ← end
11: else
12: index ← start + RandLen
13: end if
14: Seg← Data[start : index]
15: send Seg
16: start← index ++
17: end while
18: else
19: Data are left to be handled by the operating system without segmentation.
20: end if

The program stores the received message from the application layer in a byte array
Data. Provided that the message is long enough to perform random segmentation (such that
the length of Data ≥ the minimum segment size Min), our algorithm randomly decides
whether to split the message but with a specific probability threshold Prob, such that
0 ≤ Prob ≤ 1. If yes, the main loop loads a random chunk of Data into an individual
segment Seg for transmission and loads another random chunk from Data in the next
iteration process until the array becomes empty. The size of each segment is determined
randomly by RandLen, but does not surpass MTU to avoid fragmentation. However,
the upper and lower bound of RandLen (i.e., Min and Max) is adjustable to suit the device
traffic pattern. For example, for a device that sends light traffic with a maximum of 300 bytes
in length, the upper bound of RandLen should be less than 300 to achieve randomness.
Otherwise, the program will send the whole payload in Data if RandLen exceeds the
message’s size.

4.3. Multi-Level Segmentation

Due to the significant differences in the packet size range of many IoT devices operat-
ing in different modes, choosing the appropriate range for length randomization (i.e., Min
and Max) is challenging. For example, our preliminary analysis of our camera traffic shows
that 93% of the packets are below 150 bytes when the camera is idle. On the other hand,
when the camera becomes active, 58% of packets are above 1000 bytes. Hence, utilizing one
range to mask all functional scenarios, such as splitting all segments into chunks between
100 and 150 bytes, will obfuscate the whole traffic but lead to excessive segmentation and
increase the overhead.

Given the limitation of the one-level segmentation, it is necessary to make our defense
adapt to the change in traffic volume. Thus, we adopt a multi-level segmentation to enable
our algorithm to use a suitable range based on the traffic intensity. For example, we use
three levels for the high-bandwidth devices. Level 1 splits messages ≤ 200 bytes into
random chunks between 20 and 40. Other messages above 200 and ≤500 are randomized
using random lengths between 100 and 300 in level 2. Larger streams in level 3 that are
above 500 are obfuscated using a random size between 500 and 1000. Obviously, that
creates non-overlapping bands where the observer can recognize the corresponding band,
but it is still insufficient to perform the attack due to the randomness within each band.
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4.4. Practical Considerations

To change the standard packet sizing enforced by underlying protocols controlled by
the operating system, we initially considered changing the MTU. Dynamic modification of
the MTU value will directly impact the packet size, breaking larger packets into smaller
ones to fit within the new limit. However, MTU is a system-wide parameter, and such
modification will not affect our program but the entire system, which is undesirable.
In addition, smaller MTUs increase packet fragmentation, leading to adverse consequences
for the system’s performance. Assembling fragments at the destination adds extra burden
and reduces the overall efficiency. Further delay can also occur when a fragment is missed
or corrupted. In this case, the receiver cannot read partial data, and the whole data frame
must be retransmitted. On the other hand, our approach does not fragment packets but
divides TCP segments into separate IP packets. Hence, we avoid the drawbacks associated
with packet fragmentation.

The main challenge in applying our idea is that applications do not have direct packet
abstraction to control packet lengths. We could work around this technical obstacle by
modifying two parameters on a per-socket basis, thus not affecting other programs.

First, we disable Nagle’s algorithm [13] using the TCP_NODELAY option. Nagle’s
algorithm avoids sending small TCP segments by introducing a time delay to collect more
data so that it sends full segments. Since we aim to send data in predetermined sizes, this
data aggregation contradicts our purpose and needs to be disabled.

Second, in the case of intensive traffic, we limit the amount of data that can be pushed
out of a socket at the initial stage of the communication. TCP begins with a small congestion
window to assess the network condition and find the optimal window size. As we turn off
Nagle’s algorithm, many small packets can be sent immediately. As a result, the operating
system overrides our program and accumulates the data into larger packets to improve
efficiency, rendering our defense ineffective. To avoid this problem, we decrease the send
socket buffer to less than the receive buffer.

As stated, our traffic-shaping technique masks the packet length without adding noisy
data. Thus, the data rate remains unchanged (i.e., the amount of transmitted data is the
same). Therefore, we added another module to select the amount of covered traffic as
needed. In our approach, we inject a certain amount of traffic to make one device similar to
another in terms of the data rate.

