
Citation: Gebresilassie, S.K.; Rafferty,

J.; Chen, L.; Cui, Z.; Abu-Tair, M.

Transfer and CNN-Based

De-Authentication (Disassociation)

DoS Attack Detection in IoT Wi-Fi

Networks. Electronics 2023, 12, 3731.

https://doi.org/10.3390/

electronics12173731

Academic Editor: Aryya

Gangopadhyay

Received: 13 July 2023

Revised: 27 August 2023

Accepted: 29 August 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Transfer and CNN-Based De-Authentication (Disassociation)
DoS Attack Detection in IoT Wi-Fi Networks
Samson Kahsay Gebresilassie 1 , Joseph Rafferty 1 , Liming Chen 1 , Zhan Cui 2 and Mamun Abu-Tair 1,*

1 British Telecom Ireland Innovation Centre, School of Computing, Ulster University, Belfast BT15 1ED, UK;
gebresilassie-s@ulster.ac.uk (S.K.G.); j.rafferty@ulster.ac.uk (J.R.); l.chen@ulster.ac.uk (L.C.)

2 British Telecom, Adastral Park, Ipswitch IP5 3RE, UK; zhan.cui@bt.com
* Correspondence: m.abu-tair@ulster.ac.uk

Abstract: The Internet of Things (IoT) is a network of billions of interconnected devices embed-
ded with sensors, software, and communication technologies. Wi-Fi is one of the main wireless
communication technologies essential for establishing connections and facilitating communication
in IoT environments. However, IoT networks are facing major security challenges due to various
vulnerabilities, including de-authentication and disassociation DoS attacks that exploit IoT Wi-Fi
network vulnerabilities. Traditional intrusion detection systems (IDSs) improved their cyberattack
detection capabilities by adapting machine learning approaches, especially deep learning (DL).
However, DL-based IDSs still need improvements in their accuracy, efficiency, and scalability to
properly address the security challenges including de-authentication and disassociation DoS attacks
tailored to suit IoT environments. The main purpose of this work was to overcome these limitations
by designing a transfer learning (TL) and convolutional neural network (CNN)-based IDS for de-
authentication and disassociation DoS attack detection with better overall accuracy compared to
various current solutions. The distinctive contributions include a novel data pre-processing, and
de-authentication/disassociation attack detection model accompanied by effective real-time data
collection and parsing, analysis, and visualization to generate our own dataset, namely, the Wi-Fi As-
sociation_Disassociation Dataset. To that end, a complete experimental setup and extensive research
were carried out with performance evaluation through multiple metrics and the results reveal that
the suggested model is more efficient and exhibits improved performance with an overall accuracy of
99.360% and a low false negative rate of 0.002. The findings from the intensive training and evaluation
of the proposed model, and comparative analysis with existing models, show that this work allows
improved early detection and prevention of de-authentication and disassociation attacks, resulting in
an overall improved network security posture for all Wi-Fi-enabled real-world IoT infrastructures.

Keywords: de-authentication and disassociation attacks; intrusion detection system; convolutional
neural network; transfer learning; IoT Wi-Fi networks

1. Introduction

The Internet of Things (IoT) is a network of billions of interconnected devices em-
bedded with sensors, software, and communication technologies with the capabilities of
gathering and exchanging data via the Internet, allowing them to communicate with one
another and execute a variety of functions independently. One of the important wireless
communication technologies for establishing connections and enabling communication
in IoT contexts is the IEEE 802.11 wireless local area network (WLAN) [1–6], commonly
called Wi-Fi. It is one of the fastest-growing technologies and a widely deployed type of
network due to ease of installation, flexibility, mobility, reduced cost of ownership, and
scalability [7,8]. Devices in the IoT system face various security challenges including attacks
launched to target different layers of the stack [9]. Wi-Fi-enabled IoT is deployed almost
everywhere, ranging from common households to large-scale critical infrastructures with a

Electronics 2023, 12, 3731. https://doi.org/10.3390/electronics12173731 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173731
https://doi.org/10.3390/electronics12173731
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7483-2737
https://orcid.org/0000-0002-6318-8456
https://orcid.org/0000-0003-0200-7989
https://orcid.org/0000-0001-6796-9981
https://doi.org/10.3390/electronics12173731
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173731?type=check_update&version=2

Electronics 2023, 12, 3731 2 of 32

rapidly growing number of devices such as smartphones, laptops, tablets, smartwatches,
IoT devices, etc., along with the advancement and growth of various services such as cloud-
based data storage, social networking, contented services, online banking, e-commerce, etc.
However, due to the broadcast nature of the wireless signal on an open wireless medium,
protocols, and mechanism design vulnerabilities, IoT Wi-Fi networks are exposed to various
attacks from hackers and intruders. The insecurity of these Wi-Fi-enabled IoT devices is
increasingly growing as they become easy targets of various attacks. De-authentication and
disassociation DoS attacks are among those security challenges where attackers can easily
spoof the MAC address of the client or the AP while they are in the process of genuine
authentication/association and de-authentication/disassociation by carrying out an attack
on their behalf which can result in turning down the Wi-Fi network and denying services.
Common Vulnerabilities and Exposures (CVE) recorded a number of de-authentication and
disassociation attacks carried out against different Wi-Fi networks and environments [10].

There is a need for more secure Wi-Fi networks [11] and several advancements have
been made. The first approach is the innovation of Wi-Fi communication technology itself,
including the latest security enhancement with Wi-Fi Protected Access 3 (WPA 3) [12], and
performance enhancement with IEEE 802.11ax [13] (commonly called Wi-Fi 6). However,
WPA 3 has potential flaws and vulnerabilities [14], one of which is vulnerability to Denial
of Service (DoS) attacks aimed at disconnecting network devices, with de-authentication
and disassociation included among such successful attacks. The other approach is the
development and advancement of different intrusion detection systems (IDS), a vital
cybersecurity technique, deployed to operate as a second security protection, monitoring
and identifying unusual activities carried out by attackers that influence the availability of
the Wi-Fi network. A number of machine and deep learning-based IDS solutions have been
developed over the recent years to solve some of these problems [15–23]. For example, the
authors of [15] identified different Wi-Fi vulnerabilities by carrying out various attacks and
recommended strong encryption, employee training, and improving organizational security
standards. In [17], the authors proposed a Wireless Intrusion Detection System to detect
attacks on Wi-Fi networks while [14] introduced a WIDS to classify Wi-Fi traffic captured
with n-grams into normal or malicious using machine learning models. Machine and deep
learning-based IDSs can potentially offer better security by design, and therefore enhance
the security of IoT Wi-Fi network infrastructures. However, the solutions mentioned above
still face difficulties, including failing to achieve better performance, lacking up-to-date
datasets, and not providing end-to-end solutions. Using old datasets can cause less effective
attack detection as it may not capture the current state of Wi-Fi networks (including updated
security protocols, authentication methods, or encryption standards), may fail to accurately
represent the current attack landscape, and can miss already known vulnerabilities and
weaknesses addressed by the latest security mechanisms. In addition, according to our
knowledge, current solutions fail to provide an up-to-date end-to-end solution with real-
time automated Wi-Fi network traffic analysis and attack detection mechanisms. Moreover,
despite their rapid growth and importance, such security risks are not properly addressed
in IoT systems such as smart home Wi-Fi network environments.

Our work is an academic and industry joint study with the overall goal of developing
IoT management frameworks and platforms for attack prevention, ensuring trust among
IoT devices and communication technologies, along with their data, and data and process
analytics. One among these real-world problems faced by the industry partner is “What
are the reasons for the illegitimate de-authentication and disassociation of genuine clients
from the IoT Wi-Fi networks including in smart homes?”. Although there are multiple
reasons for this problem, we focus on de-authentication and disassociation DoS attacks
which disconnect genuine clients from the network and deny associated services.

The main aim of this article is to present a TL and DL-based intrusion detection system
to detect de-authentication and disassociation attacks in IoT Wi-Fi networks. The advantage
of our proposed model in comparison to previous solutions is that it provides an end-to-end
solution that involves carrying out attacks, real-time data collocation, parsing, analysis

Electronics 2023, 12, 3731 3 of 32

and visualization, and detection of the targeted attacks. The proposed solution has the
following main contributions:

• We propose an end-to-end IDS solution for de-authentication\disassociation DoS
attack detection in IoT Wi-Fi networks.

• We design a complete testbed for collecting real-time network traffic and modules
for parsing unstructured network traffic, analyzing structured data, and generating
datasets for the proposed attack detection solution.

• We propose a novel data pre-processing technique to prepare our Wi-Fi Association_
Disassociation dataset to make it suitable for TL- and CNN-based attack detection.

• We evaluate our solution’s performance using different metrics, including confusion
matrix, accuracy, precession, recall, F1-score, and ROC/AUC. Then, we compare
it with state-of-the-art solutions that involve both TML and DL models. We show
that our solution can effectively detect de-authentication/disassociation attacks with
high accuracy.

The rest of the paper is organized as follows: Section II discusses some background
knowledge. Section III presents the current state of research on intrusion detection focusing
on convolutional neural networks and transfer learning. Section IV discusses the details of
the proposed solution while Section V describes the experimental configurations, results,
and analysis. Section VI explains and interprets the results of the solution. Finally, the
conclusion of the paper is presented in Section VII.

2. Background
2.1. Intrusion Detection System (IDS)

An intrusion in cyber security refers to unauthorized access or entry into a node or
network system. This can be accomplished through various methods such as hacking,
malware, or social engineering. An intrusion’s goal could be to steal sensitive information,
disrupt operations, or gain control of a targeted node or an entire network. To protect
against these types of threats, intrusion detection and prevention are critical aspects of
cyber security.

An intrusion detection system (IDS) detects malicious user’s unauthorized access to
systems or networks. IDSs’ primary duties are to monitor hosts and networks, evaluate
computer system activity, produce warnings, and respond to suspicious behavior. The
basic architecture of an IDS, as shown in Figure 1 (adapted from [24]), consists of a data
collection device (sensor), an intrusion detection engine, a knowledgebase (database), a
configuration device, and a response component [25]. Based on different factors, IDSs
can be classified into various types among which network IDS (NIDS) is widely deployed
and our solution falls under this category. A Network Intrusion Detection System (NIDS)
typically examines network traffic for patterns or anomalies that might reveal an intrusion.
The NIDS is often deployed on the border router or switches and monitors network traffic
flow to identify threats that occur across the network connection [26]. It operates on the OSI
Model’s Network Layer or Data Link Layer. Most NIDSs are independent of the operating
system (OS), allowing them to be used in various OS scenarios. Furthermore, NIDSs can
identify specific protocol types and network assaults. The disadvantage is that they only
monitor traffic moving via a certain network section.

2.2. Machine and Deep Learning for IDS

Both traditional machine learning (TML) and deep learning approaches prove their
capability for the advancement of IDSs. However, because of the speed and amount of
IoT-produced data, TML approaches continue to face several challenges in extracting
relevant features from the massive and unstructured data created by IoT devices as they
need well-crafted feature engineering. Deep learning methods have become the preferred
approach in recent years due to their ability to learn features automatically, efficiently
handle large-scale datasets, and adapt and learn new data with less extensive retraining, as
well as their flexibility and capability of capturing nonlinear relationships in data.

Electronics 2023, 12, 3731 4 of 32Electronics 2023, 12, x FOR PEER REVIEW 4 of 33

Figure 1. Basic architecture of IDSs.

2.2. Machine and Deep Learning for IDS

Both traditional machine learning (TML) and deep learning approaches prove their

capability for the advancement of IDSs. However, because of the speed and amount of

IoT-produced data, TML approaches continue to face several challenges in extracting rel-

evant features from the massive and unstructured data created by IoT devices as they need

well-crafted feature engineering. Deep learning methods have become the preferred ap-

proach in recent years due to their ability to learn features automatically, efficiently handle

large-scale datasets, and adapt and learn new data with less extensive retraining, as well

as their flexibility and capability of capturing nonlinear relationships in data.

2.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is one of the most often utilized forms of

neural networks in computer vision. It proved to be effective in many challenges such as

face recognition [27], object detection [28], picture classification [25], image restoration

[29], image captioning [30], industrial applications [31], audio recognition [32], and so on,

which makes it critically useful in image analysis. The basic architecture of a CNN, as

shown in Figure 2 (adapted from [33]), consists of different types of layers among which

the main layers are convolutional, pooling, rectification, and flatten layers. At the core of

a CNN is the convolutional layer whose units are organized into output feature maps

following the convolution operation using filters or kernels. The output feature maps are

then passed through the pooling layer to reduce their dimensions and the number of over-

fitting parameters which in turn accelerates neural network performance and leads to

faster training. At the same time, it keeps the majority of the dominant information (or

features) in every stage of the pooling process. Furthermore, pooling filters aid in learning

the most important features and removing outliers and inconsistencies. Classifiers are of-

ten composed of fully connected layers, and they carry out classification tasks according

to the identified features. In general, in contrast to other DL or ML algorithms that can be

over-fitted with massive amounts of data, CNNs can instantly determine the sort of attack.

Figure 1. Basic architecture of IDSs.

2.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is one of the most often utilized forms of
neural networks in computer vision. It proved to be effective in many challenges such as
face recognition [27], object detection [28], picture classification [25], image restoration [29],
image captioning [30], industrial applications [31], audio recognition [32], and so on, which
makes it critically useful in image analysis. The basic architecture of a CNN, as shown
in Figure 2 (adapted from [33]), consists of different types of layers among which the
main layers are convolutional, pooling, rectification, and flatten layers. At the core of
a CNN is the convolutional layer whose units are organized into output feature maps
following the convolution operation using filters or kernels. The output feature maps
are then passed through the pooling layer to reduce their dimensions and the number of
overfitting parameters which in turn accelerates neural network performance and leads
to faster training. At the same time, it keeps the majority of the dominant information (or
features) in every stage of the pooling process. Furthermore, pooling filters aid in learning
the most important features and removing outliers and inconsistencies. Classifiers are often
composed of fully connected layers, and they carry out classification tasks according to
the identified features. In general, in contrast to other DL or ML algorithms that can be
over-fitted with massive amounts of data, CNNs can instantly determine the sort of attack.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 33

Figure 2. The basic architecture of a CNN.

