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Abstract: In this work, an assistance system based on the Artificial Intelligence of Things (AIoT)
framework was designed and implemented to provide convenience for visually impaired people. This
system aims to be low-cost and multi-functional with object detection, obstacle distance measurement,
and text recognition achieved by wearable smart glasses, heart rate detection, fall detection, body
temperature measurement, and humidity-temperature monitoring offered by an intelligent walking
stick. The total hardware cost is approximately $66.8, as diverse low-cost sensors and modules are
embedded. Meanwhile, a voice assistant is adopted, which helps to convey detection results to
users. As for the performance evaluation, the accuracies of object detection and text recognition
in the wearable smart glasses experiments are 92.16% and 99.91%, respectively, and the maximum
deviation rate compared to the mobile app on obstacle distance measurement is 6.32%. In addition,
the intelligent walking stick experiments indicate that the maximum deviation rates compared to
the commercial devices on heart rate detection, body temperature measurement, and humidity-
temperature monitoring are 3.52%, 0.19%, and 3.13%, respectively, and the fall detection accuracy is
87.33%. Such results demonstrate that the proposed assistance system yields reliable performances
similar to commercial devices and is impressive when considering the total cost as a primary concern.
Consequently, it satisfies the fundamental requirements of daily life, benefiting the safety and well-
being of visually impaired people.

Keywords: assistance system; artificial intelligence of things (AIoT); visually impaired people;
wearable smart glasses; intelligent walking stick

1. Introduction

According to recent statistics from the World Health Organization (WHO), the number
of visually impaired people worldwide is approximately 285 million, of which 246 million
are low-vision and 39 million are entirely blind [1]. With the growth of the population
and the deepening of aging, it is expected that such a number will increase three times by
2040 [2]. Consequently, the problem of coping with the ever-increasing high cost of the
healthcare system causes a heavy burden in many countries. Commonly, visually impaired
people are unable to perceive external information through the visual system, leading to
difficulties and inconveniences in daily life [3]. For example, they could easily fall due to
hitting obstacles and nearby objects that are impossible to recognize, as well as read content
on a book or screen. In addition, health surveillance is vital for visually impaired people
because long-term physical status data can monitor health conditions and assess chronic
diseases [4]. However, the related commercial devices are usually expensive, bulky, and
with poor interaction. Therefore, the way for visually impaired people to obtain health
conditions should be further improved.
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Previously, several solutions were proposed to help visually impaired people to
perceive external information. For instance, the white stick is a traditional tool for visually
impaired people to navigate their surroundings and make themselves visible to others. It
was recently reinvented to be foldable, lighter, and more visible [5]. Nevertheless, the usage
of the white stick has limitations in terms of detecting potential obstacles. Specifically, it
is unable to provide a warning before obstacles that may be approaching from a distance,
and it also may not recognize those raised obstacles that are situated above the knee. The
guide dog is another option that assists visually impaired people, which helps them to
walk independently, confidently, and safely without relying on others, and accidents from
obstacles and falls can be avoided. In addition, emotional support and social interaction can
be provided, helping to reduce anxiety and mental stress levels. However, it requires time
and effort to train a guide dog; the entire process usually takes up to 2 years, and the price is
about $2379 [6], revealing that the total cost is prohibitive. Currently, with the development
of hardware design and artificial intelligence techniques, several prototypes based on
wearable [7], voice guidance [8], and hand-held [9] are offered. Most of them integrate
various sensors to collect nearby data and then sound the alarms through headphones or
other audio equipment. However, these attempts can be further improved by including the
function of healthcare surveillance and lowering the total cost simultaneously.

To address those existing shortcomings, inspired by the current prototypes, an assis-
tance system based on the Artificial Intelligence of Things (AIoT) framework was designed
and implemented in this work. It aims to be low-cost and multi-functional, which includes
two main electronic devices consisting of diverse low-cost sensors and modules connected
by AIoT. One is the wearable smart glasses, later illustrated, which can detect objects and
estimate their distances from the users. This functionality enables the device to alert users
and provide reminders to avoid those obstacles. In addition, it offers text recognition that
can be presented through the voice assistant, making the glasses automatically recognize
words and transmit the results through Bluetooth audio equipment to the users. To this end,
a binocular camera is adopted to acquire images of nearby environments. Subsequently, to
assist visually impaired people in better perceiving information about their surroundings
and providing real-time operation, all the image-related data processing is performed on
the Alibaba Cloud, a platform that offers a range of cloud computing products and services
in this field. Therefore, a Raspberry Pi 3B+ with the cloud platform is employed to process
the corresponding data. Another device is the intelligent walking stick, which gathers
various types of data through specialized sensors and modules for heart rate detection, fall
detection, body temperature measurement, and humidity-temperature monitoring. Such
data can be uploaded to the cloud platform for collection. Additionally, the reactions of
obstacle avoidance control and alarm response are conducted through the STM32F103C8T6
microcontroller, in which the obstacle avoidance control is based on the results from obsta-
cle distance measurement, and the alarm response is applied in the case of a fall. As a result,
the collaborative interaction between the wearable smart glasses and the intelligent walking
stick exhibits the potential to enhance the safety and well-being of visually impaired people
in daily life. In short, the main contributions of this work are summarized as follows:

1. To enhance the perceptual capabilities of visually impaired people, the proposed
wearable smart glasses can accomplish real-time object detection, obstacle distance
measurement, and text recognition. Additionally, the incorporation of a voice assistant
enables the presentation of relevant information. The experiments demonstrate the
convenience of such functions in facilitating them to acquire pertinent information
about their surroundings.