4.5. Implementation

We developed a server–client implementation using socket programming in Python.
We use the TCP protocol to send packets due to its reliability and expect our obfusca-
tion methodology to apply to UDP as well. Our source code is publicly available at
GitHub (https://github.com/MnassarAlyami/Random-TCP-Segmentation.git (accessed
on 29 July 2023)).

We assume the defender has access to the targeted IoT devices and servers to install
our program as a patch used by a hook that intercepts every send command from the
application layer. That is, it will replace the standard send code with our patch to randomize
the packet size.

5. Evaluation and Results

In this section, we first evaluate our defense against traffic classification of IoT devices
based on packet length. We compare the performance of our noise-free randomization with
an analogous noise-based mechanism that uses random packet padding [15]. Second, we
quantify the impact of our technique on communication performance through real-world
experiments. Below, we discuss each aspect and present our results.

5.1. Effectiveness

To evaluate the randomness in the packet length introduced in our technique, we
developed a program to simulate our defense on a WiFi trace of four IoT devices: doorbell,

https://github.com/MnassarAlyami/Random-TCP-Segmentation.git
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camera, light bulb, and smart plug. We captured the encrypted traffic for one hour in
different operating modes (e.g., ON-OFF).

Our program reads the pcap file of each device and produces the obfuscated traffic to
test our defense against DF attacks. Table 1 outlines our configuration for the adjustable
system parameters introduced in Sections 4.2 and 4.3. The probability was manually chosen
with the goal of minimizing the overhead (i.e., reducing the number of segmented packets)
while maintaining a lower accuracy. The initial value of 0.6 resulted in a high accuracy (>80).
Consequently, we increased the probability to 0.7, and the accuracy remained consistently
high. Subsequently, when we further elevated the probability to 0.8, a reduction in accuracy
was achieved. We used the same defense parameters for each group of devices categorized
based on the traffic intensity because different parameters will likely create new patterns to
distinguish the devices.

Table 1. Our experimental setup of the system parameters *.

Parameter
Low-Bandwidth Devices High-Bandwidth Devices

Bulb and Plug Doorbell and Camera

Prob 0.8 0.8
Min 5 L1 = 20 L2 = 100 L3 = 500
Max 20 L1 = 40 L2 = 300 L3 = 1000

* L1, L2, and L3 refer to the three levels of segmentation introduced in Section 4.3.

Furthermore, we run another simulation to obfuscate our captured trace using the
random padding introduced in [15] to compare the effectiveness of a traditional noise-based
solution with our defense.

The attacker’s profiling classifier is trained using the training data from the original
trace. To assess the attack’s performance without defense, we test the classifier using the
testing data derived from the original trace.

Likewise, we evaluate the defense approach by initially creating a modified trace
using our defense program, relying on the original trace as a foundation. Subsequently, we
proceed to train the attack classifier using the training data from the modified trace and
then test the classifier using the corresponding test data in the modified trace.

We use Random Forest for our classification due to its outperformance on similar
IoT device-identification attacks compared with several other ML algorithms [2,4]. We
randomly divided our dataset into 70% for training and 30% for testing and quantified the
performance of our classifier using the following metrics: accuracy, precision, recall, and F1
score. The specific computation of these metrics can be found in the Appendix A.

Note that we show the indistinguishability of devices by applying our technique to
training and testing data; the closer the accuracy to random guessing (50%), the more
effective our defense is in confusing the classifier. Random guessing attains an accuracy
rate of 1/k, where k is the number of labels/devices. As we confuse the attacker between
two devices of similar traffic intensity, then k = 2.

We evaluate against an attacker who exploits the packet size and direction only. Thus,
we construct our dataset using packet sizes in a binary format to represent directions; a pos-
itive size represents incoming packets, and a negative size, outgoing ones. Similar to [2,16],
we break the trace into sequences observed within a 30 s time window for classification.

5.1.1. Preliminary Data Analysis

Figure 2 presents a sample traffic flow observed over a period of 10 min before and
after implementing our defense. Before obfuscating the traffic, we observed variable traffic
patterns in the light bulb and smart plug. Specifically, the bulb’s traffic was higher than
the plug’s in seven instances, lower in two instances, and similar in one case (Figure 2a).
This inconsistency in traffic poses a challenge for reliable device profiling based on data-
volume-related features. The impact of this variability is evident in the spike in bulb traffic
(Figure 2a, traffic period 5), which was misclassified as camera traffic.
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Figure 2. Traffic flow of four IoT devices over 10 min.