2.2.2. Transfer Learning

Transfer learning (TL) [34] is a powerful method for exploiting deep neural networks

on smaller datasets. The goal of transfer learning is to transfer the structure and parame-

ters of large-scale dataset-trained models (e.g., AlexNet, VGGNet, and ResNet) to new

tasks and use the weights trained on the large dataset as the initial weights for the new

task [18]. As a result, TL leverages the knowledge learned from the source domain to solve

the problem in the target domain without the need to learn from scratch with a massive

amount of data. As opposed to training new models from the beginning using new da-

tasets, we may leverage the patterns learned from datasets like ImageNet (millions of pho-

tos of various things) as the foundation of the new problem, as shown in Figure 3.

Figure 3. Use of transfer learning and CNNs.

Figure 2. The basic architecture of a CNN.

Electronics 2023, 12, 3731 5 of 32

2.2.2. Transfer Learning

Transfer learning (TL) [34] is a powerful method for exploiting deep neural networks
on smaller datasets. The goal of transfer learning is to transfer the structure and parameters
of large-scale dataset-trained models (e.g., AlexNet, VGGNet, and ResNet) to new tasks and
use the weights trained on the large dataset as the initial weights for the new task [18]. As
a result, TL leverages the knowledge learned from the source domain to solve the problem
in the target domain without the need to learn from scratch with a massive amount of
data. As opposed to training new models from the beginning using new datasets, we may
leverage the patterns learned from datasets like ImageNet (millions of photos of various
things) as the foundation of the new problem, as shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 33

Figure 2. The basic architecture of a CNN.

2.2.2. Transfer Learning

Transfer learning (TL) [34] is a powerful method for exploiting deep neural networks

on smaller datasets. The goal of transfer learning is to transfer the structure and parame-

ters of large-scale dataset-trained models (e.g., AlexNet, VGGNet, and ResNet) to new

tasks and use the weights trained on the large dataset as the initial weights for the new

task [18]. As a result, TL leverages the knowledge learned from the source domain to solve

the problem in the target domain without the need to learn from scratch with a massive

amount of data. As opposed to training new models from the beginning using new da-

tasets, we may leverage the patterns learned from datasets like ImageNet (millions of pho-

tos of various things) as the foundation of the new problem, as shown in Figure 3.

Figure 3. Use of transfer learning and CNNs. Figure 3. Use of transfer learning and CNNs.

2.3. IoT and the Wi-Fi Protocol

The Internet of Things (IoT) is a network of billions of interconnected physical devices
embedded with sensors, software, and communication technologies with the capabilities
of gathering and exchanging data via the Internet, allowing them to communicate with
one another and execute a variety of functions independently. Wi-Fi has become part of
our daily lives and more popular for use in many areas of application including smart
home equipment due to its low cost, ubiquity, and ease of connecting. The continuous
decline in the price of Wi-Fi chipsets has contributed significantly to its expansion. With the
rapidly increasing IoT advancement and billions of connected objects, Wi-Fi applications
reached new heights. More than 37 billion Wi-Fi-enabled devices were shipped in 2021,
and the global value of Wi-Fi is estimated to be $4.9 trillion by 2025 [35]. The increasing
deployment of IoT devices is the primary driver of this market growth.

Wi-Fi-enabled devices communicate with an intermediary device such as an access
point (AP), a networking device linked to a wired or cellular network through radio signals
over the airwaves, via Wi-Fi. The AP effectively turns Internet data into radio waves and
transmits them into the surrounding area.

Electronics 2023, 12, 3731 6 of 32

De-Authentication and Disassociation Attacks

An IoT Wi-Fi network has many vulnerabilities such as an open wireless medium,
lack of robust encryption protocols, the unprotected nature of the management frames,
and insufficient validation of de-authentication frames. These security challenges make an
IoT Wi-Fi network vulnerable to various attacks such as Denial of Service (DoS), spoofing,
eavesdropping, Man-In-The-Middle Attack, and many others [36]. The de-authentication
and disassociation DoS attacks are the attack scenarios that this work focuses on. The
security evaluation of a network generally involves different phases such as exploration,
analysis, attack, and operation. For the attack scenarios, network traffic associated with the
association/disassociation process of the 802.11 Wi-Fi networks is the focus of the analysis
and attack detection.

2.4. De-Authentication DoS Attack

De-authentication attacks are classified as management frame attacks and fall under
the Denial of Service attack which targets disrupting the communication between users
(stations) and the Wi-Fi AP [37]. Normally, a de-authentication frame is used to gracefully
end a connection between a connected client and an access point. The AP or the station can
invoke the de-authentication due to shutdown, out of coverage, or other reasons. When
the AP receives this frame, it also transmits the de-authentication frame back to the client.
While this is a normal process for de-authentication, an attacker can take advantage of this
process. An attacker exploits this regular process by first waiting for a client to authenticate
with the AP and then launching attacks by spoofing the MAC address of a target client and
sending the de-authentication frame to the AP on behalf of the victim. This disconnects
the connection of the station to the AP. The attacker then spoofs this client’s MAC address
and delivers the de-authentication frame to the AP. The entire process is shown in Figure 4
(adapted from [38]).

Electronics 2023, 12, x FOR PEER REVIEW 7 of 33

Figure 4. An attacker carrying out a de-authentication DoS Attack.

2.5. Disassociation DoS Attack

An existing association is terminated via a disassociation frame. Any of the two as-

sociated stations can initiate a disassociation notice. Disassociation cannot be denied since

it is a notification rather than a request. The receiving station clears the appropriate states

and keys from its memory in response to the disassociation notice. Stations often dissoci-

ate when they leave the network or when they relocate and want to join another network.

If an AP cannot manage all of its associated stations or is restarting, it broadcasts a broad-

cast disassociation to disconnect all of them. Because the disassociation frame is neither

encrypted nor authenticated, it is vulnerable to spoofing. Anyone may spoof the source

address (SA) using MAC spoofing tools and techniques such as Aircrack-ng, MAC

changer, Scapy, or custom scripts. By sending a faked disassociation frame, the attacker

can force the target victim client to dissociate, as shown in Figure 5 (adapted from [38]).

Figure 4. An attacker carrying out a de-authentication DoS Attack.

Electronics 2023, 12, 3731 7 of 32

2.5. Disassociation DoS Attack

An existing association is terminated via a disassociation frame. Any of the two asso-
ciated stations can initiate a disassociation notice. Disassociation cannot be denied since it
is a notification rather than a request. The receiving station clears the appropriate states
and keys from its memory in response to the disassociation notice. Stations often dissociate
when they leave the network or when they relocate and want to join another network. If an
AP cannot manage all of its associated stations or is restarting, it broadcasts a broadcast dis-
association to disconnect all of them. Because the disassociation frame is neither encrypted
nor authenticated, it is vulnerable to spoofing. Anyone may spoof the source address (SA)
using MAC spoofing tools and techniques such as Aircrack-ng, MAC changer, Scapy, or
custom scripts. By sending a faked disassociation frame, the attacker can force the target
victim client to dissociate, as shown in Figure 5 (adapted from [38]).

Electronics 2023, 12, x FOR PEER REVIEW 8 of 33

Figure 5. An attacker carrying out a disassociation DoS Attack.

2.6. Log Collection and Parsing

Small to large-scale systems generate logs on a regular basis to record system states

and runtime information, each of which includes a date and a log message describing

what happened. This useful information might be used for a variety of purposes (for ex-

ample, anomaly detection), and thus logs are gathered first for later use. Logs are unstruc-

tured plain text and consist of constant and variable parts [39]. Logs consist of constant

parts predefined in the source code and they remain the same in different occurrences.

The remaining parts of the log are variable parts that change depending on the different

occurrences and are generated dynamically. Log parsing extracts a group of event tem-

plates to create a structured and well-established log format from the raw logs. More spe-

cifically, each log message can be parsed into an event template (constant part) with some

specific parameters (variable part).

2.7. Elastic Stack

The Elastic stack is an open-source project that primarily consists of Elasticsearch,

Logstash, and Kibana (ELK) used for data preprocesses, data search, and data visualiza-

tion [40]. ELK is preferred as it is open-source with the capabilities of log collection, pro-

cessing, and visualization. Being open-source and other vital features of ELK help develop

effective and efficient vendor-independent solutions including log collection, log parsing,

visualization, and feature extraction.

Figure 5. An attacker carrying out a disassociation DoS Attack.

2.6. Log Collection and Parsing

Small to large-scale systems generate logs on a regular basis to record system states
and runtime information, each of which includes a date and a log message describing
what happened. This useful information might be used for a variety of purposes (for
example, anomaly detection), and thus logs are gathered first for later use. Logs are
unstructured plain text and consist of constant and variable parts [39]. Logs consist
of constant parts predefined in the source code and they remain the same in different
occurrences. The remaining parts of the log are variable parts that change depending on
the different occurrences and are generated dynamically. Log parsing extracts a group of
event templates to create a structured and well-established log format from the raw logs.
More specifically, each log message can be parsed into an event template (constant part)
with some specific parameters (variable part).

Electronics 2023, 12, 3731 8 of 32

2.7. Elastic Stack

The Elastic stack is an open-source project that primarily consists of Elasticsearch,
Logstash, and Kibana (ELK) used for data preprocesses, data search, and data visual-
ization [40]. ELK is preferred as it is open-source with the capabilities of log collection,
processing, and visualization. Being open-source and other vital features of ELK help
develop effective and efficient vendor-independent solutions including log collection, log
parsing, visualization, and feature extraction.

3. Related Work

In recent years, several studies have been conducted on machine learning approaches
for intrusion detection with some of them focusing on DL methods. Due to their capacity
to learn features automatically, effectively handle large-scale datasets, and adapt and learn
new data with less extensive retraining, flexibility, and capability of capturing nonlinear
relationships in data, deep learning (DL) approaches have recently gained popularity in
IDS. As a result, various studies have focused on employing deep learning techniques to
propose novel solutions addressing two separate technological and regulatory viewpoints,
such as anomaly and malware detection; nevertheless, the findings are still unconvinc-
ing. Furthermore, most IDSs are based on existing computer networks, wireless sensor
networks, and mobile ad hoc networks. However, because of the unique properties of
IoT environments, such as access to the global Internet, heterogeneity, computationally
limited resources, and being dynamic and constantly evolving areas with new and regularly
emerging attack techniques and vulnerabilities, the IDS recommended for these networks
is less effective with IoT applications [19,20].

In the solution proposed by Satman et al. [18], a Wireless Intrusion Detection System
(WIDS) uses an anomaly behavior analysis approach to detect attacks on Wi-Fi networks
with a 99% detection rate and 0.1% false alarm rate. The approach models the normal
behavior of the Wi-Fi protocol using n-grams, which are used to capture continuous
sequences of n items, and uses machine learning models to classify Wi-Fi traffic flows
as normal or malicious. The approach has been extensively tested on multiple datasets
collected locally at the University of Arizona and the AWID family of datasets. The study by
Thing et al. [22] provides a deep learning strategy for detecting anomalies and classifying
attacks in IEEE 802.11 networks. To detect network anomalies and properly classify attacks,
the suggested system employs a self-learning methodology. The approach is based on
a deep neural network architecture known as a stacked autoencoder (SAE). The SAE
is trained on the dataset to learn the characteristics required for the accurate detection
and classification of network anomalies. The classification is regarded as a multi-class
problem, and the suggested approach classified the attacks with an overall accuracy of
98.6688%, which shows that our solution performs better. The paper [23] proposes an
intrusion detection system for wireless networks using a feature selection algorithm called
conditional random field and linear correlation-coefficient-based feature selection algorithm.
The proposed system achieves an overall detection accuracy of 98.88%. However, this
solution has insufficient performance, and no comparison is made with other existing
IDSs, which could provide a better understanding of its effectiveness in comparison to
other methods.

The study [41] presents a three-layer hybrid intrusion detection approach for malicious
attacks on smart homes. The model, which is ideal for large amounts of data, employs a
two-layer feature processing technique based on random forest and principal component
analysis to minimize data information loss. With binary classifiers, the three-layer detection
model can detect four frequent threats and substantially enhance accuracy. The suggested
model’s experimental assessment is carried out using a real smart home traffic dataset, and
it achieves a classification accuracy of 95.90%. The experimental findings demonstrate that
the suggested model has good performance in detecting and classifying malicious attacks
in a smart home.

Electronics 2023, 12, 3731 9 of 32

The authors of [42] proposed an IDS for detecting Distributed Denial of Service (DDoS)
attacks in IoT networks. The suggested IDS employs a hybrid approach that combines deep
learning and multi-objective optimization. The proposed IDS combines the Jumping Gene
modified NSGA-II multi-objective optimization approach for data dimension reduction and
the convolutional neural network (CNN) incorporating long short-term memory (LSTM)
deep learning techniques for attack classification. The experiment was performed using
the latest CISIDS2017 datasets on DDoS attacks using a high-performance computer (HPC)
and achieved an accuracy of 99.03% with a 5-fold reduction in training time.