2. Compared to the existing prototypes, the proposed intelligent walking stick is equipped
with healthcare surveillance of heart rate detection and body temperature measure-
ment, fulfilling the daily needs of visually impaired people to monitor their health
conditions. In addition, fall detection and humidity-temperature monitoring are
performed to enhance mobility. Meanwhile, obstacle avoidance control and alarm
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response are achieved in the corresponding cases. The experiments disclose the
usefulness of such incorporated functions in ensuring safety.

3. The assistance system aims to be low-cost, which relies on a Raspberry Pi 3B+ and
STM32F103C8T6 microcontroller, along with diverse low-cost sensors and modules
connected by the AIoT. The total hardware cost is approximately $66.8, providing a
low-cost solution to design relevant systems in this field.

The rest of this work is organized as follows: Section 2 reviews the related work
based on each respective function. Section 3 describes the details of the proposed wearable
smart glasses and intelligent walking stick. Section 4 shows the experimental results with
discussions. Finally, Section 5 summarizes this work.

2. Related Work

Regarding the assistance system for visually impaired people, several approaches
were designed previously, which can be typically classified into three distinct categories
based on their technological foundations: vision-based, non-vision-based, and hybrid [10].
The vision-based system employs real-time video streams or images to offer insights into
the nearby environments. Conversely, the non-vision-based system utilizes a vast amount
of sensors and modules to analyze the surroundings and then convey relevant information
to the users. The hybrid system combines vision-based with sensor technologies to derive
the benefits of both approaches. Consequently, in this work, the proposed system is hybrid,
where vision-based is the wearable smart glasses, and non-vision-based is the intelligent
walking stick. Furthermore, as the assistance system aims to be multi-functional, the
reviews of related works concentrate on each respective function designed.

2.1. Object Detection

Lowe [11] proposed the Scale Invariant Feature Transform (SIFT) algorithm, which
identifies robust feature points unaffected by illumination and noise. Subsequently, an
improved version based on SIFT is the Speeded-Up Robust Features (SURF) algorithm
developed by Bay et al. [12], which employs a Hessian matrix-based measure for the de-
tector, and a distribution-based descriptor. Although these conventional algorithms are
comprehensible for detecting specific objects, they manually extract low-level features and
ineffectively process a large variety of multi-class objects [13]. For this purpose, several
deep learning approaches have been applied, which not only enable the extraction of more
sophisticated features but also encompass the feature extraction, selection, and classifica-
tion within a unified model. For example, OverFeat [14] is one of the extensively used
deep learning approaches for object detection, which can extract image features through
a multi-scale sliding window combined with AlexNet to conduct detection. Its mean
Average Precision (mAP) on the ILSVRC2013 dataset is about 24.3%, which is a significant
improvement compared with the conventional algorithms. However, it still produces a
high error rate. The Region-Convolution Neural Network (R-CNN) [15], in which a large
Intersection over Union (IoU) threshold is chosen for high-quality samples, and the region
proposal network that generates the regions where objects may exist, can helpfully improve
detection accuracy. Nonetheless, it is slightly insufficient in real-time requirements [16].
The You Only Look Once (YOLO) [17] is a deep learning regression technique. Unlike the
region proposal network, YOLO uses a cell-centered multi-scale region, sacrificing accuracy
to obtain faster speeds. It can realize up to 140 Frames Per Second (FPS), properly satisfying
real-time requirements. Based on that, Mallikarjuna et al. [18] presented a cognitive IoT
system capable of handling occlusion, sudden camera or object movements, and com-
plex rotations. The results displayed real-time detection of diverse objects. Overall, deep
learning approaches have greatly surpassed conventional methods in terms of detection
accuracy and speed. Therefore, those works hold distinguished potential for assisting
visually impaired people in perceiving their surroundings.
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2.2. Obstacle Distance Measurement

The obstacle distance measurement can be classified into four categories: ultrasonic,
infrared, laser, and vision [19]. For instance, Meshram et al. [20] employed ultrasonic
sensors to detect obstacles below the knee so that the priority of obstacles in the path
without causing information overload can be achieved. Villanueva and Farcy [21] combined
a walking stick with near-infrared sensors to emit and detect infrared pulses reflected
from obstacles, enabling visually impaired people to find a wide enough way on the
road to pass. Although the above approaches can be used to solve the ranging problem,
they are unsuitable for identifying moving objects in nearby environments. Moreover,
the propagation speeds in the air are impacted by environmental parameters such as
temperature, humidity, and ambient noise [22]. Additionally, the laser could cause damage
to human eyes. In this regard, the vision-based method is a better solution. Monteiro
et al. [23] utilized video datasets recorded from the perspective of a guide dog to train a
convolutional neural network for recognizing the activities occurring around the camera
and generating feedback for visually impaired people. Therefore, it can be said that the
approaches based on computer vision support visually impaired people to sense their
surroundings and avoid obstacles more reliably.