On the contrary, the camera and doorbell exhibit stable traffic patterns while operating
in a fixed working mode, such as recording videos (Figure 2c). However, the camera’s
higher resolution results in significantly larger traffic compared to the doorbell. There-
fore, to account for the variance in data volume between the camera and doorbell, we
introduced covered bytes to the doorbell to compensate for the variance in data volume
(Figure 2d). Dummy/covered packets can be labeled and discarded at the receiving side.
We assume the defender can leverage the header field of the Traffic Flow Confidentiality
(TFC) mechanism [25]. This mechanism provides a tool to inject dummy packets using
a wrapped header field that is encrypted and cannot be observed by network observers.
The injection statistics are summarized in Table 2, revealing that no dummy packets were
injected for the bulb and plug since the data rate does not serve as a suitable representative
for those two devices. Conversely, the doorbell necessitates a greater incorporation of
covered bytes to achieve parity with the camera in order to introduce confusion within the
classifier’s discrimination between the two devices. Additionally, a marginal proportion of
covered bytes (0.7%) was introduced to the camera to mask its disparities from the doorbell,
particularly during periods of inactivity.

Table 2. Injected covered bytes to hide data-rate features.

Device Covered Bytes (%)

Bulb 0
Plug 0

Camera 0.7
Doorbell 340

It is important to highlight that we incorporated a 20% time delay (refer to Equation (2)
for the specific computation) in our simulation to align it with the findings in Section 5.3.
As a result, the overall traffic attributes were affected. For instance, the event surge observed
in the light bulb’s traffic before applying our defense (Figure 2a, traffic period 5) can be
seen in the subsequent observation time window in the defended traffic (Figure 2b, traffic
period 6).
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Figure 3 illustrates the impact of our approach on the packet size. We chose the bulb
and plug for demonstration as they rely entirely on random segmentation for packet-size
obfuscation (i.e., no covered bytes were injected). Before implementing our defense, we
can notice in Figure 3a a steady average size (nearly 130 bytes) sent by the plug versus
fluctuating value by the light bulb. (After subtracting the frame header (82 bytes), a data
frame of 130 bytes means there are 48 (i.e., 130-82) bytes in the payload for the segmentation.)
We can observe similar behavior in the return traffic represented by negative values in
Figure 3c. After obfuscating the traffic (Figure 3b,d), the described range of each device
starts to overlap, introducing uncertainty in the learning process for device classification.
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Figure 3. Average packet size before and after obfuscating the bidirectional traffic of two devices
over time.

5.2. Efficiency

In this section, we evaluate the byte overhead B and the time taken T by our algorithm.
We calculate B as:

B =
Db −Wb

Wb
(1)

where Db is the total amount of bytes transferred when implementing our defense, and Wb
is the total amount of bytes transferred without implementing our defense. As we utilize
the covered bytes presented in Table 2 solely for concealing data rate features, we deduct
them from this calculation in the context of packet-size obfuscation.

For the second aspect (T), we set up a remote virtual server and let our local machine
send a large file of 10 MB, with and without our defense. Thus, we calculate the added la-
tency by our methodology compared with the standard/undefended transmission scenario.
We define T as:

T =
Dt −Wt

Wt
(2)
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where Dt is the time span to send the file when implementing our defense, and Wt is the
time span to send the same file without implementing our defense.

Furthermore, we implemented two randomization levels to analyze the impact of the
obfuscation intensity (i.e., range of random values) on T. The wider the range of random
lengths, the more packets are required to carry the payload. Consequently, more packets
might take a longer time to deliver. For instance, sending a large array of data using
random-sized packets ranging from 100 to MTU will result in significantly more packets
than using a range of larger lengths between 1200 and MTU. For this experiment, we define
two randomization levels (Rand(low) and Rand(high)) with an upper bound of a common
maximum length of 1400 bytes, whereas the lower bound of each level varies as follows:
Rand(low) = 1200 and Rand(high) = 100. We run ten sets of experiments and report the
average result in the following section.

5.3. Results

As shown in Table 3, all the classification metrics used to evaluate the randomness
in the shaped traffic are close to the baseline of random guessing. The values in the last
column are bolded to represent the best-performing results. The result demonstrates the
reduction in classification accuracy from 98% by the attack to 63% by our defense. Also, our
technique achieves a better obfuscation (lower accuracy) than random padding. The attack
accuracy under our defense is 8% lower.