The authors of [43] proposed the design and implementation of a deep-learning-based
model for detecting anomalies in IoT networks. The presented model used CNNs for mul-
ticlass and binary classification of network intrusion. Several datasets, including BoT-IoT,
IoT Network Intrusion, MQTT-IoT-IDS2020, and IoT-23 intrusion detection datasets, were
used to evaluate the model. The model’s performance was measured using accuracy, preci-
sion, recall, and F1 score. When compared to existing deep learning implementations, the
suggested binary and multiclass classification models exhibited good accuracy, precision,
recall, and F1 scores. The solution achieved an overall accuracy of 87%. The study [33]
presented the use of transfer learning to update deep learning-based intrusion detection
systems (DL-IDS). The authors created a CNN-based IDS using the Bot-IoT dataset and
updated it with small data from a new dataset called TON-IoT. The results achieved showed
promising improvements in multiple metrics regarding detection rate and training between
the initial training for the original model and the updated model, in terms of detecting
new attack behaviors and improving the detection rate for some classes due to a lack of
labeled data. However, the paper does not provide any specific numerical values for the
obtained results.

Masum et al. [44] investigated transfer learning for detecting new intrusions. Their
method is based on a two-stage process in which the first phase employs the VGG-16
pretrained on the ImageNet dataset, and the second applies a deep neural network (DNN)
to extract features. They evaluated the method on the NSL-KDD dataset as well, achieving
an accuracy of 70.97% in detecting novel intrusions (KDDTest-21). In 5G IoT contexts,
Fan et al. [45] combined transfer and federated learning and proposed federated learning
for securely collecting data from several IoT networks. They implemented transfer learning
using a CNN to create a personalized intrusion detection model for each IoT network. They
evaluated the solution using CICIDS2017 as their source dataset and a different custom
dataset as the target dataset. The proposed solution achieved an average accuracy of 91.93%.
The paper [46] proposed an IDS that uses a bidirectional long short-term memory (BiLSTM)
and CNN hybrid model to detect anomalies in a smart home network. The proposed
model uses BiLSTM to preserve learned information across time and a CNN to extract data
features. The model was trained and evaluated using the NSL-KDD dataset and achieved
an accuracy of 98.93%.

Huong et al. [47] introduced an IDS for IoT systems based on a CNN. The suggested
technique extracts log information from an IoT system, such as location, service, and
address, into an original feature set, enhances and encodes it, and feeds it into a CNN for
training and detection. The approach has a 98.9% average accuracy. The study [48] presents
a deep learning and transfer learning-based intrusion detection system. The suggested
technique presents network data in the form of a grayscale image using stream data
visualization, and then a deep learning method is developed to detect network intrusion
based on texture features in the grayscale image. Finally, transfer learning is applied to
improve the model’s iterative efficiency and flexibility. The experimental findings reveal
that the suggested method achieved an accuracy of 97.9%. Using the NSL-KDD dataset
as a benchmark, the study [49] presents two deep learning models for intrusion detection
systems. The first model is LSTM-only, which solely employs long short-term memory
(LSTM) layers while the second model combines CNN with layers of LSTM. Both models
are compared to the existing approach for intrusion detection, which employs recurrent
neural networks (RNNs). The experimental results show that the maximum accuracy

Electronics 2023, 12, 3731 10 of 32

achieved is by the CNN-LSTM model, which is 94.12%. The recent state-of-the-art IDSs
based on TML and DL are summarized in Table 1.

Existing DL-based intrusion detection approaches in IoT Wi-Fi networks still need
improvements in detection accuracy and lack an end-to-end solution consisting of a com-
plete testbed, traffic data collection, parsing, analysis, visualization, generating dataset, and
attack detection with the main focus of de-authentication/disassociation DoS attacks using
TL and DL-based IDS systems. As a result, the purpose of this article was to bridge that gap
and examine the most effective and efficient application of DL techniques in safeguarding
the IoT Wi-Fi network environment.

Table 1. Summary of recent research on IDSs based on TML and DL for IoT Wi-Fi networks.

Ref. ML/DL
Algorithm

Preprocessing/Feature
Selection

Algorithm
Dataset Accuracy Detected Attacks

[18]

Isolation Forest,
C4.5, Random

Forest, Adaboost,
Decision Tree

n-grams + Bayes
Theorem

Generated from local
setup (2016,
2017, 2018)

99% Attacks on availability
and encryptions

[22] SAE NA AWID-CLS-R 98.67% Injection, flooding,
impersonation

[23] CNN CRFLCFS KDD 99 Cup 98.88% DoS, U2R, R2L, Probe

[41] DT, NB, SVM,
KNN

Random Forest and
PCA

Generated from local
real-time setup (2020) 95.90% DoS/DDoS,

probing/theft

[42] CNN, LSTM NSGA-II CISIDS2017 99.03% DDoS

[43] DTL
Numconv,
correlation,
min–max

Generated from local
real-time setup 87%

DoS, DDoS, data
injection, MITM,

backdoor, PCA, scanning,
XSS, ransomware

[33] CNN, TL Argus tool Bot-IoT NA Reconnaissance, DDoS,
DoS, theft

[44] DNN, VGG-16 One-hot encoding,
min–max NSL-KDD 70.97% DoS, Probe, U2R, R2L

[45] AB, RF, CNN,
KNN NA

CICIDS2017,
NSL-KDD, 3 other IoT

private datasets
91.93% DoS, Probe, U2R, R2L,

Mirai, MitM, Bot, etc.

[46] BiLSTM, CNN NA NSL-KDD 98.93% DoS, Probe, U2R, R2L

[47] CNN NA IoT intrusion 98.9%

DoS, scan,
MaliciousControl,

MaliciousOperation,
spying, prob

[48] CNN, TL One-hot encoding,
min–max KDD Cup 99 97.9% DoS, U2R, R2L, Probe

[49] LSTM, CNN One-hot encoding NSL-KDD 94.12% DoS, Probe, U2R, R2L

THIS WORK CNN, TL Novel
(developed)

Generated from local
real-time setup (2022) 99.36% De-authentication and

disassociation DoS

4. Proposed Intrusion Detection Method

The aim of the present work was to develop a transfer learning and convolutional eural
network-based IDS model for IoT wi-fi networks from being breached by de-authentication
and disassociation DoS attacks. Figure 6 demonstrates the architecture of the proposed
system, comprising five main modules:

Electronics 2023, 12, 3731 11 of 32

Electronics 2023, 12, x FOR PEER REVIEW 12 of 33

module; and (6) attack detection module. In the attack and normal traffic module, a com-

plete testbed setup is developed to generate both traffic types that involve legitimate cli-

ents and an attacker along with an AP. The log collection and parsing module gathers both

of the plain log data from the AP, parses them, and passes them to the storage location. In

the storage module, the structured log data are indexed and stored in Elasticsearch. Anal-

ysis, visualization, and monitoring of the stored data are performed using the analysis

and visualization module basically through Elastic stack’s Kibana tool. This module also

generates a well-structured and filtered dataset that is used for the next deep learning

tasks. The generated dataset needs further pre-processing to be suitable for a CNN, which

is performed by the data pre-processing module. We named the dataset generated as the

Wi-Fi Association_Disassociation dataset [50]. The last module performs de-authentica-

tion and disassociation attack detection using TL and CNN approaches. Each module of

the proposed architecture is explained in detail in the subsequent sections.

Figure 6. Proposed IDS architecture.

4.1. Attack and Normal Traffic Generator Module

The availability of datasets is one of the biggest obstacles for ML/DL intrusion detec-

tion methods. Privacy is the primary challenge for the inadequate availability of datasets

in the intrusion detection field. This is due to the fact that very sensitive information is

carried in network traffic, and its accessibility might disclose consumer and corporate se-

crets or even private communications. Although many researchers have generated their

own data to fill the preceding gap in order to overcome the challenge, the majority of the

datasets created in these circumstances are not exhaustive, and the samples taken into

account are insufficient to represent the latest behaviors. For these and related reasons, we

set up our own testbed to generate the Wi-Fi Association_Disassociation dataset on the

specific Wi-Fi application with a focus on de-authentication and disassociation DoS at-

tacks.

This module consists of Wi-Fi client devices, an attacker, and an AP as shown in Fig-

ure 7. Smartphones, tablets, laptops, and Raspberry Pi (RPI) are used to generate normal

traffic while Kali Linux and NodeMCU-based clients are used to carry out attack traffic.

We used RPI to represent other IoT Wi-Fi-enabled IoT devices. Wi-Fi hacking has always

relied on a few pieces of hardware, such as a computing device (computer, laptop, Rasp-

berry Pi, etc.) that can execute whatever attack application is attempted. Second, it requires

a wireless network adapter with a chipset that supports whatever nefarious Wi-Fi behav-

ior is to be conducted.

Figure 6. Proposed IDS architecture.

(1) Attack and normal traffic module; (2) log parsing module; (3) indexing and analysis
module; (4) visualization and dataset generation module; (5) data preprocessing module;
and (6) attack detection module. In the attack and normal traffic module, a complete
testbed setup is developed to generate both traffic types that involve legitimate clients
and an attacker along with an AP. The log collection and parsing module gathers both
of the plain log data from the AP, parses them, and passes them to the storage location.
In the storage module, the structured log data are indexed and stored in Elasticsearch.
Analysis, visualization, and monitoring of the stored data are performed using the analysis
and visualization module basically through Elastic stack’s Kibana tool. This module also
generates a well-structured and filtered dataset that is used for the next deep learning tasks.
The generated dataset needs further pre-processing to be suitable for a CNN, which is
performed by the data pre-processing module. We named the dataset generated as the
Wi-Fi Association_Disassociation dataset [50]. The last module performs de-authentication
and disassociation attack detection using TL and CNN approaches. Each module of the
proposed architecture is explained in detail in the subsequent sections.

4.1. Attack and Normal Traffic Generator Module

The availability of datasets is one of the biggest obstacles for ML/DL intrusion detec-
tion methods. Privacy is the primary challenge for the inadequate availability of datasets in
the intrusion detection field. This is due to the fact that very sensitive information is carried
in network traffic, and its accessibility might disclose consumer and corporate secrets or
even private communications. Although many researchers have generated their own data
to fill the preceding gap in order to overcome the challenge, the majority of the datasets
created in these circumstances are not exhaustive, and the samples taken into account are
insufficient to represent the latest behaviors. For these and related reasons, we set up our
own testbed to generate the Wi-Fi Association_Disassociation dataset on the specific Wi-Fi
application with a focus on de-authentication and disassociation DoS attacks.

This module consists of Wi-Fi client devices, an attacker, and an AP as shown in
Figure 7. Smartphones, tablets, laptops, and Raspberry Pi (RPI) are used to generate normal
traffic while Kali Linux and NodeMCU-based clients are used to carry out attack traffic. We
used RPI to represent other IoT Wi-Fi-enabled IoT devices. Wi-Fi hacking has always relied
on a few pieces of hardware, such as a computing device (computer, laptop, Raspberry
Pi, etc.) that can execute whatever attack application is attempted. Second, it requires a
wireless network adapter with a chipset that supports whatever nefarious Wi-Fi behavior
is to be conducted.

Electronics 2023, 12, 3731 12 of 32Electronics 2023, 12, x FOR PEER REVIEW 13 of 33

Figure 7. Testbed setup for generating attacks and normal traffic.

Kali Linux is a Debian-based security auditing distribution and the most popular and

commonly utilized platform mainly in hacking and penetration testing. Kali comes with

over 600 pre-installed tools by default, enabling experts to use these specialized tools for

various objectives, including reverse engineering, malware analysis, penetration, security

research, digital forensics, and many more. Aircrack-ng is one of such tools, which is itself

a suite of tools used to assess Wi-Fi networks such as attacking, monitoring, testing, and

cracking. Although it is primarily designed to crack Wi-Fi encryption keys (WEP, WPA,

and WPA2), it also carries out other attacks such as replay attacks, de-authentication, dis-

association, and establishing fake access points.

The cost of hacking Wi-Fi has dropped considerably, and low-cost microcontrollers

are increasingly being transformed into inexpensive yet strong hacking tools. For a variety

of reasons, such attacks are increasingly becoming inexpensive even for non-experts. The

NodeMCU ESP8266, an Arduino-programmable chip on which the Wi-Fi Deauther pro-

ject [51] is based, is one of the most popular. With a very user-friendly and easy web in-

terface, a hacker may establish false networks, clone actual ones, or block all Wi-Fi in an

area using this low-cost hardware. Thus, the de-authentication and disassociation attacks

in this work were conducted using Aireplay-ng and ESP8266 NodeMCU. Aireplay-ng is

part of the Aircrack-ng tool suite that consists of many tools used for Wi-Fi security and

comes pre-installed inside the Kali Linux open-source distribution. A AR9271 chipset-

based Alfa wireless adapter with monitor mode and packet injection capability is used in

this process.

Figure 7. Testbed setup for generating attacks and normal traffic.

Kali Linux is a Debian-based security auditing distribution and the most popular and
commonly utilized platform mainly in hacking and penetration testing. Kali comes with
over 600 pre-installed tools by default, enabling experts to use these specialized tools for
various objectives, including reverse engineering, malware analysis, penetration, security
research, digital forensics, and many more. Aircrack-ng is one of such tools, which is
itself a suite of tools used to assess Wi-Fi networks such as attacking, monitoring, testing,
and cracking. Although it is primarily designed to crack Wi-Fi encryption keys (WEP,
WPA, and WPA2), it also carries out other attacks such as replay attacks, de-authentication,
disassociation, and establishing fake access points.