2.3. Text Recognition

Several previous works focus on developing robust systems that recognize text in
real-time through wearable smart glasses. They often use computer vision techniques,
such as edge detection and Optical Character Recognition (OCR), to extract content from
the book or screen. For example, Pei and Zhu [24] introduced an accurate real-time text
recognition system based on Tesseract, which is a powerful OCR engine that encloses
a long short-term memory (LSTM) architecture integrating new feature words and line
recognition, where the LSTM detects and predicts the text for each frame, then translates
the per-frame predictions into the final label sequence, thus producing higher recognition
accuracy on the images. In another work, Mukhiddinov and Cho [25] accomplished an
end-to-end text recognition with the help of the OCR engine, in which the fundamental
component is a fully convolutional network modified for text recognition that results in
dense per-pixel predictions of sentences or text lines, as it is trained to immediately predict
the presence of text occurrences and their geometries from input images.

2.4. Heart Rate Detection

Heart rate detection contains two main manners: contact and non-contact, in which
electrocardiograph (ECG) is the gold standard for heart rate detection [26]. The contact
manner applies electrodes or sensors that are attached to the subject, so it is limited by
the requirement for direct contact with the human body, prone to discomfort, and the
complexity of the operation. Conversely, the non-contact way shows convenience and
comfort for users as it eliminates the need for physical contact, allowing for a more natural
experience. Generally, it can be realized in three solutions: infrared serial image, optical
Doppler, and photoplethysmography (PPG) [27]. Among them, PPG obtains the pulsatile
variation of blood volume in peripheral microvessels in response to the heartbeat by tracing
the light absorption at the measured site (finger, earlobe, nose, etc.). Its main principle is that
when external light hits the human skin surface, the absorption of light by the blood in the
skin pulsates with the change in its volume, which yields a corresponding periodic variation
in the reflected light intensity [28]. In addition, PPG exhibits cost-effective properties, which
is more suitable to be a healthcare monitoring solution in this field. Based on that, it has
been extensively adopted than the other two techniques. Huang and Selvaraj [29] designed
a robust system through PPG to conduct high-quality heart rate long-term monitoring. As
heart rate detection functions in an earlier predictive diagnosis of cardiovascular diseases,
it plays a vital role in healthcare surveillance for visually impaired people.



Electronics 2023, 12, 3760 5 of 19

2.5. Fall Detection

Fall detection is usually achieved by sensors, such as accelerometer, gyroscope, and
magnetometer, to detect fall-related events based on changes in movement and posture [30].
For instance, Pierleoni et al. [31] developed a wearable fall detector by integrating a three-
axis accelerometer, a three-axis gyroscope, a three-axis magnetometer, and a barometer
sensor, along with the data fusion algorithm derived from Attitude and Heading Reference
Systems (AHRS). The vision-based methods that adopt cameras or wearable devices with
built-in cameras to analyze visual data for detecting falls through irregularities in the scene
are also available in this field [32]. Furthermore, several attempts [33–35] not only combine
diverse sensors to improve performance and reduce false positives or false negatives, but
also incorporate alert mechanisms to notify caregivers or emergency services. Hence, it can
be said that the continuous advancement of sensor technologies contributes to accurate fall
detection for visually impaired people.

2.6. Body Temperature Measurement

Body temperature measurement for visually impaired people requires specialized
considerations to ensure accurate and accessible readings. In this regard, the infrared
thermometer is proper, which enables convenient body temperature readings without
physical contact, promoting hygiene and reducing the risk of cross-contamination [36].
More importantly, auditory feedback is desired, which caters to visually impaired people,
converting body temperatures into audio signals and providing voice-guided instruc-
tions accordingly. Meanwhile, user-friendly features, such as tactile markings or braille
labels on the thermometer, allow individuals proficient in braille to interpret temperatures
through touch conveniently. Following this way, Khan et al. [37] placed the GY-906 infrared
thermometer on the top of a portable white stick to monitor the body temperature, and
those abnormalities can be wirelessly communicated through a Bluetooth transceiver, then
presented by voice for notifications.