Moreover, Table 4 compares the byte overhead B of our defense with random padding.
The bolded values in the last column represent the most favorable outcomes. Our de-
fense incurs a significantly lower overhead for all devices, which saves nearly 47% of the
total overhead. (From Table 4, B with random padding is 54% more than with random
segmentation, which achieves 7%, resulting in a savings of 47% (54-7).)

Table 3. Classification accuracy, precision, recall and F1 score of two defenses.

Metric No Obfuscation
(%)

Random Padding [15]
(%)

Random Segmentation
(%)

Accuracy 98 71 63
Precision 98 77 67
Recall 98 71 63
F1 98 71 63

Table 4. Byte overhead B of two defenses *.

Device
No Obfuscation Random Padding [15] Random Segmentation

Wb (MB) Db (MB) B (%) Db (MB) B (%)

Bulb 0.0348 0.1936 456 0.1091 214
Plug 0.0287 0.1626 467 0.0887 209
Camera 549.2 766.7 40 589 7
Doorbell 155.3 317.6 105 168 8

Total 704.6 1084.7 54 757.2 7
* Refer to Equation (1) for details regarding the definition of Wb, Db, and the specific computation of B.

Last, we report the latency results from our large file transmission experiments be-
tween our client machine and a remote server. As shown in Figure 4, our defense comes
with an average time overhead of 20.5%. Compared with random padding, our technique
underperforms by only 0.7%, as [15] reported a 19.8% latency. The same figure (Figure 4)
also shows a stable T, regardless of whether we perform low or high splitting (using
Rand(low) and Rand(high)). Although B has increased by 4.5% due to the intensive splitting
using Rand(high), more splitting seems not to introduce noticeable latency.
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6. Discussion

Effectiveness: Our results validate that our approach can disrupt packet length
features to protect against traffic-analysis attacks. By simulating our defense on a trace
from real IoT devices, we show that the obfuscated traffic resulted in a baseless classifier
comparable to random guessing. This is because our defense sends data packets in random
sizes, which prevents the classifier from learning length-based fingerprints for profiling.

Our technique does not consider timing characteristics, such as the interarrival time.
However, the issue of timing leakage has been addressed by delaying the data packets
to obscure the related patterns [8]. This approach can be integrated with our defense to
effectively conceal both the timing and the length features.

Efficiency: Our randomization technique is noise-free, and hence, more data-efficient
than other noise-based approaches like packet padding. However, there is a case where
the header overhead of our defense is higher than padding. If the size of the transmitted
flow is relatively small compared to the packet headers (54 bytes), then every split with our
approach adds more data than the payload itself. For example, if we have a device that
sends a small packet of 100 bytes per second, it becomes expensive to split the packet into
multiple chunks, as the header overhead from generating an additional packet becomes
54% (54/100). Nevertheless, such small traffic would be marginal to the total bandwidth in
the network.

In terms of time overhead, our countermeasure incurs a reasonable latency (20.5%),
which many IoT devices can tolerate, such as sleep monitors and smart plugs [26]. However,
high-bandwidth devices like cameras may experience degradation due to the need for
greater bandwidth to support video streaming.

One interesting insight we observe in Figure 4 is that intensive obfuscation (i.e., a higher
degree of randomness) does not increase the latency. Although the number of packets is
higher with our mechanism, it does not add a noticeable latency due to the immediate
transmission enabled by the TCP_NODELAY option. The factor that led to the increase in
transmission time was the limited send buffer, which puts the socket on hold from pushing
more data until the buffer is empty. It is evident from Table 5 that smaller buffer sizes
increase the time overhead significantly.

Note that we are not claiming that the deactivation of Nagle’s algorithm is an efficient
solution, as sending small packets can result in additional header and processing overhead.
However, turning off Nagle’s algorithm has been introduced in prior studies as an effective
technique with no adverse effect on performance, such as preventing many deadlock
situations [24]. Similarly, our proof-of-concept implementation on consumer-grade laptops
shows that our defense can mitigate privacy leakage but may introduce some latency, as the
sender needs to send the data stream in a larger number of packets. With that being said,
further research is needed to investigate the impact of our technique on devices with limited
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processing capacity and storage, similar to IoT devices. We plan further investigations in
this direction as future work.