The cost of hacking Wi-Fi has dropped considerably, and low-cost microcontrollers
are increasingly being transformed into inexpensive yet strong hacking tools. For a vari-
ety of reasons, such attacks are increasingly becoming inexpensive even for non-experts.
The NodeMCU ESP8266, an Arduino-programmable chip on which the Wi-Fi Deauther
project [51] is based, is one of the most popular. With a very user-friendly and easy web
interface, a hacker may establish false networks, clone actual ones, or block all Wi-Fi in an
area using this low-cost hardware. Thus, the de-authentication and disassociation attacks in
this work were conducted using Aireplay-ng and ESP8266 NodeMCU. Aireplay-ng is part
of the Aircrack-ng tool suite that consists of many tools used for Wi-Fi security and comes
pre-installed inside the Kali Linux open-source distribution. A AR9271 chipset-based Alfa
wireless adapter with monitor mode and packet injection capability is used in this process.

Because the communications are broadcast over the air in a public medium, the
attacker may watch and collect all non-encrypted data traveling from a client to an AP by

Electronics 2023, 12, 3731 13 of 32

deploying low-cost scan devices known as Wi-Fi sniffers. There are several compact and
portable Wi-Fi off-the-shelf hardware sniffers. Such capability can be easily obtained by
setting up a Wi-Fi adapter (like Atheros AR9271) into Kali, enabling the monitor mode on
its wireless network interface card (NIC), and installing packet-capturing software (like
Wireshark [17]). Similarly, attacks are carried out by plugging in the NodeMCU ESP8266
chip into a laptop and accessing the ESP8266 Deauther through a web interface. However,
this work ships the traffic using a different setup for further analysis, instead of performing
limited activities with Wireshark.

Thus, the attacks in this work are carried out using these two sets of different tools.
The Kali Linux-based Aircrack-ng suite of tools attack is carried out by setting up the latest
Kali Linux distribution in VirtualBox, setting up an Atheros AR9271 adapter, and enabling
monitor mode using the Airmon-ng of the wireless network card. Then, scan for nearby
available access points and their associated clients by listening (sniffing) to 802.11 beacon
frames broadcasted by nearby wireless routers or access points. Airodump-ng is used for
this purpose which displays a list of detected access points, and also a list of connected
clients which includes every access point in the area. From the list of available APs, identify
the network where authorization to perform a penetration test is granted, as shown in
Figure 8. Identifying target clients that are connected to the target AP is our next step,
where both of them are monitored as shown in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 33

Because the communications are broadcast over the air in a public medium, the at-

tacker may watch and collect all non-encrypted data traveling from a client to an AP by

deploying low-cost scan devices known as Wi-Fi sniffers. There are several compact and

portable Wi-Fi off-the-shelf hardware sniffers. Such capability can be easily obtained by

setting up a Wi-Fi adapter (like Atheros AR9271) into Kali, enabling the monitor mode on

its wireless network interface card (NIC), and installing packet-capturing software (like

Wireshark [17]). Similarly, attacks are carried out by plugging in the NodeMCU ESP8266

chip into a laptop and accessing the ESP8266 Deauther through a web interface. However,

this work ships the traffic using a different setup for further analysis, instead of perform-

ing limited activities with Wireshark.

Thus, the attacks in this work are carried out using these two sets of different tools.

The Kali Linux-based Aircrack-ng suite of tools attack is carried out by setting up the latest

Kali Linux distribution in VirtualBox, setting up an Atheros AR9271 adapter, and enabling

monitor mode using the Airmon-ng of the wireless network card. Then, scan for nearby

available access points and their associated clients by listening (sniffing) to 802.11 beacon

frames broadcasted by nearby wireless routers or access points. Airodump-ng is used for

this purpose which displays a list of detected access points, and also a list of connected

clients which includes every access point in the area. From the list of available APs, iden-

tify the network where authorization to perform a penetration test is granted, as shown

in Figure 8. Identifying target clients that are connected to the target AP is our next step,

where both of them are monitored as shown in Figure 9.

Finally, carry out de-authentication/disassociation attacks using another Aircrack-ng

suite tool called Aireplay-ng as depicted in Figure 10 (single client) and Figure 11 (multi-

ple clients). Aireplay-ng is a wireless frame injector included in the Aircrack-ng package.

Its primary function is to generate traffic for use in Aircrack-ng to crack encryption keys.

Several attacks in Aireplay-ng can de-authenticate and disassociate wireless clients in or-

der to capture encryption data, including fake authentications, interactive packet replay,

hand-crafted ARP request injection, and ARP request reinjection. When carrying out an

attack by targeting a single client, a directed de-authentication is sent to the specific MAC

address, while attacking all the connected clients involves sending the de-authentica-

tion/disassociation attacks as broadcast frames which disconnects all of them from the

victim AP.

Figure 8. Scanning all nearby available access points and their clients to identify the access point

targeted to carry out attacks. The red box shows the targeted (victim) access point.
Figure 8. Scanning all nearby available access points and their clients to identify the access point
targeted to carry out attacks. The red box shows the targeted (victim) access point.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 33

Figure 9. Scanning clients connected to the victim AP to carry out de-authentication and disassoci-

ation DoS attacks.

Figure 10. Executing de-authentication/disassociation attacks on one of the clients connected to the

access point.

Figure 11. Executing de-authentication/disassociation attacks against all clients of the victim AP.

The de-authentication/disassociation attacks carried out by ESP8266 NodeMCU

Deauther are similar to the above-described steps with Kali except that the procedures are

automated through a graphical web interface. Connect the ESP8266 NodeMCU to the lap-

top’s USB port. Then connect to the ESP8266 NodeMCU Deauther’s Wi-Fi and access it on

the browser using its IP address, as shown in Figure 12. Once in the GUI of the deauther,

scan for available nearby APs and clients. Select a single or multiple or all of the clients

connected to the victim AP and launch the attacks, as shown in Figures 13 and 14.

Figure 9. Scanning clients connected to the victim AP to carry out de-authentication and disassocia-
tion DoS attacks.

Finally, carry out de-authentication/disassociation attacks using another Aircrack-ng
suite tool called Aireplay-ng as depicted in Figure 10 (single client) and Figure 11 (multiple

Electronics 2023, 12, 3731 14 of 32

clients). Aireplay-ng is a wireless frame injector included in the Aircrack-ng package. Its pri-
mary function is to generate traffic for use in Aircrack-ng to crack encryption keys. Several
attacks in Aireplay-ng can de-authenticate and disassociate wireless clients in order to cap-
ture encryption data, including fake authentications, interactive packet replay, hand-crafted
ARP request injection, and ARP request reinjection. When carrying out an attack by target-
ing a single client, a directed de-authentication is sent to the specific MAC address, while
attacking all the connected clients involves sending the de-authentication/disassociation
attacks as broadcast frames which disconnects all of them from the victim AP.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 33

Figure 9. Scanning clients connected to the victim AP to carry out de-authentication and disassoci-

ation DoS attacks.

Figure 10. Executing de-authentication/disassociation attacks on one of the clients connected to the

access point.

Figure 11. Executing de-authentication/disassociation attacks against all clients of the victim AP.

The de-authentication/disassociation attacks carried out by ESP8266 NodeMCU

Deauther are similar to the above-described steps with Kali except that the procedures are

automated through a graphical web interface. Connect the ESP8266 NodeMCU to the lap-

top’s USB port. Then connect to the ESP8266 NodeMCU Deauther’s Wi-Fi and access it on

the browser using its IP address, as shown in Figure 12. Once in the GUI of the deauther,

scan for available nearby APs and clients. Select a single or multiple or all of the clients

connected to the victim AP and launch the attacks, as shown in Figures 13 and 14.

Figure 10. Executing de-authentication/disassociation attacks on one of the clients connected to the
access point.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 33

Figure 9. Scanning clients connected to the victim AP to carry out de-authentication and disassoci-

ation DoS attacks.

Figure 10. Executing de-authentication/disassociation attacks on one of the clients connected to the

access point.

Figure 11. Executing de-authentication/disassociation attacks against all clients of the victim AP.

The de-authentication/disassociation attacks carried out by ESP8266 NodeMCU

Deauther are similar to the above-described steps with Kali except that the procedures are

automated through a graphical web interface. Connect the ESP8266 NodeMCU to the lap-

top’s USB port. Then connect to the ESP8266 NodeMCU Deauther’s Wi-Fi and access it on

the browser using its IP address, as shown in Figure 12. Once in the GUI of the deauther,

scan for available nearby APs and clients. Select a single or multiple or all of the clients

connected to the victim AP and launch the attacks, as shown in Figures 13 and 14.

Figure 11. Executing de-authentication/disassociation attacks against all clients of the victim AP.

The de-authentication/disassociation attacks carried out by ESP8266 NodeMCU Deau-
ther are similar to the above-described steps with Kali except that the procedures are
automated through a graphical web interface. Connect the ESP8266 NodeMCU to the
laptop’s USB port. Then connect to the ESP8266 NodeMCU Deauther’s Wi-Fi and access it
on the browser using its IP address, as shown in Figure 12. Once in the GUI of the deauther,
scan for available nearby APs and clients. Select a single or multiple or all of the clients
connected to the victim AP and launch the attacks, as shown in Figures 13 and 14.

Electronics 2023, 12, 3731 15 of 32Electronics 2023, 12, x FOR PEER REVIEW 16 of 33

Figure 12. Accessing the ESP8266 Deauther tool, scanning all available nearby Aps by clicking on

the “SCAN APS” indicated by the red arrow, and selecting the victim AP.

Figure 13. Scanning all the clients connected to the victim AP to be targets of the attacks.

Figure 14. Executing de-authentication/disassociation attacks on the selected clients of the victim

AP to deny access to the Wi-Fi network and services.

Figure 12. Accessing the ESP8266 Deauther tool, scanning all available nearby Aps by clicking on the
“SCAN APS” indicated by the red arrow, and selecting the victim AP.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 33

Figure 12. Accessing the ESP8266 Deauther tool, scanning all available nearby Aps by clicking on

the “SCAN APS” indicated by the red arrow, and selecting the victim AP.

Figure 13. Scanning all the clients connected to the victim AP to be targets of the attacks.

Figure 14. Executing de-authentication/disassociation attacks on the selected clients of the victim

AP to deny access to the Wi-Fi network and services.

Figure 13. Scanning all the clients connected to the victim AP to be targets of the attacks.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 33

Figure 12. Accessing the ESP8266 Deauther tool, scanning all available nearby Aps by clicking on

the “SCAN APS” indicated by the red arrow, and selecting the victim AP.

Figure 13. Scanning all the clients connected to the victim AP to be targets of the attacks.

Figure 14. Executing de-authentication/disassociation attacks on the selected clients of the victim

AP to deny access to the Wi-Fi network and services.

Figure 14. Executing de-authentication/disassociation attacks on the selected clients of the victim AP
to deny access to the Wi-Fi network and services.

Electronics 2023, 12, 3731 16 of 32

4.2. Log Collection, Parsing, Storing, Analysis, and Generating Dataset

Network devices such as home Wi-Fi APs routinely generate a huge number of logs
to record their states and runtime information, each comprising a timestamp and a log
message indicating what has happened [52]. This valuable information could be utilized
for multiple purposes, among which this study focuses on attack detection with a focus on
association and disassociation logs. The log collection involves configuring the AP to send
its logs to a central server for further usage and processing. The architecture for the testbed
for log collection, parsing, indexing and storing, analysis and visualization to generate a
dataset is shown in in Figure 15. It collects Wi-Fi traffic data from the access point with
OpenWrt firmware installed on Raspberry Pi B+. OpenWrt is a Linux-based open-source
project for embedded operating systems primarily used on embedded devices to route
network traffic [53,54]. The OpenWrt system logging function is a crucial debugging and
monitoring capability. The OpenWrt-based AP is configured to send its logs to the remote
server (ELK server) including the remote server’s protocol (TCP/UDP), IP, and port. The
message format in OpenWrt-based AP varies depending on the destination (local log read,
local file, remote socket) but it is generally represented as follows:

<time stamp> <router name> <subsystem name/pid> <log_prefix>: <message body>

Electronics 2023, 12, x FOR PEER REVIEW 17 of 33

4.2. Log Collection, Parsing, Storing, Analysis, and Generating Dataset

Network devices such as home Wi-Fi APs routinely generate a huge number of logs

to record their states and runtime information, each comprising a timestamp and a log

message indicating what has happened [52]. This valuable information could be utilized

for multiple purposes, among which this study focuses on attack detection with a focus

on association and disassociation logs. The log collection involves configuring the AP to

send its logs to a central server for further usage and processing. The architecture for the

testbed for log collection, parsing, indexing and storing, analysis and visualization to gen-

erate a dataset is shown in in Figure 15. It collects Wi-Fi traffic data from the access point

with OpenWrt firmware installed on Raspberry Pi B+. OpenWrt is a Linux-based open-

source project for embedded operating systems primarily used on embedded devices to

route network traffic [53,54]. The OpenWrt system logging function is a crucial debugging

and monitoring capability. The OpenWrt-based AP is configured to send its logs to the

remote server (ELK server) including the remote server’s protocol (TCP/UDP), IP, and

port. The message format in OpenWrt-based AP varies depending on the destination (lo-

cal log read, local file, remote socket) but it is generally represented as follows:

<time stamp> <router name> <subsystem name/pid> <log_prefix>: <message body>

Figure 15. Architecture for log collection, parsing, indexing, analysis, visualization, and generating

datasets.

The logging message facility and priority are similar to those found in syslog imple-

mentations. Sample logs of the AP are shown in Figure 16. In this work, a parsing algo-

rithm is developed to structure these raw (unstructured) logs. It is a grok-based parsing

algorithm built on top of Logstash and takes the raw logs through the input plugin, parses

them, and sends them to the Elasticsearch storage server through the output plugin. A

high-level and simplified implementation of this parsing algorithm is implemented based

on Algorithm 1 which is developed on top of the three parts of Logstash: input, filters, and

output. The input section is in charge of specifying and accessing the input data source,

from the AP, while Grok-based parsing is a Logstash filter that converts unstructured data

Figure 15. Architecture for log collection, parsing, indexing, analysis, visualization, and generat-
ing datasets.