2.7. Humidity-Temperature Monitoring

Humidity-temperature monitoring designed for visually impaired people primarily
aims to supply real-time information about the environmental conditions, maintaining com-
fortable and healthy living surroundings [38]. For example, to inform users of unfavorable
or extreme conditions, or to sense the presence of water around the floor and offer warnings
timely. For this purpose, integrated humidity-temperature sensors are usually applied to
track historical trends and patterns, then analyze the data for conducting quantitation of
both humidity and temperature levels, in which the humidity element measures the amount
of moisture or water vapor present in the air, typically expressed as a percentage relative to
the maximum moisture capacity of the air, i.e., Relative Humidity (RH), and temperature el-
ement measures the changes in a particular physical property (electrical resistance, voltage,
or frequency) that is affected by ambient temperatures. Zhangaskanov et al. [39] modified
the white stick by allocating a number of sensors at different angles to perform interactions
with surroundings, including the DHT11 sensor for humidity-temperature monitoring.

3. Proposed System
3.1. AIoT-Based Architecture

Considering various situations and the health detection needs of visually impaired
people in daily life, the wearable smart glasses and intelligent walking stick should satisfy
two fundamental requirements in terms of convenience and reliability. To this end, the
proposed design of smart glasses is illustrated in Figure 1, which can perceive surroundings
based on the YOLO v5, where a binocular camera captures the images, and a lightweight
network model identifies both the external objects with corresponding distances and the
content on the book or screen. On the other side, the proposed design of the intelligent
walking stick is displayed in Figure 2, which employs a microcontroller combined with
diverse low-cost sensors and modules where the microcontroller deals with sensor data



Electronics 2023, 12, 3760 6 of 19

acquisition, including fall, air humidity and temperature, the user’s heart rate and body
temperature, and so on. All these results can also be uploaded to the cloud platform for
data collection. In addition, according to the results of obstacle distance measurement or fall
detection, the obstacle avoidance or alarm response can be conducted by the microcontroller
to control the stick equipped with the motor driver and omni-directional wheel, or the
buzzer and vibration motor, respectively.
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Although breaking the IoT architecture into three layers is the most common way,
Figure 3 depicts the AIoT-based framework of the proposed assistance system. In this work,
the perception layer mainly includes different sensors and modules that are responsible
for collecting external data. Subsequently, the network layer uses Narrow Band-IoT (NB-
IoT) technology as the cost-effective platform for connecting a wide range of sensors and
modules, meanwhile adopting the Hyper Text Transfer Protocol (HTTP) and Message
Queuing Telemetry Transport (MQTT) protocols for data transmission. Finally, in the
application layer, an app is designed to read the current status information and present it to
the users through Bluetooth audio equipment. More details are described in the subsequent
sections.
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3.2. Design of Wearable Smart Glasses

First, object detection is accomplished by YOLO v5, a cutting-edge technique that
can enhance the accuracy and speed of object detection through the utilization of deep
neural networks [17,40]. It functions by partitioning an image into a grid and subsequently
predicting bounding boxes for each grid cell, so several items in an image while creating
bounding boxes around them can be identified. Compared to similar methods and recent
YOLO versions, it is a single-pass approach that employs a unified neural network that
contributes to a speed of up to 140 FPS. This attribute is important for visually impaired
people, as it facilitates immediate feedback regarding the objects existing in their nearby
environments without notable delays. Additionally, its lightweight nature renders it
compatible with devices possessing limited computational power, enabling its integration
into the Raspberry Pi 3B+. Moreover, it exhibits the ability to accurately detect a wide array
of objects across diverse categories; such versatility equips it to determine common objects
in daily life. Based on that, although YOLO V5 is not the newest version, it is still superior
in object detection and can provide reliable performance.

In this work, a pre-trained YOLO v5 network referenced by [41] is applied, as presented
in Figure 4, which can be mainly divided into four layers: input, backbone, neck, and output.
The input layer defines the initial representation of the input images from the binocular
camera. The backbone layer is responsible for extracting features from the input images and,
here, the CNN model serves as the backbone that performs a series of convolutions and
pooling operations to capture hierarchical features at different scales. The neck connects
the backbone layer to the output layer, and the feature fusion is incorporated, which can
improve its ability to detect objects of different sizes. Lastly, the output layer shows the
final prediction of the object with a bounding box.

More than object detection, it is worth achieving the distance measurement of obstacles
in front of visually impaired people so that obstacle avoidance control can be conducted.
To this end, the binocular vision ranging method [42] is used for the data recorded from
a binocular camera (Intel RealSense D435), as shown in Figure 5, where OL and OR refer
to the left and right lenses, f denotes the focal length of the camera, B means the distance
between the left and right lenses, a is the lens width, P is the target point of the obstacle,
P′, P′′ are the intersection points of P and the two lenses, m is the lens midpoint to P′, n
is the lens endpoint to P′′, and Z represents the distance from the obstacle to the baseline.
Mathematically, their relationships can be expressed as:

Z− f
Z

=
B− (m + n)

B
(1)
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XL =
a
2
+ m (2)

XR =
a
2
− n (3)
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Combining (1), (2), and (3), we then obtain (4):

Z =
B× f

XL − XR
=

B× f
d

(4)

In (4), Z is related to B, f, and d (the parallax of the corresponding left and right points,
i.e., XL − XR). As B and f are constant values of the camera, which are relatively fixed,
and when the parallax d value of each point is obtained, the Z value (obstacle distance)
can be estimated accordingly. As a result, if an obstacle is detected and its distance to the
users is measured, the assistance system can timely inform the category of the object and
its corresponding distance to the visually impaired people.