Compatibility and Deployment Challenges: While our current implementation show-
cases the feasibility of the approach through a client–server setup using TCP sockets, we
fully acknowledge that IoT environments present unique challenges. For instance, adapting
our proposed technique for communication with generic browsers in server roles may
necessitate updates on server-side software. Hence, there could be technical issues in
accommodating all existing devices, necessitating further investigation in future research.

Vulnerability Analysis: It is vital to address potential vulnerabilities and ensure the ro-
bustness of our approach. However, our technique only enables IoT applications to change
the packet length without any other modification of the entire IoT device’s communication.
For example, it does not affect WiFi encryption, IPsec, or SSL implementation, etc. Hence,
we see no immediate and evident vulnerabilities in our proposed method.

Adversarial Attack: We assume the attacker knows how our defense works and, hence,
can try to merge the length of consecutive packets to overcome our defense. However,
there is no basis for the attacker to retrieve packet-size patterns. If the attacker combines all
consecutive packets, the attacker will merge packets that were not initially split because it
is customary to observe a series of small-sized packets, such as mouse flow, when there
is no defense implemented. In addition, our mechanism performs random segmentation
for randomly selected messages. Hence, there is no fixed rule for our splitting to perform
adversarial de-splitting with high accuracy.

Table 5. Send buffer size impact on transmission time using two obfuscation levels.

Buffer Size
Time Overhead (%)

Rand(Low) Rand(High)

215 Bytes 132.53 128.67
216 Bytes 26.1 26.78

7. Conclusions and Future Work

In this paper, we have shown how random segmentation can obfuscate packet-size
patterns without introducing additional noise into the packets themselves, as is the case
with packet padding. The proposed approach enables network devices to send applica-
tion messages through random-sized segments and pass them to the network layer for
immediate transmission. Therefore, the observed traffic at and above the network layer is
randomized, defending against both in-network and out-network observers (i.e., IP- and
MAC-level observation). The technique has been tested on a client machine connected
to a remote server, and the results demonstrate the effectiveness of our defense with a
reasonable time overhead (<21%).

For future work, we seek to make our defense accommodate the heterogeneity in the
IoT environment. The adjustable parameters in our code allow the defender to choose the
suitable obfuscation level to achieve sufficient randomness with fewer splitting operations.
Thus, our defense system lacks an adaptive functionality to adjust its parameters based
on the device traffic intensity and specific hardware. To this end, we aim to present an
optimization model to enable our system to dynamically choose the optimum parameters
that yield astonishingly less overhead with maximum privacy protection.
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Appendix A

We employed four metrics to evaluate the effectiveness of our defense: accuracy,
precision, recall, and F1 score. These metrics can be computed using the following formulas:

Accuracy =
T

T + F
(A1)

where T is the number of instances that are correctly classified and F denotes the instances
that are incorrectly classified by the model.

Precision =
TP

TP + FP
(A2)

Recall =
TP

TP + FN
(A3)

where TP is true positives, TN is true negatives, FP is false positives, and FN is
false negatives.

The F1 score calculates the harmonic mean between the precision and recall as:

F1 = 2× Precision× Recall
Precision + Recall

(A4)

References
1. Acar, A.; Fereidooni, H.; Abera, T.; Sikder, A.K.; Miettinen, M.; Aksu, H.; Conti, M.; Sadeghi, A.R.; Uluagac, S. Peek-a-boo: I see

your smart home activities, even encrypted! In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, Linz, Austria, 8–10 July 2020; pp. 207–218.

2. Alyami, M.; Alharbi, I.; Zou, C.; Solihin, Y.; Ackerman, K. WiFi-based IoT Devices Profiling Attack based on Eavesdropping
of Encrypted WiFi Traffic. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications Networking Conference
(CCNC), Virtual, 8–11 January 2022; pp. 385–392.

3. Wang, C.; Kennedy, S.; Li, H.; Hudson, K.; Atluri, G.; Wei, X.; Sun, W.; Wang, B. Fingerprinting encrypted voice traffic on smart
speakers with deep learning. In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, Linz, Austria, 8–10 July 2020; pp. 254–265.

4. Pinheiro, A.J.; Bezerra, J.d.M.; Burgardt, C.A.; Campelo, D.R. Identifying IoT devices and events based on packet length from
encrypted traffic. Comput. Commun. 2019, 144, 8–17. [CrossRef]

5. Shahid, M.R.; Blanc, G.; Zhang, Z.; Debar, H. IoT devices recognition through network traffic analysis. In Proceedings of the 2018
IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5187–5192.