The logging message facility and priority are similar to those found in syslog imple-
mentations. Sample logs of the AP are shown in Figure 16. In this work, a parsing algorithm
is developed to structure these raw (unstructured) logs. It is a grok-based parsing algorithm
built on top of Logstash and takes the raw logs through the input plugin, parses them, and
sends them to the Elasticsearch storage server through the output plugin. A high-level and
simplified implementation of this parsing algorithm is implemented based on Algorithm 1
which is developed on top of the three parts of Logstash: input, filters, and output. The
input section is in charge of specifying and accessing the input data source, from the AP,
while Grok-based parsing is a Logstash filter that converts unstructured data into struc-
tured and queryable data. The parsing algorithm accepts the raw Wi-Fi traffic log data of

Electronics 2023, 12, 3731 17 of 32

the AP through the input and analyses it line by line to identify patterns for the extraction
of relevant information based on MAC address, timestamp, association–disassociation,
and the type of data (normal or attack). As a result, the raw log data entries are parsed
to adhere to these matching patterns to generate the structured data and are indexed and
stored in Elasticsearch.

Algorithm 1: Simplified high-level parsing algorithm for association and disassociation
network traffic

Input: Raw logs
Output: Structured logs
begin:
1: input-plugin
2: inputType← stdin
3: protocol← TCP/UDP
4: port← portNumber
5: end input-plugin
6: filter
7: inputMessage← incomingRawLogMessage
8: getMatchingPatterns← [timestamp, macAddress, host, logMessage]
9: fieldNames← [macAddress, timestamp, association, dataType]
10: if (matching macAddress exists in inputMessage) then
11: inputMessage← [macAddress, logmessage]
12: else if (matching macAddress does not exists in inputMessage) then
13: inputMessage← logmessage
14: else if (logmessage contains associated) then
15: association← associated
16: else(logmessage contains disassociated)
17: association← disassociated
18: end if
19: end filter
20: output-plugin
21: elasticsearch
22: hosts← logServerIP
23: index← indexName
24: end elasticsearch
25: stdout
26: set output to be displayed in console
27: end stdout
28: end output-plugin
29: return structuredLogs
end

Electronics 2023, 12, x FOR PEER REVIEW 18 of 33

into structured and queryable data. The parsing algorithm accepts the raw Wi-Fi traffic
log data of the AP through the input and analyses it line by line to identify patterns for
the extraction of relevant information based on MAC address, timestamp, association–
disassociation, and the type of data (normal or attack). As a result, the raw log data entries
are parsed to adhere to these matching patterns to generate the structured data and are
indexed and stored in Elasticsearch.

Figure 16. Sample raw log data from an OpenWrt-based AP.

Algorithm 1: Simplified high-level parsing algorithm for association and disassocia-
tion network traffic
Input: Raw logs
Output: Structured logs
begin:

1: input-plugin
2: inputType ← stdin
3: protocol ← TCP/UDP
4: port ← portNumber
5: end input-plugin
6: filter
7: inputMessage ← incomingRawLogMessage
8: getMatchingPatterns ← [timestamp,macAddress,host,logMessage]
9: fieldNames ← [macAddress, timestamp,association, dataType]
10: if (matching macAddress exists in inputMessage) then
11: inputMessage ← [macAddress, logmessage]
12: else if (matching macAddress does not exists in inputMessage) then
13: inputMessage ← logmessage
14: else if (logmessage contains associated) then
15: association ← associated
16: else(logmessage contains disassociated)
17: association ← disassociated
18: end if
19: end filter
20: output-plugin
21: elasticsearch
22: hosts ← logServerIP
23: index ← indexName
24: end elasticsearch
25: stdout
26: set output to be displayed in console
27: end stdout
28: end output-plugin

Figure 16. Sample raw log data from an OpenWrt-based AP.

Electronics 2023, 12, 3731 18 of 32

4.3. Visualization and Dataset Generation Module

By displaying data in a more intuitive and easy-to-understand style, log data visu-
alizations assist users in understanding, interpreting, and gaining insights from the data.
During visualization, we identified patterns for normal and attack traffic. The flooding of
attack traffic occurred more frequently when visualized suggesting a potential system issue
that must be addressed. In our solution we can perform this with the help of an easy-to-use
adapted Kibana interface for browsing, visualizing, and analyzing the structured log data
stored in Elasticsearch. Various log data visualization techniques can be used including
bar charts, line charts, pie charts, scatter plots, heat maps, and more. With Kibana, we
adapted an easy-to-use interface for browsing, visualizing, and analyzing the structured
log data stored in Elasticsearch, as shown in Figure 17. A structured log data CSV file,
Wi-Fi Association_Disassociation, is generated that is used as a dataset for attack detection,
and its composition is described in Table 2. After parsing, indexing, storing, and analyzing
the structured log data, we generated a CSV file that is used for the de-authentication and
disassociation attack detection process.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 33

29: return structuredLogs
end

4.3. Visualization and Dataset Generation Module
By displaying data in a more intuitive and easy-to-understand style, log data visual-

izations assist users in understanding, interpreting, and gaining insights from the data.
During visualization, we identified patterns for normal and attack traffic. The flooding of
attack traffic occurred more frequently when visualized suggesting a potential system is-
sue that must be addressed. In our solution we can perform this with the help of an easy-
to-use adapted Kibana interface for browsing, visualizing, and analyzing the structured
log data stored in Elasticsearch. Various log data visualization techniques can be used
including bar charts, line charts, pie charts, scatter plots, heat maps, and more. With
Kibana, we adapted an easy-to-use interface for browsing, visualizing, and analyzing the
structured log data stored in Elasticsearch, as shown in Figure 17. A structured log data
CSV file, Wi-Fi Association_Disassociation, is generated that is used as a dataset for attack
detection, and its composition is described in Table 2. After parsing, indexing, storing, and
analyzing the structured log data, we generated a CSV file that is used for the de-authen-
tication and disassociation attack detection process.

Figure 17. Analyzing and identifying different fields of the structured log using Kibana.

Table 2. Sample data generated for attack and normal Wi-Fi traffic data following parsing, indexing,
storing, analyzing, and visualizing the raw Wi-Fi traffic data.

Data Type Number of Samples Description

Attack 376,430
• Carried out 4–27 October 2022;
• Continuous attack carried out against the AP/clients at different time dura-
tions: e.g., 5 min, 30 min, several hours, and even the whole day.

Normal 233,130
• Carried out 11–31 October 2022;
• Generating continuous normal Wi-Fi traffic data was carried out at differ-
ent variable times: e.g., 1 min, 3 min, 5 min, 30 min, several hours, the whole day.

Total Samples 609,560

Figure 17. Analyzing and identifying different fields of the structured log using Kibana.

Table 2. Sample data generated for attack and normal Wi-Fi traffic data following parsing, indexing,
storing, analyzing, and visualizing the raw Wi-Fi traffic data.

Data Type Number of Samples Description

Attack 376,430
• Carried out 4–27 October 2022;
• Continuous attack carried out against the AP/clients at different time durations:

e.g., 5 min, 30 min, several hours, and even the whole day.

Normal 233,130
• Carried out 11–31 October 2022;
• Generating continuous normal Wi-Fi traffic data was carried out at different

variable times: e.g., 1 min, 3 min, 5 min, 30 min, several hours, the whole day.

Total Samples 609,560

Electronics 2023, 12, 3731 19 of 32

4.4. Data Pre-Processing Module

The process of cleaning, converting, and preparing raw data before it can be evaluated
is known as data pre-processing. It is a set of procedures and processes used to assure
the quality, accuracy, completeness, and consistency of raw data. With data cleaning, we
identified and corrected errors, and addressed missing values and inconsistencies in the
data. Data transformation converts the data into a format suitable for analysis.

The foundation of anomaly detection is the extraction of features from the given
log data. The primary features we focused on while transforming our Wi-Fi Associa-
tion_Disassociation dataset to be suitable for transfer learning and CNN-based attack
detection were the timestamp, association, disassociation, MAC address, and data type,
described in Table 3.

Table 3. Initial feature set.

SN. Features Description

1 MAC address MAC address of the targeted client

2 Timestamp The date and time at which the traffic data is logged by the AP

3 Association
“Associated” when the client device is associated

“disassociated” when the client device is disassociated

4 datatype “normal” when network traffic flow is benign/legitimate

“attack” when network traffic flow is illegitimate/malicious

Considering the network traffic log data as a sequence of events, we defined a fixed
window size. Using the predefined window size, association and disassociation network
traffic in the same sliding window are seen as an itemset in a single transaction. We imple-
mented this per device (MAC address) where each client’s association and disassociation
time duration per day is split into the defined window size.

During attacks, the number of associations and disassociations generated is huge as
compared to normal network traffic flow. Considering a 10 min window size of connection
time, we transformed the association and disassociation duration to behave like a digital
form: association time duration to be high (digital value 1) and disassociation to be low
(digital value 0). With these assumptions, we converted our entire dataset into images to
be suitable for the proposed IDS model. For comparison purposes, we also used a 5 min
window size. Table 4 shows the transformed feature set from the initial feature set.

Table 4. Transformed feature set.

SN. Features Description

1 MAC address MAC address of the targeted client

2 Timestamp The date and time at which the traffic data is logged by the AP

3 Association
“Associated” when the client device is associated

“disassociated” when the client device is disassociated

4 dateTime Obtained from timestamp for the purpose of extracting day

5 Day Extracted from dateTime to calculate client de vice association
disassociation time duration per day

6 Signal Is 1 when the client device is associated and 0 when disassociated

7 PerDevicePerDayTimeMinutes Time duration in minutes for each device per day during association
and disassociation

8 datatype
“normal” when network traffic flow is benign/legitimate

“attack” when network traffic flow is illegitimate/malicious

Electronics 2023, 12, 3731 20 of 32

We transformed the association and disassociation network traffic for each device (per
MAC address). Our pre-processing solution is implemented based on Algorithm 2.

Algorithm 2: Algorithm for pre-processing part dataset to be suitable for the proposed IDS model

Input: CSV dataset
Output: images
begin:

1: winSizeInMin←minutes (10 or 5)
2: function GETDAY(timestamp)
3: split timestamp
4: return day
5: end function
6: function ASSOCIATIONTODIGITAL(action)
7: if (action==’associated’) then
8: return 1
9: else (logmessage contains disassociated)
10: return 0
11: end if
12: end function
13: function CHANGETOMINUTES(referenceTime, currentTime)
14: timeSince← currentTime—referenceTime

15: minutesSince←
(

timeSince
totalSeconds

)
× 60

16: return minutesSince
17: end function
18: function PLOTSIGNAL(sigData, height, width, fig, fileName, winSizeInMin)
19: set dpi size
20: sigData← first index of dataset
21: if len(sigData == 1) ∨max(sigData[winSizeInMin]) < winSizeInMin then
22: repeat first index
23: sigData← winSizeInMin
24: end if
25: scale sigData

26: sigData[′winSizeInMin′]← sigData[′winSizeInMinutes′] ×
(

width
winSizeInMin

)
27: // Set figure size in inches to fit the image

28: figSize←
(

width
float(dpi) , height

float(dpi)

)
29: create a figure to fit between 0(lower limit) and 1(upper limit)
30: show image per device per day
31: save the image
32: end function
33: function EXTRACTIMAGESFROMLOGS(f ilePath, outputImagesDir, outputCSVPath)
34: create folders for both attack and normal data
35: // create a dataframe which holds the final file (cleaned and transformed)
36: read CSV file from filePath
37: get all rows consisting of associated and disassociated
38: get all columns of [association, timestamp, MACAddress, dataType]
39: make sure timestamp is in datetime format
40: get day from datetime formatted of timestamp
41: GETDAY()
42: // convert association to digital (association –> 1, and disassociation–> 0)
43: ASSOCIATIONTODIGITAL()
44: Devices← unique MAC address of each device
45: // for each device, each day get the association and dissociation

Electronics 2023, 12, 3731 21 of 32

Algorithm 2: Cont.

46: for each device in devices do
47: sort data by time
48: // change time to minutes for each device
49: for each day in days do
50: sort data by time
51: // change time to minutes for each device
52: save each image with unique file name
53: for each row of data in length of data per device per day do
54: change time to minutes for each device
55: put each value of minutes of each device in winSizeInMinutes column
56: save this data
57: // now iterate through data per defined minutes
58: plot a figure
59: maxTimeInMinutes←max value fromwinSizeInMinutes
60: for currentTime in range(0, maxTimeInMinutes, winSizeInMin) do
61: check if windowData is between current value in winSizeInMinutes and

currentTime
62: lable the current windowData as attack or normal
63: save each image with unique file name
64: end for
65: end for
66: end for
67: end for
68: save each image with unique file name
69: end function

end

Basically, Algorithm 2 generates a day from the timestamp, calculates the total time
duration that each device associates and disassociates per day, sets the window size
(5 or 10 min), plots a figure per window size by converting association to be an upper
limit (digital high or 1) and disassociation to be a lower limit (digital low or 0), and saves
each image with its own file name. Sample datasets after being converted to images are
shown in Figure 18 (normal) and Figure 19 (attack). Other tasks such as sorting, conversion
to minutes, figure formatting, etc., are performed in this preprocessing approach. Following
the preprocessing of the dataset through the novel algorithm, the composition of attack
and normal images is shown in Table 5.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 33

46: for each device in devices do

47: sort data by time

48: // change time to minutes for each device

49: for each day in days do

50: sort data by time

51: // change time to minutes for each device

52: save each image with unique file name

53: for each row of data in length of data per device per day do

54: change time to minutes for each device

55: put each value of minutes of each device in winSizeInMinutes col-

umn

56: save this data

57: // now iterate through data per defined minutes

58: plot a figure

59: maxTimeInMinutes ← max value fromwinSizeInMinutes

60: for currentTime in range(0,maxTimeInMinutes,winSizeInMin) do

61: check if windowData is between current value in

winSizeInMinutes and currentTime

62: lable the current windowData as attack or normal

63: save each image with unique file name

64: end for

65: end for

66: end for

67: end for

68: save each image with unique file name

69: end function

end

Basically, Algorithm 2 generates a day from the timestamp, calculates the total time

duration that each device associates and disassociates per day, sets the window size (5 or

10 min), plots a figure per window size by converting association to be an upper limit

(digital high or 1) and disassociation to be a lower limit (digital low or 0), and saves each

image with its own file name. Sample datasets after being converted to images are shown

in Figure 18 (normal) and Figure 19 (attack). Other tasks such as sorting, conversion to

minutes, figure formatting, etc., are performed in this preprocessing approach. Following

the preprocessing of the dataset through the novel algorithm, the composition of attack

and normal images is shown in Table 5.