Furthermore, text recognition based on OCR is employed in combination with a voice
assistant to solve the difficulties encountered when reading from the book or screen. Its
implementation relies on a commercial Application Programming Interface (API) provided
by the Baidu OCR engine [43]. The entire process involves several stages, as drawn in
Figure 6. Initially, the image is acquired from a binocular camera, and then sampling is
applied to reduce image noise. Subsequently, pre-processing in terms of grayscale and
binarization is adopted to extract the relevant text area from the image. Following this,
character slicing is adopted to segment individual characters. The next step involves
scanning the segmented image, and feature vectors are extracted from the recognized
characters. After that, toward optimization processing, the feature vectors are matched
against a template library, which facilitates template fine matching so the characters can
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be recognized. Finally, the results are outputted through a voice assistant with Bluetooth,
addressing the reading difficulties of visually impaired people.
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3.3. Design of Intelligent Walking Stick

Aiming at health surveillance, the functions of heart rate detection and body tem-
perature measurement are designed in the intelligent walking stick. Regarding heart rate
detection, the key is identifying the number of heartbeats per minute, i.e., the number of
pulses within a minute. To this end, the Beat Per Minute (BPM) is acquired by measuring
the interval between two adjacent pulses, denoted as Inter-Beat Interval (IBI), and using
60 s to divide this interval, so BPM is equal to 60/IBI. Moreover, the number of pulses is
achieved by detecting wave peaks, where a threshold is set, and a pulse is considered to be
detected when the signal value is larger than the threshold. As the waveform voltage range
is uncertain and the amplitude of the sensor output is randomly changing, the threshold
is adjusted according to the signal amplitude to accommodate the detection of different
signal peaks, meaning that the solution is to find local maxima that exceed a pre-defined
threshold. Such a threshold also determines the acquired voltage value to decide whether it
is a waveform. When a valid waveform is received, half of the amplitude (i.e., 50%) of the
signal is regarded as a feature point [44], as displayed in Figure 7. Consequently, the IBI is
calculated by the time of two adjacent feature points, and the BPM is obtained accordingly.
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Second, as the size and wavelength distribution of the infrared radiation energy
of an object is closely related to its surface temperature, the surface temperature can
be determined by measuring infrared radiation [45]. Based on that, the GY-906 infrared
thermometer, a non-contact sensor that measures the infrared radiation emitted by an object
to determine its temperature, is embedded in the walking stick to collect the variation
caused by the change in body temperature. As for its working principle, the sensor unit
converges the magnitude of the infrared radiation energy of the target in the Field of View
(FOV), which is a factor in measuring the temperature of a specific area that defines the
angle from which it can detect infrared radiation. Subsequently, through analog-to-digital
conversion, the collected body temperature value is communicated to STM32F103C8T6 by
the Inter-Integrated Circuit (I2C) protocol, allowing it to receive the temperature data and
output the results correspondingly.

Next, in order to enhance the perception of surroundings for visually impaired indi-
viduals, the design focuses on incorporating humidity-temperature monitoring and fall



Electronics 2023, 12, 3760 10 of 19

detection capabilities into the walking stick. For this purpose, on the one hand, referenced
by [39], the DHT11 sensor, which includes a calibration unit, is utilized. This sensor uses
digital module acquisition and humidity-temperature sensing technologies, integrating a
resistive moisture sensing element and a Negative Temperature Coefficient (NTC) tempera-
ture measurement element. As for data transmission, when the microcontroller initiates a
start signal by pulling down the data bus for at least 800 µs, the DHT11 transitions from
sleep mode to high-speed mode. Then, 40 bits of data are transmitted serially through the
bus. Upon completion of data transmission, the sensor automatically enters hibernation
mode until the subsequent communication is initiated. Additionally, an ATGM336H Global
Position System (GPS) module, an MQ-2 smoke sensor, and an MH-RD raindrop sensor
are employed to enrich the environmental data, such as location, weather, air quality, and
so on, which further ensures the sense of comfortable surroundings. Therefore, all these
sensors assist in accurate humidity-temperature monitoring.

On the other hand, a fall is characterized by an abrupt change in posture, resulting
in the user falling to the ground. To identify this accident, the intelligent walking stick
is equipped with the MPU6050 accelerometer and gyroscope sensor, which plays a vital
role in fall detection. It is capable of analyzing acceleration to discern changes in posture
when the device falls alongside the user, disclosing that the fall detection mechanism relies
on obtaining body acceleration data and monitoring changes in posture. So, when the
acceleration exceeds a pre-determined threshold, it signals the occurrence of a fall event.
To facilitate fall detection, the MPU6050 sensor is initialized at the first step. Then, its inner
Digital Motion Processor (DMP) is calibrated, which allows direct readings of the three
Euler angles: roll, pitch, and yaw. These angles represent the stick mapped in the X, Y, and
Z axes, as depicted in Figure 8. As a result, by analyzing them, any changes in posture and
stick can be identified, helping the detection of a potential fall event.
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By defining the acceleration in the X-axis, Y-axis, and Z-axis as ax, ay, and az, respec-
tively, the combined acceleration (ACLR) can be mathematically obtained by (5), which is a
parameter to determine the current status of the stick:

ACLR =
√

ax2 + ay2 + az2 (5)

Typically, a larger ACLR reveals drastic movement, while it tends to decrease with
soft movement. During a fall, a distinct impact phase occurs when the body makes contact
with the ground, resulting in a pronounced peak in acceleration, which is more apparent
than normal movements, making it a vital indicator for fall detection. As mentioned, a
pre-determined threshold is needed, and based on the preliminary tests, it is 2.5 g in this
work, where 1 g is equal to 9.8 m/s2. In the general case, the ACLR is lower than the
threshold. Nevertheless, when the ACLR exceeds the threshold, the walking stick identifies
a possible fall event and activates the buzzer and vibration motor to alert. To avoid false
alarms, its response continues for 60 s, during which the user has an opportunity to cancel
the alarm by pressing a button placed on the stick. Failure to do so within this period
indicates an actual fall event, and this alarm will be immediately transmitted to the user’s
cell phone through Bluetooth and then send a message to the emergency contact.
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4. Results and Discussion
4.1. Experimental Implementation

The experimental implementation mainly includes hardware validation through the
designed wearable smart glasses and intelligent walking stick. It aims to check whether
this system can conduct those functions according to various conditions. Please note
that the experiments were conducted by fixing the STM32F103C8T6 with diverse sensors
and modules on the stick to test heart rate detection, fall detection, body temperature
measurement, and humidity-temperature monitoring, respectively. On the other side, a
binocular camera is embedded into the glasses connected to the Raspberry Pi 3B+ to verify
object detection, obstacle distance measurement, and text recognition, respectively. As
mentioned, in order to ensure the real-time requirement, the algorithms concerning the
functions achieved by the glasses were operated on the Alibaba Cloud.

4.2. Results of Wearable Smart Glasses Experiments

Regarding the validations of object detection and obstacle distance measurement,
an evaluation involving 20 cases was conducted, containing single and multiple objects
commonly found in indoor and outdoor environments. As object detection and obstacle
distance measurement are usually combined in practice applications, the results enclose
the predicated object with its respective distance, as shown in Figure 9 for indoors, and
Figure 10 for outdoors. In addition, detailed results of object detection under various test
cases are summarized in Table 1.
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Figure 10. Example results of object detection and obstacle distance measurement using wearable
smart glasses for the outdoor environment.

The results of Table 1 present an accurate detection for single and dual-object cases.
However, as the number of objects in the image increased, failure cases were observed,
particularly for objects with similar appearances. For instance, the computer monitor was
erroneously recognized as the Television (TV) in cases 10 and 13, and the motorcycle was
misidentified as the bicycle in cases 19 and 20, implying the need for additional data training
to improve the recognition capabilities for objects with similar appearances. In short,
wearable smart glasses can achieve an object detection accuracy of around 92.16% (47 correct



Electronics 2023, 12, 3760 12 of 19

predictions out of 51 total items in 20 cases, with only 4 failure results), demonstrating its
promise in offering object information for visually impaired people.

Table 1. Performances of object detection under different cases.

Cases Number of Items Actual Object Predicated Object Failure Detection

1 One Person Person None
2 One Cup Cup None
3 One Pen Pen None
4 One Keyboard Keyboard None
5 One Monitor Monitor None
6 Two Person, Bottle Person, Bottle None
7 Two Chair, Mouse Chair, Mouse None
8 Three Book, Pen, Phone Book, Pen, Phone None
9 Three Person, Cup, Chair Person, Cup, Chair None
10 Four Person, Mouse, Monitor, Keyboard Person, Mouse, TV, Keyboard Monitor
11 Four Person, Bottle, Chair, Phone Person, Bottle, Chair, Phone None
12 Four Book, Pen, Mouse, Keyboard Book, Pen, Mouse, Keyboard None
13 Five Person, Bottle, Chair, Mouse, Monitor Person, Bottle, Chair, Mouse, TV Monitor
14 One Car Car None
15 Two Bicycle, Motorcycle Bicycle, Motorcycle None
16 Two Person, Car Person, Car None
17 Three Person, Car, Tree Person, Car, Tree None
18 Three Person, Bicycle, Car Person, Bicycle, Car None
19 Three Person, Motorcycle, Car Person, Bicycle, Car Motorcycle
20 Five Person, Tree, Car, Bicycle, Motorcycle Person, Tree, Car, Bicycle Motorcycle