6. Copos, B.; Levitt, K.; Bishop, M.; Rowe, J. Is anybody home? inferring activity from smart home network traffic. In Proceedings
of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 23–25 May 2016; pp. 245–251.

7. Kennedy, S.; Li, H.; Wang, C.; Liu, H.; Wang, B.; Sun, W. I Can Hear Your Alexa: Voice Command Fingerprinting on Smart Home
Speakers. In Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA,
10–12 June 2019; pp. 232–240.

http://doi.org/10.1016/j.comcom.2019.05.012


Electronics 2023, 12, 3816 15 of 15

8. Prates, N.; Vergütz, A.; Macedo, R.T.; Santos, A.; Nogueira, M. A defense mechanism for timing-based side-channel attacks on
IoT traffic. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Virtual, 7–11 December 2020;
pp. 1–6.

9. Pinheiro, A.J.; Freitas de Araujo-Filho, P.; de M. Bezerra, J.; Campelo, D.R. Adaptive Packet Padding Approach for Smart Home
Networks: A Tradeoff Between Privacy and Performance. IEEE Internet Things J. 2021, 8, 3930–3938. [CrossRef]

10. Apthorpe, N.; Huang, D.Y.; Reisman, D.; Narayanan, A.; Feamster, N. Keeping the smart home private with smart (er) IoT traffic
shaping. arXiv 2018, arXiv:1812.00955.

11. He, G.; Xiao, X.; Chen, R.; Zhu, H.; Zhang, Z.; Xu, B. Secure and Efficient Traffic Obfuscation for Smart Home. In Proceedings of
the GLOBECOM 2022–2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 6073–6078.

12. Bilic, H.; Birk, Y.; Chirashnya, I.; Machulsky, Z. Deferred segmentation for wire-speed transmission of large TCP frames over
standard GbE networks. In Proceedings of the HOT 9 Interconnects. Symposium on High Performance Interconnects, Stanford,
CA, USA, 22–24 August 2001; pp. 81–85.

13. Nagle, J. RFC0896: Congestion Control in IP/TCP Internetworks. 1984. Available online: https://datatracker.ietf.org/doc/html/
rfc896 (accessed on 13 July 2023).

14. Wang, T.; Goldberg, I. Walkie-Talkie: An Efficient Defense Against Passive Website Fingerprinting Attacks. In Proceedings of the
26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1375–1390.

15. Pinheiro, A.J.; Bezerra, J.M.; Campelo, D.R. Packet padding for improving privacy in consumer IoT. In Proceedings of the 2018
IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 00925–00929.

16. Alyami, M.; Alkhowaiter, M.; Ghanim, M.A.; Zou, C.; Solihin, Y. MAC-Layer Traffic Shaping Defense Against WiFi Device
Fingerprinting Attacks. In Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC), Rhodes, Greece,
30 June–3 July 2022; pp. 1–7.

17. De la Cadena, W.; Mitseva, A.; Hiller, J.; Pennekamp, J.; Reuter, S.; Filter, J.; Engel, T.; Wehrle, K.; Panchenko, A. Trafficsliver:
Fighting website fingerprinting attacks with traffic splitting. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual, 9–13 November 2020; pp. 1971–1985.

18. Ahmed, A.A.; Malebary, S.J.; Ali, W.; Barukab, O.M. Smart traffic shaping based on distributed reinforcement learning for
multimedia streaming over 5G-VANET communication technology. Mathematics 2023, 11, 700. [CrossRef]

19. Zhang, F.; He, W.; Liu, X. Defending against traffic analysis in wireless networks through traffic reshaping. In Proceedings of the
2011 31st International Conference on Distributed Computing Systems, Minneapolis, MN, USA, 20–24 June 2011; pp. 593–602.

20. Albrecht, M.R.; Paterson, K.G.; Watson, G.J. Plaintext recovery attacks against SSH. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 17–20 May 2009; pp. 16–26.

21. Song, D.X.; Wagner, D.; Tian, X. Timing Analysis of Keystrokes and Timing Attacks on SSH. In Proceedings of the 10th USENIX
Security Symposium (USENIX Security 01), Washington, DC, USA, 13–17 August 2001.

22. Bellare, M.; Kohno, T.; Namprempre, C. Authenticated encryption in SSH: Provably fixing the SSH binary packet protocol. In
Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November
2002; pp. 1–11.
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