Figure 18. Sample dataset after conversion to images (for normal data). Figure 18. Sample dataset after conversion to images (for normal data).

Electronics 2023, 12, 3731 22 of 32Electronics 2023, 12, x FOR PEER REVIEW 23 of 33

Figure 19. Sample dataset after conversion to images (for normal data).

Table 5. The number of image samples after the attack and normal dataset samples are transformed

using the pre-processing algorithm.

Data Type
No. Images/Window Size

Description
5 min 10 min

Attack 1112 615 As the number of attack sample data is very

large compared to normal samples in a given

window, it becomes very small after they are

transformed

Normal 46,644 23,296

Total Samples 47,756 23,911

4.5. Attack Detection Module

The transformed image is fed into the designed model to discover the faulty behav-

iors (attacks) that are hidden in the analyzed log dataset. Our TL and CNN-based IDS

architecture, depicted in Figure 20, involves dataset preprocessing to suite for CNN-based

deep learning models, training the models with source dataset using ImageNet and using

TL to transfer the while using the target dataset, the Wi-Fi de-authentication_disassocia-

tion dataset. The CNN-based deep learning models are trained with the transformed la-

beled log data to establish an efficient model. Attack detection is mainly based on the win-

dow size of the association/disassociation logs. This window-size-focused attack detection

involves detecting attacks when there is a large number of digital signals in each image

(window size). With this approach, identifiers such as the MAC address, time in minutes

per day, the duration that a given device remains high (associated) and low (disassoci-

ated), and the number of occurrences of these signals (high/association and low/disasso-

ciation) are used in the detection process. In the attack detection module, four different

classification models; VGG16, Inception V3, Resnet50, and Xception, are trained, evalu-

ated, and compared to obtain an outperforming model. All these four models are fine-

tuned with different hyperparameters and trained with 5 and 10 min window size images

while experimenting to get the best model.

The hyperparameters of CNN models are tuned and optimized in order to better fit

the base models to the specified datasets and increase the models’ performance. We per-

formed a number of hyperparameters tuning to evaluate the model and achieve an opti-

mal performance, and the final IDS model for the detection of de-authentication and dis-

association attacks was chosen. Finally, the detection performance of the proposed model

was compared with both traditional machine learning models and deep learning models.

Figure 19. Sample dataset after conversion to images (for normal data).

Table 5. The number of image samples after the attack and normal dataset samples are transformed
using the pre-processing algorithm.

Data Type
No. Images/Window Size

Description
5 min 10 min

Attack 1112 615
As the number of attack sample data is very
large compared to normal samples in a
given window, it becomes very small after
they are transformedNormal 46,644 23,296

Total Samples 47,756 23,911

4.5. Attack Detection Module

The transformed image is fed into the designed model to discover the faulty behaviors
(attacks) that are hidden in the analyzed log dataset. Our TL and CNN-based IDS architec-
ture, depicted in Figure 20, involves dataset preprocessing to suite for CNN-based deep
learning models, training the models with source dataset using ImageNet and using TL
to transfer the while using the target dataset, the Wi-Fi de-authentication_disassociation
dataset. The CNN-based deep learning models are trained with the transformed labeled log
data to establish an efficient model. Attack detection is mainly based on the window size
of the association/disassociation logs. This window-size-focused attack detection involves
detecting attacks when there is a large number of digital signals in each image (window
size). With this approach, identifiers such as the MAC address, time in minutes per day,
the duration that a given device remains high (associated) and low (disassociated), and the
number of occurrences of these signals (high/association and low/disassociation) are used
in the detection process. In the attack detection module, four different classification models;
VGG16, Inception V3, Resnet50, and Xception, are trained, evaluated, and compared to
obtain an outperforming model. All these four models are fine-tuned with different hyper-
parameters and trained with 5 and 10 min window size images while experimenting to get
the best model.

The hyperparameters of CNN models are tuned and optimized in order to better
fit the base models to the specified datasets and increase the models’ performance. We
performed a number of hyperparameters tuning to evaluate the model and achieve an
optimal performance, and the final IDS model for the detection of de-authentication and
disassociation attacks was chosen. Finally, the detection performance of the proposed model
was compared with both traditional machine learning models and deep learning models.

Electronics 2023, 12, 3731 23 of 32Electronics 2023, 12, x FOR PEER REVIEW 24 of 33

Figure 20. Architecture for data pre-processing, and de-authentication/disassociation attack detec-

tion using the proposed IDS model.

5. Results and Analysis

In this section, we present the summary of the key results of the findings of the pro-

posed intrusion detection model to detect de-authentication and disassociation in IoT Wi-

Fi networks developed based on TL and CNN deep learning models. Each step of the

experiment, from launching attacks, collecting Wi-Fi network traffic, parsing, analysis,

and visualization, generating structured datasets, preprocessing, and attack detection was

conducted and assessed. This analyzed the overall performance of the proposed model

using a variety of analytic scenarios with different measurement indicators, including ac-

curacy, precision, recall, receiver operating characteristic (ROC), area under the ROC

curve (AUC), and F1 score. We also focused on optimizing the hyperparameters for better

performance. We also conducted a comparative analysis of our proposed model with TML

and DL models that are widely used in IDS implementations according to our survey of

state-of-the-art solutions.

Figure 20. Architecture for data pre-processing, and de-authentication/disassociation attack detection
using the proposed IDS model.

5. Results and Analysis

In this section, we present the summary of the key results of the findings of the
proposed intrusion detection model to detect de-authentication and disassociation in IoT
Wi-Fi networks developed based on TL and CNN deep learning models. Each step of
the experiment, from launching attacks, collecting Wi-Fi network traffic, parsing, analysis,
and visualization, generating structured datasets, preprocessing, and attack detection was
conducted and assessed. This analyzed the overall performance of the proposed model
using a variety of analytic scenarios with different measurement indicators, including
accuracy, precision, recall, receiver operating characteristic (ROC), area under the ROC
curve (AUC), and F1 score. We also focused on optimizing the hyperparameters for better
performance. We also conducted a comparative analysis of our proposed model with TML

Electronics 2023, 12, 3731 24 of 32

and DL models that are widely used in IDS implementations according to our survey of
state-of-the-art solutions.

5.1. Experimental Setup

The proposed end-to-end TL and CNN-based IDS testbed is comprised of an AP
with Openwrt, a number of genuine clients, an attacker, and overall IDS infrastructure,
as seen in Figure 6. To conduct de-authentication and disassociation attacks, the attacker
computer is equipped with Kali Linux consisting of the Aircrack-ng suite and an ESP8266
NodeMCU Deauther. The attacker’s main goal is to flood the target client(s) with a
huge number of de-authentication and disassociation frames, causing the client(s) to
disconnect. The experiments were conducted using the Scikitlearn and Tensorflow/Keras
libraries in Python. In the experiments, the proposed DL model and comparison analysis
implementation models were trained on a Dell XPS 15 9510 with the specifications listed in
Table 6.

Table 6. Hardware and software specifications of the machine used for the experimental setup.

Hardware

CPU Intel Core i7 2.30 GHz processor

RAM 32 GB

HDD 1TB

Software

Operating system Windows 11

Anaconda 3

Python 3.9

5.2. Training the Proposed Model

The Wi-Fi Association_Disassociation dataset was divided into three sections: training,
validation, and testing subsets by the 70% (training set), 15% (validation set), and 15% (test
set) approach, with the actual sample of each as shown in Table 7 for both window sizes
(5 and 10 min). We built the model by adjusting the weights on the neural network using
the training set. The validation set was used to fine-tune the experiment parameters, such
as the number of hidden layers in the proposed model. The test set was used to estimate the
model’s accuracy or performance. In this work, the dense layer uses softmax to categorize
the incoming data as normal or attack traffic. We utilized the ReLU function for activation
in all the different layers along with the Adam optimizer and categorical cross-entropy
as the loss function. Finally, as described in the Results section, numerous performance
indicators were utilized to evaluate the overall performance of the selected models. Several
TML models are widely applied to IDS and showed good performance among which some
of them are surveyed as part of the state-of-the-art solutions in Section 3. Considering their
extensive application in the IDS domain, we compared our work with the TML modes,
random forest (RF), decision tree (DT), support vector machine (SVM), and XGBoost, for
classification analysis.

Table 7. Wi-Fi Association_Disassociation dataset partitioning into training, validation, and test sets.

Window Size Data Type
Dataset Partitioning

Training Validation Set Test Set

5 min
Attack 772 180 160

Normal 32,789 6892 6963

10 min
Attack 455 79 81

Normal 16,340 3447 3509

Electronics 2023, 12, 3731 25 of 32

5.3. Hyperparameter Tuning

Hyperparameter tuning is the process of optimizing the hyperparameter pre-trained
model on a large dataset and utilizing it as the starting point for a new but related task with
a limited dataset. The different hyperparameter values directly control the behavior of the
model and picking the appropriate values is critical to the success of neural network design.
However, determining the appropriate hyperparameter values still remains dependent on
the best practice or human knowledge.

CNN models, like other DL models, include a huge number of hyperparameters that
must be tuned. Throughout the model design process of the proposed solution, a number
of hyperparameters, like the number of frozen layers, learning rate, and dropout rate, were
tuned. Batch size, number of epochs, and early stop patience are among the hyperpa-
rameters tuned during model training to balance training speed and model performance.
Moreover, the hidden layer activation function, output layer activation function, loss func-
tion, and optimizer were selected to be ReLu, SoftMax, categorical cross-entropy, and Adam,
respectively. Some of the common hyperparameters we fine-tuned are listed in Table 8.
When we used these combinations of hyperparameters to evaluate the model, we achieved
an optimal performance, and the final IDS model for the detection of de-authentication and
disassociation attacks was chosen. In addition, we carried out a general comparison of the
models with and without fine-tuning.

Table 8. Parameter settings common to four of the selected CNN models (VGG16, InceptionV3,
Resnet50, and Xception).

Hyperparameter Value/Function

Batch size 32

Number of epochs 150

Hidden layer activation function ReLu

Output layer activation function Softmax

Dropout rate 0.5

Learning rate 0.0001

Optimizer Adam

Loss function Categorical Cross-entropy

5.4. Performance Evaluation

Evaluation measures the performance of the model and several researchers used
accuracy, precision, recall, and F1-measure for this purpose. While these metrics are used to
evaluate the performance of the proposed solution, true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are used to construct the evaluation metrics.
The performance of classification methods is determined not only by the technique used
but also by how training and testing data are split. Various previous studies showed that
using 70% of the input data for training provided the best performance results. To create
a balanced dataset, we used the split of 70% for training, 15% for validation, and 15% for
testing sets discussed in Section 5.2. We used attack records from the testing set that were
not included in the training set to get a realistic detection rate. In addition to the fine-tuned
hyperparameters, the performance evaluation of the four different CNN models using both
5 min and 10 min window sizes, and 16,32, and 48 batch sizes considering overall accuracy
is shown in Table 9.

Since the batch size of 32 and window size of 10 min provided the best overall
performance, the models’ performances with other evaluation metrics such as precision,
recall, F-1 score, and ROC area are shown in Table 10. The ROC/AUC result is shown in
Figure 21.

Electronics 2023, 12, 3731 26 of 32

Table 9. Performance comparison table for four different models with fine-tuning using a learning
rate of 0.0001.

Model Batch Size Overall Accuracy for 5
min Windows Size

Overall Accuracy for 10 min
Windows Size

Inception
16 98.217 99.3036
32 98.217 99.275
48 98.217 99.220

Resnet
16 98.315 99.275
32 98.371 99.275
48 98.399 99.275

Vgg
16 98.273 99.331
32 98.343 99.220
48 98.371 99.331

Xception
16 98.371 99.275
32 98.385 99.360
48 98.378 99.303

Table 10. Performance comparison table for four different models using other performance metrics
considering a batch size of 32 and a window size of 10 min.

Model Precision Recall F-1 score ROC Area

Inception 0.89 0.78 0.83 0.93

Resnet 0.87 0.80 0.83 0.94

Vgg 0.85 0.79 0.82 0.935

Xception 0.88 0.83 0.85 0.944

Electronics 2023, 12, x FOR PEER REVIEW 27 of 33

48 98.399 99.275

Vgg

16 98.273 99.331

32 98.343 99.220

48 98.371 99.331

Xception

16 98.371 99.275

32 98.385 99.360

48 98.378 99.303

Since the batch size of 32 and window size of 10 min provided the best overall per-

formance, the models’ performances with other evaluation metrics such as precision, re-

call, F-1 score, and ROC area are shown in Table 10. The ROC/AUC result is shown in

Figure 21.