Concerning the distance measurement results, among all cases presented in Table 1,
although several objects were misidentified, their respective distances can still be obtained,
and the range is 0.71–65.54 m. Compared to a mobile app, the deviation rate (the absolute
difference between the distance measured by the glasses and the distance measured by
the mobile app, divided by the distance measured by the mobile app) is from 0.28–6.32%,
where the longer the distance, the higher the deviation rate. The reason may be due to the
binocular vision ranging method, where depth perception is achieved by analyzing the
relative displacement of corresponding points in the images captured from the left and
right cameras, and the baseline is the separation between the cameras. As the distance
increases, the disparity between the corresponding points in the images becomes smaller
for those distant objects, reducing the precision of depth estimation [46]. Hence, it has
limitations at longer distances because of the way it estimates depth. Based on that, if
the distance measured by the glasses Is less than 0.70 m, the user will receive an alarm,
and simultaneously, with the help of the cloud platform, such data will be sent to the
STM32F103C8T6 to control the stick for obstacle avoidance.

Furthermore, text recognition is designed to beneficently improve real-time reading
experiences for visually impaired people, such as reading content on the book or screen,
which are usually in indoor environments. Hence, its evaluation is on ten texts extracted
from a book, and the example results are displayed in Figure 11, where the top displays
the original text, and the bottom shows the outcomes produced by the wearable smart
glasses embedded with the Baidu OCR engine. Remarkably, all words can be accurately
recognized in this test case. Additional cases have involved various numbers of words,
and the results are presented in Table 2. Although the head movements during reading
may lead to incomplete camera screenshots, causing very slight errors in real-time text
recognition, it still maintains an impressive accuracy (correct number of words divided by
the original number of words) of approximately 99.91%, disclosing that the smart glasses
properly extract text from the captured images. Therefore, by presenting such words
through Bluetooth audio equipment, visually impaired people can enhance their real-time
reading experiences in daily life.
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Figure 11. Example results of text recognition. The left side displays the original content and the
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OCR engine.

Table 2. Performances of text recognition under different cases.

Cases Original Number of Words Correct Number of Words Accuracy (%)

1 363 363 100
2 412 412 100
3 480 480 100
4 557 557 100
5 614 614 100
6 672 672 100
7 754 754 100
8 803 800 99.63
9 872 869 99.66
10 956 954 99.79

4.3. Results of Intelligent Walking Stick Experiments

First, a heart rate module based on PPG was integrated into the stick to validate its
heart rate detection capabilities. As individual variations may exist in physical status data,
four subjects were recruited for the experiments, where each subject underwent 20 tests in
two states: meditation and walking, with each state lasting for 30 s, alternating between the
two. The heart rate detection results were not only obtained from the intelligent walking
stick but also from a commercial device (Xiaomi smart band) for validation and comparison
purposes. Table 3 discloses the average performance of heart rate detection, in which the
BPM values represent the average heart rate value calculated from the 20 tests in each
case, and the deviation rate (the absolute difference between the heart rate detected by
stick and the heart rate detected by Xiaomi device, divided by the heart rate detected by
Xiaomi device) ranges from 0.72% to 3.52%. Such deviations fall within an acceptable range,
verifying the reliability of heart rate detection achieved by the intelligent walking stick.
Therefore, it proves effective in providing healthcare surveillance by monitoring heart
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rate variations, which can identify abnormal situations, particularly when the heart beats
faster. For visually impaired people, this capability is valuable as it allows for the early
detection of potential chronic diseases, leading to timely medical intervention and health
management.

Table 3. Performances of heart rate detection under different cases.

Cases States Age Gender Heart Rate Detected by
Stick (BPM)

Heart Rate Detected by
Xiaomi Device (BPM)

Deviation
Rates (%)

1
Meditation

30 s

20 Female 72.54 72.02 0.72
2 22 Male 83.89 82.21 2.04
3 45 Female 69.66 71.48 2.55
4 48 Male 75.28 78.03 3.52

5
Walking

30 s

20 Female 82.48 79.76 3.41
6 22 Male 86.31 87.02 0.82
7 45 Female 74.50 76.11 2.11
8 48 Male 86.08 85.27 0.95

Second, toward an investigation of fall detection, the experiment mainly simulated
the falls of visually impaired people in three scenarios: walking, upstairs, and downstairs.
The embedded MPU6050 sensor was employed to collect acceleration variations during
the experiment, and each scenario was tested 100 times. Table 4 displays the results,
where the correct detection means the stick detects a fall correctly, the incorrect detection
refers to when the stick detects a fall, but the user is still in a normal state, and the
unresponsive detection denotes the stick being unable to detect a fall when it occurs. Hence,
the average accuracy is the total number of correct detections divided by the total number
of tests (262/300 = 87.33%). Such an accuracy reveals that the intelligent walking stick can
determine whether visually impaired people are in a fall in most cases. Those misjudgments
may be due to the behaviors of different subjects, as the manner of the user holding a cane
or their movement patterns during a fall may impact the ability of the sensor to detect the
event accurately [47]. Consequently, suitable training before daily usage is preferred in this
sense.

Table 4. Performances of fall detection under three scenarios.