Table 10. Performance comparison table for four different models using other performance metrics

considering a batch size of 32 and a window size of 10 min.

Model Precision Recall F-1 score ROC Area

Inception 0.89 0.78 0.83 0.93

Resnet 0.87 0.80 0.83 0.94

Vgg 0.85 0.79 0.82 0.935

Xception 0.88 0.83 0.85 0.944

Figure 21. ROC area evaluation result for the Xception model.

False negative rate (FNR) is another metric that measures the proportion of positive

samples that are incorrectly classified as negative. FNR is calculated using Equation (1)

and our model scores a low FNR value of 0.002.

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (1)

Figure 22 shows the training vs. validation accuracy, and training vs. validation loss.

Validation accuracy is a model’s accuracy on new data, whereas training accuracy is a

model’s accuracy on the data it was trained on. Because the model has never seen the

validation data before, validation accuracy is often lower than training accuracy. The

Figure 21. ROC area evaluation result for the Xception model.

False negative rate (FNR) is another metric that measures the proportion of positive
samples that are incorrectly classified as negative. FNR is calculated using Equation (1) and
our model scores a low FNR value of 0.002.

FNR =
FN

FN + TP
(1)

Electronics 2023, 12, 3731 27 of 32

Figure 22 shows the training vs. validation accuracy, and training vs. validation
loss. Validation accuracy is a model’s accuracy on new data, whereas training accuracy
is a model’s accuracy on the data it was trained on. Because the model has never seen
the validation data before, validation accuracy is often lower than training accuracy. The
training loss measures how well the model fits the training data, whereas the validation
loss measures how well the model fits new data.

Electronics 2023, 12, x FOR PEER REVIEW 28 of 33

training loss measures how well the model fits the training data, whereas the validation

loss measures how well the model fits new data.

Figure 22. Training vs. validation accuracy, and training vs. validation loss.

5.5. Comparison with State-of-the-Art Models

The rapid expansion of IoT Wi-Fi networks has created several opportunities for

hackers and it can result in a very serious loss of sensitive personal information. This study

presents a transfer and deep learning-based model for IoT Wi-Fi network intrusion detec-

tion with the main focus on de-authentication and disassociation of DoS attacks. The sug-

gested approach leverages a combination of transfer and deep learning approaches to

achieve better classification performance. The suggested approach’s performance was

evaluated by extensive tests on a local testbed-generated dataset. During the comparative

analysis, tuning of different hyperparameters of each TML model was performed to

achieve better performance. Criterion, max_features, min_samples_leaf, min_sam-

ples_split are among the common hyperparameters tuned in RF and DT models. Tuning

of XGBoost’s n_estimators, gamma, max_depth, max_leaves, and min_child_weight,

among other hyperparameters, was performed. While analyzing the SVM, its parameters

including x, y, and z were tuned. Table 11 shows the comparative analysis results of the

selected TML models and the proposed solution. The results of the comparison is also

illustrated using Figure 23.

Table 11. Performance comparison of our model with TML models.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

We citeDT 97.82 97.80 97.82 97.78

RF 98.64 98.50 98.64 98.49

XGBoost 98.64 98.50 98.64 98.49

SVM 99.13 98.19 98.36 98.03

THIS WORK 99.36 98.38 98.74 98.59

Figure 22. Training vs. validation accuracy, and training vs. validation loss.

5.5. Comparison with State-of-the-Art Models

The rapid expansion of IoT Wi-Fi networks has created several opportunities for
hackers and it can result in a very serious loss of sensitive personal information. This study
presents a transfer and deep learning-based model for IoT Wi-Fi network intrusion detection
with the main focus on de-authentication and disassociation of DoS attacks. The suggested
approach leverages a combination of transfer and deep learning approaches to achieve
better classification performance. The suggested approach’s performance was evaluated
by extensive tests on a local testbed-generated dataset. During the comparative analysis,
tuning of different hyperparameters of each TML model was performed to achieve better
performance. Criterion, max_features, min_samples_leaf, min_samples_split are among the
common hyperparameters tuned in RF and DT models. Tuning of XGBoost’s n_estimators,
gamma, max_depth, max_leaves, and min_child_weight, among other hyperparameters,
was performed. While analyzing the SVM, its parameters including x, y, and z were
tuned. Table 11 shows the comparative analysis results of the selected TML models and the
proposed solution. The results of the comparison is also illustrated using Figure 23.

Table 11. Performance comparison of our model with TML models.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

We citeDT 97.82 97.80 97.82 97.78

RF 98.64 98.50 98.64 98.49

XGBoost 98.64 98.50 98.64 98.49

SVM 99.13 98.19 98.36 98.03

THIS WORK 99.36 98.38 98.74 98.59

Electronics 2023, 12, 3731 28 of 32Electronics 2023, 12, x FOR PEER REVIEW 29 of 33

Figure 23. Performance comparison of selected TML algorithms with the proposed model.

Several variants of DL models have been implemented to address intrusion detection

classification problems. We consider LSTM and RNN models in our comparison analysis

because of their wider application and optimal performance and their performance results

is shown in Table 12 and also elaborated using Figure 24.

Table 12. Performance comparison of our model with DL models.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

LSTM 99.21 98.79 98.96 98.72

RNN 99.16 98.63 98.95 98.85

THIS WORK 99.36 98.38 98.74 98.59

Figure 24. Performance comparison of the proposed model with other DL models.

9
7

.8
2

9
7

.8

9
7

.8
2

9
7

.7
8

9
8

.6
4

9
8

.5 9
8

.6
4

9
8

.4
9

9
8

.6
4

9
8

.5 9
8

.6
4

9
8

.4
9

9
9

.1
3

9
8

.1
9 9
8

.3
6

9
8

.0
3

9
9

.3
6

9
8

.3
8

9
8

.7
4

9
8

.5
9

A C C U R A C Y (%) P R E C I S I O N (%) R E C A L L (%) F 1 - S C O R E (%)

DT RF XGBoost SVM THIS WORK

9
9

.2
1

9
9

.1
6

9
9

.3
6

9
8

.7
9

9
8

.6
3

9
8

.9
7

9
8

.9
6

9
8

.9
5 9

9
.0

8

9
8

.7
2 9

8
.8

5

9
8

.9
1

L S T M R N N T H I S W O R K

Accuracy(%) Precision(%) Recall(%) F-Measure(%)

Figure 23. Performance comparison of selected TML algorithms with the proposed model.

Several variants of DL models have been implemented to address intrusion detection
classification problems. We consider LSTM and RNN models in our comparison analysis
because of their wider application and optimal performance and their performance results
is shown in Table 12 and also elaborated using Figure 24.

Table 12. Performance comparison of our model with DL models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LSTM 99.21 98.79 98.96 98.72

RNN 99.16 98.63 98.95 98.85

THIS WORK 99.36 98.38 98.74 98.59

Electronics 2023, 12, x FOR PEER REVIEW 29 of 33

Figure 23. Performance comparison of selected TML algorithms with the proposed model.

Several variants of DL models have been implemented to address intrusion detection

classification problems. We consider LSTM and RNN models in our comparison analysis

because of their wider application and optimal performance and their performance results

is shown in Table 12 and also elaborated using Figure 24.

Table 12. Performance comparison of our model with DL models.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

LSTM 99.21 98.79 98.96 98.72

RNN 99.16 98.63 98.95 98.85

THIS WORK 99.36 98.38 98.74 98.59

Figure 24. Performance comparison of the proposed model with other DL models.

9
7

.8
2

9
7

.8

9
7

.8
2

9
7

.7
8

9
8

.6
4

9
8

.5 9
8

.6
4

9
8

.4
9

9
8

.6
4

9
8

.5 9
8

.6
4

9
8

.4
9

9
9

.1
3

9
8

.1
9 9
8

.3
6

9
8

.0
3

9
9

.3
6

9
8

.3
8

9
8

.7
4

9
8

.5
9

A C C U R A C Y (%) P R E C I S I O N (%) R E C A L L (%) F 1 - S C O R E (%)

DT RF XGBoost SVM THIS WORK

9
9

.2
1

9
9

.1
6

9
9

.3
6

9
8

.7
9

9
8

.6
3

9
8

.9
7

9
8

.9
6

9
8

.9
5 9

9
.0

8

9
8

.7
2 9

8
.8

5

9
8

.9
1

L S T M R N N T H I S W O R K

Accuracy(%) Precision(%) Recall(%) F-Measure(%)

Figure 24. Performance comparison of the proposed model with other DL models.

Electronics 2023, 12, 3731 29 of 32

6. Discussion

The results and analysis show that our proposed IDS model offers better performance
in contrast to its predecessors. In addition, the overall framework provides an end-to-end
implementation including a local testbed setup to launch and collect Wi-Fi traffic data,
parse and store, visualize and analyze the data, generate a Wi-Fi Association_Disassociation
dataset to be available for further preprocessing in the IDS process, and other tasks. In the
previous section, we demonstrated how our IDS model was able to detect de-authentication
and disassociation attacks in IoT Wi-F networks and compared it to the existing IDS so-
lutions that adapted both TML and DL models using our dataset. The findings from the
results of the proposed model and comparative analysis prove that our model can effec-
tively detect de-authentication and disassociation DoS attacks in any Wi-Fi network which
improves the overall security of networks. However, our model is trained and evaluated
using our Wi-Fi Association_Disassociation dataset but not on public datasets. Although
extensive comparative analysis of all the TML and DL models was conducted with our
Wi-Fi Association_Disassociation dataset and showed a better performance compared to
the public datasets that the models were trained on, evaluating our model on at least one
public dataset could provide more analytic perspectives.

Our model has several potential uses that can be further expanded for more com-
plex scenarios. First, due to the targeted use case, and the reason for the illegal de-
authentication and disassociation of clients, we focused on collecting and preparing the
Wi-Fi Association_Disassociation dataset to be on the authentication/association and de-
authentication/disassociation process, but evaluating the model with multiple public
datasets and more attack types makes it applicable for more complex scenarios. Second,
our testbed and the entire process considered a local setup, but this can be expanded to
cover the cloud, which requires additional security measures including data anonymiza-
tion. Third, exploring options to deploy a trained model on the access point or edge of
the IoT Wi-Fi network layer could enhance the detection time. Last but not least, due
to the dynamic and heterogeneous nature of IoT environments, training the model with
online network traffic data with the help of methods like incremental learning can make a
difference.

7. Conclusions

The rapid expansion of IoT Wi-Fi networks has created several opportunities for
hackers and it can result in a very serious loss of sensitive personal information. This
study presents a transfer and deep learning-based model for IoT Wi-Fi network intrusion
detection with the main focus on de-authentication and disassociation of DoS attacks. The
suggested approach leverages a combination of transfer and deep learning approaches
to achieve better classification performance. The suggested approach’s performance was
evaluated by extensive tests on a local testbed-generated dataset.

The experimental findings reveal that the suggested model outperforms existing
models. In a shorter time, the suggested technique can identify binary cyber threats. We
observed the suggested model with several hyperparameters and the outcomes indicate
that we achieved the best results with the Adam optimizer, 0.0001 learning rate, 32 batch
size, and of course 10 min window size. In this paper, we employed a train–test split
approach to evaluate the suggested system’s performance. According to the experimental
data, the proposed model performed better than 99.36% for the binary classification with
a low false negative rate of 0.002. These results imply that our model can effectively
detect targeted attacks in all Wi-Fi network environments leading to overall improved
network security.

Electronics 2023, 12, 3731 30 of 32

Author Contributions: Conceptualization, all authors; methodology, S.K.G. and J.R.; software,
S.K.G.; validation, Z.C. and J.R.; formal analysis, all authors; investigation and resources, S.K.G.; data
curation, S.K.G. and M.A.-T.; writing—original draft preparation, S.K.G.; writing review and editing,
J.R. and L.C.; visualization, S.K.G.; supervision, J.R. and L.C.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research has been supported by the BT Ireland Innovation Centre (BTIIC) project,
funded by BT, and Invest Northern Ireland.

Data Availability Statement: The data reported here were captured using the testbed setup men-
tioned on the study. The dataset is publicly available in GitHub [51] and is refenced in this paper.
The details of the tools used in the experimental setup have also been referenced within the paper.

Acknowledgments: This research has been supported by the BT Ireland Innovation Centre (BTIIC)
project, funded by BT, and Invest Northern Ireland.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IEEE 802.11-1997; IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

IEEE: Toulouse, France. Available online: https://standards.ieee.org (accessed on 12 May 2023).
2. IEEE 802.11a-1999; IEEE Standard for Telecommunications and Information Exchange between Systems—LAN/MAN Specific

Requirements—Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical
Layer in the 5 GHz Band. IEEE: Toulouse, France. Available online: https://standards.ieee.org (accessed on 12 May 2023).

3. 802.11g-2003; IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension
in the 2.4 GHz Band. IEEE: Toulouse, France. Available online: https://standards.ieee.org (accessed on 12 May 2023).

4. 802.11n-2009; IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part
11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for
Higher Throughput. IEEE: Toulouse, France. Available online: https://standards.ieee.org (accessed on 12 May 2023).

5. 802.11ac-2013; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems–
Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications—Amendment 4: Enhancements for Very High Throughput for Operation in Bands below
6 GHz. IEEE: Toulouse, France. Available online: https://standards.ieee.org (accessed on 12 May 2023).

6. 802.11ai-2016; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local
and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 1: Fast Initial Link Setup. IEEE: Toulouse, France. Available online: https://standards.ieee.org
(accessed on 12 May 2023).

7. Gu, J.; Zhao, J.; Li, W. Research on WLAN Security Technology Based on IEEE 802.11. In Proceedings of the 2011 3rd International
Conference on Advanced Computer Control, ICACC, Harbin, China, 18–20 January 2011; pp. 234–237. [CrossRef]

8. Juhász, K.; Póser, V.; Kozlovszky, M.; Bánáti, A. WiFi Vulnerability Caused by SSID Forgery in the IEEE 802.11 Protocol. In
Proceedings of the SAMI 2019—IEEE 17th World Symposium on Applied Machine Intelligence and Informatics, Herlany, Slovakia,
24–26 January 2019; pp. 333–338. [CrossRef]

9. Yao, X.; Farha, F.; Li, R.; Psychoula, I.; Chen, L.; Ning, H. Security and Privacy Issues of Physical Objects in the IoT: Challenges
and Opportunities. Digit. Commun. Netw. 2021, 7, 373–384. [CrossRef]

10. CVE Records for Deatuthentication and Disassociation Attacks. Available online: https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=deauthentication+attack (accessed on 28 June 2023).

11. A. Reyes, A.; D. Vaca, F.; Castro Aguayo, G.A.; Niyaz, Q.; Devabhaktuni, V. A Machine Learning Based Two-Stage Wi-Fi Network
Intrusion Detection System. Electronics 2020, 9, 1689. [CrossRef]

12. WPA3 Specification. Available online: https://www.wi-fi.org/downloads-public/WPA3%2BSpecification%2Bv3.1.pdf/35332
(accessed on 12 May 2023).

13. IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020); IEEE Standard for Information Technology–Telecommunications
and Information Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency
WLAN. IEEE: Toulouse, France, 2021; pp. 1–767. [CrossRef]

14. Dalal, N.; Akhtar, N.; Gupta, A.; Karamchandani, N.; Kasbekar, G.S.; Parekh, J. A Wireless Intrusion Detection System for
802.11 WPA3 Networks. In Proceedings of the 2022 14th International Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 4–8 January 2022; Volume 3.

15. Baras, K.; Moreira, A. Anomaly Detection in University Campus WiFi Zones. In Proceedings of the 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2010, Mannheim, Germany,
29 March–2 April 2010; pp. 202–207. [CrossRef]

https://standards.ieee.org
https://standards.ieee.org
https://standards.ieee.org
https://standards.ieee.org
https://standards.ieee.org
https://standards.ieee.org
https://doi.org/10.1109/ICACC.2011.6016404
https://doi.org/10.1109/SAMI.2019.8782775
https://doi.org/10.1016/j.dcan.2020.09.001
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deauthentication+attack
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deauthentication+attack
https://doi.org/10.3390/electronics9101689
https://www.wi-fi.org/downloads-public/WPA3%2BSpecification%2Bv3.1.pdf/35332
https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/PERCOMW.2010.5470669

Electronics 2023, 12, 3731 31 of 32

16. Simbana, S.; Lopez, G.; Tipantuna, C.; Sanchez, F. Vulnerability Analysis Toolkit for IEEE 802.11 Wireless Networks: A Practical
Approach. In Proceedings of the 3rd International Conference on Information Systems and Computer Science, INCISCOS, Quito,
Ecuador, 13–15 November 2018; pp. 227–232. [CrossRef]

17. Seraphim, B.I.; Palit, S.; Srivastava, K.; Poovammal, E. A Survey on Machine Learning Techniques in Network Intrusion Detection
System. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation, ICCCA,
Greater Noida, India, 14–15 December 2018; pp. 1–5. [CrossRef]

18. Satam, P.; Hariri, S. WIDS: An Anomaly Based Intrusion Detection System for Wi-Fi (IEEE 802.11) Protocol. IEEE Trans. Netw.
Serv. Manag. 2021, 18, 1077–1091. [CrossRef]

19. Yousefnezhad, N.; Malhi, A.; Främling, K. Security in Product Lifecycle of IoT Devices: A Survey. J. Netw. Comput. Appl. 2020,
171, 102779. [CrossRef]

20. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A Survey of Intrusion Detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

21. Danziger, M.; De Lima Neto, F.B. A Hybrid Approach for IEEE 802.11 Intrusion Detection Based on AIS, MAS and Naïve Bayes.
In Proceedings of the 2010 10th International Conference on Hybrid Intelligent Systems, Atlanta, GA, USA, 23–25 August 2010;
pp. 201–204.

22. Thing, V.L.L. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach. In Proceedings
of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017;
pp. 1–6.

23. Riyaz, B.; Ganapathy, S. A Deep Learning Approach for Effective Intrusion Detection in Wireless Networks Using CNN. Soft
Comput. 2020, 24, 17265–17278. [CrossRef]

24. Lawal, M.A.; Shaikh, R.A.; Hassan, S.R. Security Analysis of Network Anomalies Mitigation Schemes in IoT Networks. IEEE
Access 2020, 8, 43355–43374. [CrossRef]

25. Sharma, N.; Jain, V.; Mishra, A. An Analysis of Convolutional Neural Networks for Image Classification. Procedia Comput. Sci.
2018, 132, 377–384. [CrossRef]

26. Narayana Rao, K.; Venkata Rao, K.; Pvgd, P.R. A Hybrid Intrusion Detection System Based on Sparse Autoencoder and Deep
Neural Network. Comput. Commun. 2021, 180, 77–88. [CrossRef]

27. Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face Recognition: A Convolutional Neural-Network Approach. IEEE Trans.
Neural. Netw. 1997, 8, 98–113. [CrossRef]

28. Zhiqiang, W.; Jun, L. A Review of Object Detection Based on Convolutional Neural Network. In Proceedings of the 2017 36th
Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11104–11109.

29. Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 667–682. [CrossRef]

30. Devlin, J.; Cheng, H.; Fang, H.; Gupta, S.; Deng, L.; He, X.; Zweig, G.; Mitchell, M. Language Models for Image Captioning: The
Quirks and What Works 2015. arXiv 2015, arXiv:1505.01809.

31. Yang, J.; Li, J. Application of Deep Convolution Neural Network. In Proceedings of the 2017 14th International Computer
Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15–17 December
2017; IEEE: Chengdu, China, 2017; pp. 229–232.

32. Torfi, A.; Iranmanesh, S.M.; Nasrabadi, N.; Dawson, J. 3D Convolutional Neural Networks for Cross Audio-Visual Matching
Recognition. IEEE Access 2017, 5, 22081–22091. [CrossRef]

33. Idrissi, I.; Azizi, M.; Moussaoui, O. Accelerating the Update of a DL-Based IDS for IoT Using Deep Transfer Learning. IJEECS
2021, 23, 1059. [CrossRef]

34. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
35. Global Economic Value of Wi-Fi_2021-2025—Wi-Fi Alliance. Available online: https://www.wi-fi.org/downloads-public/

Global_Economic_Value_of_Wi-Fi_2021-2025_202109.pdf/37347 (accessed on 12 May 2023).
36. Waliullah, M.; Moniruzzaman, A.B.M.; Rahman, M.S. An Experimental Study Analysis of Security Attacks at IEEE 802.11 Wireless

Local Area Network. Int. J. Future Gener. Commun. Netw. 2015, 8, 9–18. [CrossRef]
37. Mahini, H.; Mousavirad, S.M. WiFi Intrusion Detection and Prevention Systems Analyzing: A Game Theoretical Perspective. Int.

J. Wirel. Inf. Netw. 2020, 27, 77–88. [CrossRef]
38. Milliken, J.; Selis, V.; Yap, K.M.; Marshall, A. Impact of Metric Selection on Wireless Deauthentication Dos Attack Performance.

IEEE Wirel. Commun. Lett. 2013, 2, 571–574. [CrossRef]
39. Tyagi, M.; Narvare, S.; Agrawal, C. A Survey of Different Dos Attacks on Wireless Network. Comput. Eng. Intell. Syst. 2018,

9, 23–32.
40. Agrawal, A.; Dixit, A.; Shettar, N.; Kapadia, D.; Karlupia, R.; Agrawal, V.; Gupta, R. Delog: A Privacy Preserving Log Filtering

Framework for Online Compute Platforms. arXiv 2019, arXiv:1902.04843v3.
41. Tsung, C.K.; Yang, C.T.; Yang, S.W. Visualizing Potential Transportation Demand from ETC Log Analysis Using ELK Stack. IEEE

Internet Things J. 2020, 7, 6623–6633. [CrossRef]
42. Shi, L.; Wu, L.; Guan, Z. Three-Layer Hybrid Intrusion Detection Model for Smart Home Malicious Attacks. Comput. Electr. Eng.

2021, 96, 107536. [CrossRef]

https://doi.org/10.1109/INCISCOS.2018.00040
https://doi.org/10.1109/CCAA.2018.8777596
https://doi.org/10.1109/TNSM.2020.3036138
https://doi.org/10.1016/j.jnca.2020.102779
https://doi.org/10.1016/j.jnca.2017.02.009
https://doi.org/10.1007/s00500-020-05017-0
https://doi.org/10.1109/ACCESS.2020.2976624
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1016/j.comcom.2021.08.026
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/TGRS.2018.2859203
https://doi.org/10.1109/ACCESS.2017.2761539
https://doi.org/10.11591/ijeecs.v23.i2.pp1059-1067
https://doi.org/10.1109/TKDE.2009.191
https://www.wi-fi.org/downloads-public/Global_Economic_Value_of_Wi-Fi_2021-2025_202109.pdf/37347
https://www.wi-fi.org/downloads-public/Global_Economic_Value_of_Wi-Fi_2021-2025_202109.pdf/37347
https://doi.org/10.14257/ijfgcn.2015.8.1.02
https://doi.org/10.1007/s10776-019-00474-3
https://doi.org/10.1109/WCL.2013.072513.130428
https://doi.org/10.1109/JIOT.2020.2974671
https://doi.org/10.1016/j.compeleceng.2021.107536

Electronics 2023, 12, 3731 32 of 32

43. Roopak, M.; Tian, G.Y.; Chambers, J. An Intrusion Detection System Against DDoS Attacks in IoT Networks. In Proceedings of
the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January
2020; pp. 562–567.

44. Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K.; Islam, R. Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning Based Approach. IEEE Trans. Ind. Inf. 2023, 19, 1006–1017. [CrossRef]

45. Masum, M.; Shahriar, H. TL-NID: Deep Neural Network with Transfer Learning for Network Intrusion Detection. In Proceedings
of the 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 8–10 December
2020; pp. 1–7.

46. Fan, Y.; Li, Y.; Zhan, M.; Cui, H.; Zhang, Y. IoTDefender: A Federated Transfer Learning Intrusion Detection Framework for 5G
IoT. In Proceedings of the 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE), Guangzhou,
China, 31 December 2020—1 January 2021; pp. 88–95.

47. Elsayed, N.; Zaghloul, Z.S.; Azumah, S.W.; Li, C. Intrusion Detection System in Smart Home Network Using Bidirectional LSTM
and Convolutional Neural Networks Hybrid Model. In Proceedings of the 2021 IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021.

48. Huong, P.V.; Thuan, L.D.; Hong Van, L.T.; Hung, D.V. Intrusion Detection in IoT Systems Based on Deep Learning Using
Convolutional Neural Network. In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer Science
(NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 448–453.

49. Xu, Y.; Liu, Z.; Li, Y.; Zheng, Y.; Hou, H.; Gao, M.; Song, Y.; Xin, Y. Intrusion Detection Based on Fusing Deep Neural
Networks and Transfer Learning. In Digital TV and Wireless Multimedia Communication; Zhai, G., Zhou, J., Yang, H., An, P.,
Yang, X., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1181, pp. 212–223.
ISBN 9789811533402.

50. Hsu, C.-M.; Hsieh, H.-Y.; Prakosa, S.W.; Azhari, M.Z.; Leu, J.-S. Using Long-Short-Term Memory Based Convolutional Neural
Networks for Network Intrusion Detection. In Wireless Internet; Chen, J.-L., Pang, A.-C., Deng, D.-J., Lin, C.-C., Eds.; Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International
Publishing: Cham, Switzerland, 2019; Volume 264, pp. 86–94. ISBN 978-3-030-06157-9.

51. Wi-Fi-Association_Disassociation-Dataset. Available online: https://github.com/samsonkg/Wi-Fi-Association_Disassociation-
Dataset (accessed on 26 August 2023).

52. ESP8266 Deauther 2021. Available online: https://github.com/SpacehuhnTech/esp8266_deauther (accessed on 5 May 2023).
53. Brandao, A.; Georgieva, P. Log Files Analysis for Network Intrusion Detection. In Proceedings of the 2020 IEEE 10th International

Conference on Intelligent Systems, IS, Varna, Bulgaria, 28–30 August 2020; pp. 328–333. [CrossRef]
54. Brown, R. OpenWrt Project. Available online: https://openwrt.org/start (accessed on 22 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2022.3164770
https://github.com/samsonkg/Wi-Fi-Association_Disassociation-Dataset
https://github.com/samsonkg/Wi-Fi-Association_Disassociation-Dataset
https://github.com/SpacehuhnTech/esp8266_deauther
https://doi.org/10.1109/IS48319.2020.9199976
https://openwrt.org/start

	Introduction
	Background
	Intrusion Detection System (IDS)
	Machine and Deep Learning for IDS
	Convolutional Neural Networks
	Transfer Learning

	IoT and the Wi-Fi Protocol
	De-Authentication DoS Attack
	Disassociation DoS Attack
	Log Collection and Parsing
	Elastic Stack

	Related Work
	Proposed Intrusion Detection Method
	Attack and Normal Traffic Generator Module
	Log Collection, Parsing, Storing, Analysis, and Generating Dataset
	Visualization and Dataset Generation Module
	Data Pre-Processing Module
	Attack Detection Module

	Results and Analysis
	Experimental Setup
	Training the Proposed Model
	Hyperparameter Tuning
	Performance Evaluation
	Comparison with State-of-the-Art Models

	Discussion
	Conclusions
	References