Scenarios Number of
Correct Detection

Number of
Incorrect Detection

Number of
Unresponsive Detection Accuracy (%)

Walking 86 10 4 86.00
Upstairs 88 10 2 88.00

Downstairs 88 8 4 88.00

Third, as for body temperature measurement, its validation was tested 10 times for
each subject and then compared with the results measured by a medical forehead thermome-
ter (ORCOE Co., Ltd., Yantai, China, XCH01A). Table 5 presents the average performance
on four subjects, where the maximum deviation rate compared to the commercial device
is only 0.19%, proving that body temperature measurement can be accomplished appro-
priately by the stick, which can benefit the timely assessment of body temperature for
visually impaired people. It is particularly essential during epidemics, such as the previous
Coronavirus Disease-2019 (COVID-19) pandemic.



Electronics 2023, 12, 3760 15 of 19

Table 5. Performances of body temperature measurement from four subjects.

Subjects Age Gender Body Temperature
Measured by Stick (◦C)

Body Temperature Measured
by Medical Forehead

Thermometer (◦C)

Deviation
Rates (%)

A 20 Female 36.47 36.44 0.08
B 22 Male 36.80 36.73 0.19
C 45 Female 36.63 36.67 0.11
D 48 Male 36.86 36.81 0.14

Next, humidity-temperature monitoring was evaluated over one week at a consistent
time (8 a.m.) and outdoor location (university playground). The obtained data were also
compared with the measurements through a Xiaomi humidity-temperature device, as
shown in Table 6. The results display that the maximum deviation rates of temperature and
humidity are 2.86% and 3.13%, respectively, occurring on Day 3, and the differences were
very slight on other days, indicating the walking stick is capable of providing a trustworthy
environmental perception of surroundings in terms of humidity and temperature levels.

Table 6. Performances of humidity-temperature monitoring under different cases.

Days
Temperature
Measured by

Stick (◦C)

Humidity
Measured by
Stick (%RH)

Temperature
Measured by

Xiaomi Device (◦C)

Humidity Measured
by Xiaomi Device

(%RH)

Deviation Rates of
Temperature (%)

Deviation Rates
of Humidity (%)

1 16.7 49 16.4 50 1.83 2.00
2 19.2 57 19.3 57 0.52 0.00
3 17.0 62 17.5 64 2.86 3.13
4 20.1 51 20.0 51 0.50 0.00
5 17.8 55 17.9 54 0.56 1.86
6 18.9 60 18.8 59 0.53 1.69
7 17.5 61 17.7 61 1.13 0.00

Lastly, an Android app is designed to visualize the current status information. Figure 12
shows the homepage of the app, and the example results of body temperature measurement,
real-time heart rate detection, and humidity monitoring. These data can be played to
the users through Bluetooth audio equipment, which helps them to sense health and
environmental information. Additionally, the emergency contact or family member can use
it to collect the data timely, which enhances their support for visually impaired people.
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5. Conclusions

In this work, an assistance system to enhance convenience for visually impaired
people is proposed, incorporating wearable smart glasses for object detection, obstacle
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distance measurement, and text recognition, and the intelligent walking stick equipped
with capabilities of heart rate detection, fall detection, body temperature measurement, and
humidity-temperature monitoring. This system is mainly designed by integrating a variety
of low-cost sensors and modules with their connection based on an AIoT framework. Ad-
ditionally, a voice assistant that communicates the detection results to the users is included.
The glasses experiments indicate high accuracies of 92.16% and 99.91% for object detection
and text recognition, respectively. In addition, the maximum deviation rate observed in
obstacle distance measurement compared to a mobile app is 6.32%, showing its reliability.
Then, the stick experiments focus on evaluating heart rate detection, body temperature
measurement, humidity-temperature monitoring, and fall detection. Comparisons with
commercial devices reveal maximum deviation rates of 3.52%, 0.19%, and 3.13% for heart
rate detection, body temperature measurement, and humidity-temperature monitoring,
respectively, and the fall detection accuracy achieves 87.33%. Such outcomes demonstrate
that the proposed system offers performances on par with existing commercial devices and,
particularly, its total hardware cost amounts to $66.8, which is lower than several previous
related works, such as $240 by Lan et al. [48], $97 by Jiang et al. [49], $70 by Rajesh et al. [50],
and $68 by Khan et al. [51]. Furthermore, as all image-related processes are performed on
the Alibaba Cloud, the results can be available in an average of 1.12 s per image, satisfying
a very-high, real-time requirement. Thus, the low-cost and multi-functional system is an
appropriate and user-friendly solution to address the needs of visually impaired people,
providing them with enhanced safety and well-being.

In the future, to further improve its detection accuracy with the help of sufficiently
large data samples, several advanced models such as contrastive learning approach [52],
self-attention enhanced deep residual network [53], time-series sequencing method [54],
multiscale superpixelwise prophet model [55], and multistage stepwise discrimination with
compressed MobileNet [56] will be investigated into the assistance system. Furthermore,
additional functions, such as emotion recognition and fatigue detection, will be designed
to enhance the overall life quality of visually impaired people.
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